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Summary. The unsteady rotating flow of a laminar incompressible viscous electrically conducting fluid

over a rotating sphere in the vicinity of the equator has been studied. The fluid and the body rotate either

in the same direction or in opposite directions. The effects of surface suction and magnetic field have been

included in the analysis. There is an initial steady state that is perturbed by a sudden change in the

rotational velocity of the sphere, and this causes unsteadiness in the flow field. The nonlinear coupled

parabolic partial differential equations governing the boundary-layer flow have been solved numerically by

using an implicit finite-difference scheme. For large suction or magnetic field, analytical solutions have also

been obtained. The magnitude of the radial, meridional and rotational velocity components is found to be

higher when the fluid and the body rotate in opposite directions than when they rotate in the same

direction. The surface shear stresses in the meridional and rotational directions change sign when the ratio

of the angular velocities of the sphere and the fluid k � k0. The final (new) steady state is reached rather

quickly which implies that the spin-up time is small. The magnetic field and surface suction reduce the

meridional shear stress, but increase the surface shear stress in the rotational direction.

1 Introduction

The rotating flows over a stationary or a rotating body have important and interesting

applications in meteorology, in geophysical and cosmical fluid dynamics, in gaseous and nu-

clear reactors etc. The magnetohydrodynamics of rotating electrically conducting viscous fluids

in the presence of a magnetic field are encountered in several important problems in geophysics

and astrophysics. They can provide explanations for the observed maintenance and secular

variations of the geomagnetic field [1]. It is also relevant in solar physics involved in sun spot

development, the solar cycle and the structure of rotating magnetic stars [2].

The rotating flow over a stationary or a rotating sphere has received considerable attention in

the literature. Banks [3] has theoretically and experimentally studied the rotating flow over a

stationary sphere, whereas Singh [4] investigated this flow analytically for small values of the

Reynolds number. At very large values of the Reynolds number the rotating flow near the pole

of the rotating sphere reduces to the problem of a rotating flow over a rotating infinite disk. For

the case of an axially symmetric flow, the Navier-Stokes equations can be reduced to a set of

five first-order ordinary differential equations with the boundary conditions specified at two

different locations. Numerical solutions to this problem have been obtained by several inves-

tigators [5]–[10] for various values of the ratio of the angular velocity of the disk and the fluid.
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Rogers and Lance [5] found that in the absence of suction no solution exists for

�0:16054 > s > �1:4355. Evans [6], Ockendon [7], Bodonyi [8], and Dykstra and Zandbergen

[9], [10] have made a more detailed study of this problem. Hastings [11], Mc Leod [12]–[14],

Bushell [15] and Hartman [16] have studied this problem theoretically by either taking s > 0 or

allowing suction to be imposed.

Banks [3] obtained the similarity solution near the equator of a stationary sphere in a

rotating fluid. For the case of a sphere rotating in an ambient fluid, no similarity solution was

found in the vicinity of the equator, and the nature of the flow in this region has been discussed

by Stewartson [17], Banks [18], [19], Singh [20], and Dennis et al. [21]. Ingham [22] has studied

the rotating flow in the vicinity of the equator of a rotating sphere numerically and found that

no unique solution exists.

In the above studies, the flow was assumed to be axisymmetric. The non-axisymmetric flow in

rotating fluids has been considered by a few investigators [23]–[26]. Recently, the spin-up and

spin-down problem over a rotating disk in a vertical plane in the presence of a magnetic field

and buoyancy force has been investigated by Slaouti et al. [27]. In this problem the flow

becomes non-axisymmetric due to the presence of the buoyancy force. Some further studies on

the rotating flow due to the rotating disk in an ambient fluid were carried out by Vooren and

Botta [28], [29], and Tarek et al. [30]. In all these analyses, except [27], steady flow was con-

sidered. However, the study of the unsteady MHD flow of a rotating fluid on a rotating body is

important in the temporal evolution of rotating magnetic stars.

In this paper, we have investigated the unsteady MHD rotating flow of a viscous incom-

pressible electrically conducting fluid in the vicinity of the equator of a rotating sphere. The

magnetic field is applied in the radial direction. We have considered the case when there is an

initial steady state which is perturbed by a sudden increase in the angular velocity of the sphere.

This causes unsteadiness in the flow field. The fluid and the sphere either rotate in the same

directions or in the opposite directions. The coupled nonlinear parabolic partial differential

equations governing the boundary-layer flow of a rotating unbounded fluid in the vicinity of

the equator of a rotating sphere have been solved numerically by using a finite-difference

scheme. Analytical solutions have been obtained for large values of suction or the magnetic

field. The computations have been carried out from the initial steady state to the final steady

state. The results in the absence of a magnetic field and suction have been compared with those

of Ingham [22].

2 Formulation and analysis

Let us consider the unsteady laminar viscous incompressible electrically conducting rotating

unbounded fluid in the vicinity of the equator of a rotating sphere. The fluid as well as the body

either rotate in the same directions or in the opposite directions with angular velocities Xf and

Xb, respectively. There is an initial steady state which is perturbed by suddenly increasing the

angular velocity of the sphere. This introduces unsteadiness in the flow field. We have taken

spherical polar coordinates ðr�; h;/Þ with the origin at the centre of the sphere of radius a, and

h ¼ 0 is the axis of rotation. The motion is assumed to be independent of the azimuthal angle /
which implies that the flow is taken to be axisymmetric. It is possible to express the fluid motion

in terms of the dimensionless velocity components ðu; v;wÞ in the directions ðr�; h;/Þ. The
dimensionless velocity components ðu; v;wÞ are obtained from the dimensional velocity com-

ponents ðu�; v�;w�Þ by dividing them by aXf . The dimensionless time s is obtained from the
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dimensional time t� by multiplying it by Xf ( i.e. t = Xf t*). The dimensionless pressure p is

obtained from the dimensional pressure p� by dividing it by q a2X2
f . The surface of the sphere is

assumed to be electrically insulated. The magnetic field B is applied in the r-direction by placing

a magnetic dipole at the centre of the sphere. The magnetic Reynolds number Rem = l0r
�VVL� 1, where l0 and r are the magnetic permeability and electrical conductivity, respectively,

and �VV and L are the characteristic velocity and length, respectively. Under this condition it is

possible to neglect the induced magnetic field in comparison to the applied magnetic field. Since

there is no applied or polarization voltage imposed on the flow field, the electric field �EE ¼ 0.

Hence only the applied magnetic field contributes to the Lorentz force, and the components of

the Lorentz force in the h- and /-directions are -Mv and -Mðw� r sin hÞ, respectively, where M

is the magnetic parameter. Under the above assumptions, the Navier-Stokes equations based

on the conservation of mass and momentum governing the unsteady rotating flow over a

rotating sphere can expressed as
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The boundary conditions are the no-slip conditions on the surface and the free stream con-

ditions far away from the surface. These conditions can be expressed as

uð1; h; tÞ ¼ u0;vð1; h; tÞ ¼ 0; wð1; h; tÞ ¼ kð1þ eÞr sin h;

uð1; h; tÞ ¼ vð1; h; tÞ ¼ 0; wð1; h; tÞ ¼ r sin h:
ð6Þ

Here Re ¼ a2Xf=m is the Reynolds number, m is the kinematic viscosity, k ¼ Xb=Xf is the ratio

of the angular velocity of the sphere to the angular velocity of the distant fluid, t ¼ t�Xf is the

dimensionless time, r ¼ r�=a is the dimensionless radial distance, M ¼ rB2=qXf ¼ Ha=Re is the

magnetic parameter, Ha ¼ rB2a2=l is the Hartmann number, l is the viscosity, a is the radius

of the sphere, e is a dimensionless constant, and u0 is the velocity at the surface along

r-direction and u0 < 0 for suction.

In order to reduce the complexity of the Navier-Stokes equations (1)–(4), we use the

boundary layer approximations. Hence, the radial coordinate is stretched such that

g ¼ Re1=2ðr � 1Þ; ð7Þ

and the velocity components and pressure are given by
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uðr; h; tÞ ¼ Re�1=2Uðg; h; sÞ; vðr; h; tÞ ¼ Vðg; h; sÞ;

wðr; h; tÞ ¼ Wðg; h; sÞ; t ¼ s; p ¼ P:
ð8Þ

Consequently, the boundary-layer equations reduce to
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P ¼ 2�1 sin2 h; ð10Þ

@V

@s
þ U

@V

@g
þ V

@V

@h
�W2 cot h ¼ � sin h cos hþ @

2V

@g2
�MV ; ð11Þ

@W

@s
þ U

@W

@g
þ V

@W

@h
þ VW cot h ¼ @

2W

@g2
�MðW � sin hÞ: ð12Þ

Here U, V, W are the transformed velocity components along the g-; h-;/- directions,

respectively (i.e., U;V and W are the radial, meridional and rotational velocity components).

In the neighborhood of the pole, the above problem reduces to the unsteady counterpart of

the well known Karman swirling flow. Here we are interested in the flow near the equator. For

this flow, we write

Uðg; h; sÞ ¼ Hðg; sÞ;

Vðg; h; sÞ ¼ ðh� p=2ÞFðg; sÞ; ð13Þ

Wðg; h; sÞ ¼ Gðg; sÞ:

Substituting (13) in Eqs. (9), (11) and (12) and equating the coefficients of the lowest power in

(h� p=2) gives rise to partial differential equations with two independent variables g and s,
and these equations, after substituting F ¼ �H0 from the continuity equations, can be ex-

pressed as

H000 � HH00 þ H02 þ G2 � 1�MH0 � @H0=@s ¼ 0; ð14Þ

G00 � HG0 �MðG� 1Þ � @G=@s ¼ 0: ð15Þ

The boundary conditions are

Hð0; sÞ ¼ A; H0ð0; sÞ ¼ 0; Gð0; sÞ ¼ kð1þ eÞ;

H0ð1; sÞ ¼ 0; Gð1; sÞ ¼ 1:
ð16Þ

The initial conditions are given by the steady-state equations which are obtained from (14) and

(15) by putting s ¼ e ¼ @H0=@s ¼ @G=@s ¼ 0. The steady-state equations are given by

H000 � HH00 þ H02 þ G2 � 1�MH0 ¼ 0; ð17Þ

G00 � HG0 �MðG� 1Þ ¼ 0 ð18Þ

with the boundary conditions

Hð0Þ ¼ A; H0ð0Þ ¼ 0; Gð0Þ ¼ k; H0ð1Þ ¼ 0; Gð1Þ ¼ 1: ð19Þ

Here H;H0ð¼ �FÞ and G are the dimensionless velocity components along the radial, meridi-

onal and rotational directions, respectively, Að¼ u0Re1=2Þ is the mass transfer parameter, and

A < 0 for suction, and prime denotes derivative with respect to g.
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It may be remarked that near k ¼ 1 it is rather difficult to obtain the numerical solution of

Eqs. (14) and (15) under the boundary conditions (16), since the boundary layer grows.

Therefore, the following scaling has been used near k ¼ 1 when A ¼ M ¼ 0:

e1 ¼ 1� kð1þ eÞ; g1 ¼ e1=4
1 g; Hðg; sÞ ¼ e1=4

1 hðg1; sÞ;

Gðg; sÞ ¼ 1� e1gðg1; sÞ: ð20Þ

Using (20) in (14) and (15), we obtain the following equations:

h000 � hh00 þ h02 � 2g� @h0=@s ¼ 0; ð21Þ

g00 � hg0 � @g=@s ¼ 0 ð22Þ

with the boundary conditions

hð0; sÞ ¼ h0ð0; sÞ ¼ 0; gð0; sÞ ¼ 1; h0ð1; sÞ ¼ gð1; sÞ ¼ 0: ð23Þ

The corresponding steady-state equations along with the boundary conditions are given by

h000 � hh00 þ h02 � 2g ¼ 0; ð24Þ

g00 � hg0 ¼ 0; ð25Þ

hð0Þ ¼ h0ð0Þ ¼ 0; gð0Þ ¼ 1; h0ð1Þ ¼ gð1Þ ¼ 0: ð26Þ

In Eqs. (21)–(26), prime denotes derivative with respect to g1. The steady-state equations

(24)–(26) are identical to those of Ingham [22].

3 Methods of solution

Equations (14) and (15) under the boundary conditions (16) and the initial conditions (17)–(19)

have been solved by using an implicit, tri-diagonal, iterative finite-difference scheme similar to

that of Blottner [32]. All the first order derivatives with respect to s are replaced by two-point

back-ward-difference formulae:

@S=@s ¼ ðSi;j � Si�1;jÞ=Ds; ð27Þ

where S denotes any dependent variable H or G, and i and j are the node locations along the s
and g directions, respectively. First the third-order differential equation (14) is converted to a

second-order one by substituting H0 ¼ H1. Then these second-order equations are discretized by

using three-point central difference formulae and all the first-order equations by employing the

trapezoidal rule. The nonlinear terms are evaluated at the previous iterations. At each time-step

of constant s, a system of algebraic equations is solved iteratively by using the Thomas algo-

rithm (see Blottner [32]). The same procedure is repeated for the next s value, and the equations

are solved line by line until the desired s value is reached. A convergence criterion based on the

relative difference between the current and previous iterations is used. When this difference

reaches 10�5, the solution is assumed to have converged and the iterative process is terminated.

A sensitivity analysis of the effect of the step sizes Dg and Ds and the location of the edge of

the boundary layer g1 on the solutions was performed. Finally, the computations were carried

out with Dg ¼ 0:02, Ds ¼ 0:001 for 0 � s � 0:1, Ds = 0.02 for s > 0:1, and g1 ¼ 10.
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4 Asymptotic solution for large suction

In this section, we have obtained approximate closed form solutions of the final steady-state

equations obtained from Eqs. (14) and (15) by putting @H0=@s ¼ @G=@s ¼ 0, s!1, for large

values of the suction parameter �Að�A � 2Þ. Our numerical results show that for �A � 2

the radial velocity HðgÞ ¼ A ¼ �A0, A0 > 0 and the meridional velocity H0ðgÞ � 1. Hence

Eq. (15), after putting @G=@s ¼ 0; reduces to

G00 þ A0G0 �MðG� 1Þ ¼ 0: ð28Þ

The solution of Eq. (28) under the conditions (16) can be written as

G ¼ 1þ b2 expð�b1gÞ; ð29Þ

Table 1. Comparison of surface shear stress in the meridional and rotational direction (�H00ð0Þ;G0ð0Þ)
for A = M = e = s = 0

k Present results Ingham [22]

�H 00ð0Þ 10 G0ð0Þ �H00ð0Þ 10 G0ð0Þ

0.995 0.02568 0.00665 0.025799 0.006661

0.99 0.04326 0.015834 0.04332 0.015837

0.975 0.08568 0.04968 0.08576 0.04973

0.95 0.14315 0.11802 0.14317 0.11808

0.90 0.23716 0.27979 0.23722 0.27985

0.85 0.31659 0.46281 0.31666 0.46287

0.80 0.38678 0.66068 0.38686 0.66076
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Fig. 1. Comparison of analytical and numerical results for M ¼ 1, e ¼ 0:2, s ¼ 3, k ¼ 0:5
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where

b1 ¼ 2�1½A0 þ ðA2
0 þ 4MÞ1=2�; b2 ¼ kð1þ eÞ � 1: ð30Þ

The surface shear stress in the rotational direction is expressed in the form

G0ð0Þ ¼ �b1b2: ð31Þ

Using relation (29) with H ¼ �A0 and H0 � 1 on the steady-state equation corresponding to

Eq. (14), we get

H000 þ A0H00 �MH0 ¼ �½2b2 expð�b1gÞ þ b2
2 expð�2b1gÞ�: ð32Þ
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The solution of (32) under conditions (16) can be expressed as

H ¼ �A0 � ð2b1b3Þ�1
b2

2½2 expð�b1gÞ � expð�2b1gÞ � 1�

� 2b2ðb2
1b4Þ�1½ð1þ b1gÞ expð�b1gÞ � 1�; ð33Þ

where

b3 ¼ A2
0 þ A0ðA2

0 þ 4MÞ1=2 þ 3M; b4 ¼ ðA2
0 þ 4MÞ1=2: ð34Þ

The radial velocity far away from the surface is given by

Hð1Þ ¼ �A0 � ð2b1b3Þ�1
b2

2 þ 2ðb2
1b4Þ�1

b2: ð35Þ

The surface shear stress in the meridional direction is given by

H00ð0Þ ¼ b2½ðb1b2=b3Þ þ ð2=b4Þ�: ð36Þ
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For �A � 2ðA0 � 2Þ, these analytical results are found to be in good agreement with the

numerical results. The comparison is presented in Fig. 1. It may be remarked that the above

analytical results are also valid for large MðM � 4Þ when A0 � 1. Further, these results also

hold good for the initial steady-state case if we put e ¼ 0.

5 Results and discussion

Equations (14) and (15) under the boundary conditions (16) and initial conditions (17)–(19)

have been solved by using the implicit finite-difference scheme as described earlier. In order to

assess the accuracy of our method, we have compared the steady-state results (H00ð0Þ, G0ð0Þ) for

l = –1.0

l = 1.0

l = –2.0

l = 0.5

l = –0.5

A = –2.0
M = 1.0
e = 0.2

G
 ′ (

0,
t)

t

–4

12

10

8

6

4

2

0

–2

0.0 0.5 1.0 2.01.5 2.5 3.0

Fig. 6. Effects of k on G0ð0; sÞ

M = 4.0

M = 1.0

M = 0

M = 3.0
M = 2.0

A = –2.0
M =0.2
e = 0.5
t = 1.0

H
(h

,t
)

h
0

–1.98

–2.00

–2.02

–2.04

–2.06

–2.08

–2.10
1 2 3 4

Fig. 7. Effects of M on Hðg; sÞ

Unsteady MHD rotating flow 39



0:8 � k � 0:995, when A ¼ M ¼ 0 with those of Ingham [22], and the results are found to be in

good agreement. This comparison is given in Table 1.

Figure 1 presents the comparison of the surface shear stresses in the meridional and rota-

tional directions (H00ð0Þ, G0ð0Þ) for the final steady-state case when �A � 2 (A0 � 2), M ¼ 1,

k ¼ 0:5, s ¼ 3, e ¼ 0:2, obtained by analytical and numerical methods. The results are in very

good agreement for �A > 2.

Figures 2–4 show the effect of the ratio of the angular velocities of the body and fluid k on the

radial, meridional and rotational velocity components (Hðg; sÞ, H0ðg; sÞ, Gðg; sÞ) for A ¼ �2,

M ¼ 1, e ¼ 0:2, s ¼ 1. The velocity profiles are found to change more when the body and the

fluid rotate in opposite directions (k < 0) than when they rotate in the same direction (k > 0),

because the relative angular velocity increases when they rotate in opposite directions. The

velocity profiles, Hðg; sÞ, H0ðg; sÞ and Gðg; sÞ are negative for k < k0.
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Figures 5 and 6 present the effect of k on the surface shear stresses in the meridional and

rotational directions (H00ð0; sÞ, G0ð0; sÞ) for A ¼ �2, M ¼ 1, e ¼ 0:2. The surface shear stresses

reach the new (final) steady state rather quickly (i.e., the spin-up time is small).

Figures 7–9 display the effect of the magnetic parameter M on the velocity components in the

radial, meridional and rotational directions (Hðg; s), H0ðg; s), Gðg; s)) for A ¼ �2, e ¼ 0:2, k =

0.5, s = 1. The velocity components in the radial and meridional directions (Hðg; sÞ, H0ðg; s))
decrease with increasing M, but the velocity component in the rotational direction increases.

The reason for this trend is the reduction of the boundary-layer thickness with increasing M.

Figures 10 and 11 present the effect of the magnetic parameter M on the surface shear stresses

in the meridional and rotational directions (H00ð0; sÞ, G0ð0; sÞ) for A ¼ �2; e ¼ 0:2, k ¼ 0:5. The

surface shear stress in the meridional direction (�H00ð0; sÞ) decreases with increasing M, but the

surface shear stress in the rotational direction (G0ð0; sÞ) increases. Since the magnetic parameter
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M has stabilizing effect on the flow field, it retards the growth of the boundary layer. Conse-

quently, the shear stress in the meridional direction decreases, but the shear stress in the

rotational direction increases as M increases. For A ¼ �2, k ¼ 0:5, s ¼ 3, e ¼ 0:2, �H00ð0; sÞ
decreases by about 112% as M increases from zero to 4, but G=ð0; sÞ increases by about 62%.

The spin-up time (time to reach the new steady state) reduces with increasing M.

In Figs. 12–14, the effect of the suction parameter (�A) on the radial, meridional and

rotational directions (Hðg; sÞ, H0ðg; sÞ and Gðg; sÞÞ for M ¼ 1, k ¼ 0:5, e ¼ 0:2, s ¼ 1 is given.

For �A � 2, the velocity component in the radial direction (Hðg; sÞ) becomes nearly a constant,

i.e. Hðg; sÞ ¼ �A. The velocity component in the meridional direction (H0ðg; sÞ) reduces with

increasing suction, but the velocity component in the rotating direction (Gðg; sÞ) increases. Like
the magnetic field, suction also reduces the boundary-layer thickness. This results in a reduction
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in the radial and meridional velocity components (Hðg; sÞ, H0ðg; sÞ and an increase in the

rotational velocity component Gðg; sÞ).
Figures 15 and 16 show the effect of the suction parameter ðA < 0Þ on the surface shear

stresses in the meridional and rotational directions (H00ð0; sÞ, G0ð0; sÞ) for M ¼ 1, e ¼ 0:2,

k ¼ 0:5. Like the magnetic field, the suction parameter reduces the surface shear stress in the

meridional direction (H00ð0; sÞ), but increases the surface shear stress in the rotational direction

(G0ð0; sÞ). This trend is due to the reduction of the boundary-layer thickness with increasing

suction. The shear stress in the meridional direction (�H00ð0; sÞ) for M ¼ 1, e ¼ 0:2, k ¼ 0:5

decreases by about 47% as the suction ð�AÞ increases from 1 to 4, whereas the shear stress in

the rotational direction (G0ð0; sÞ) increases by about 160%. The spin-up time reduces with

increasing suction.
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The temporal development of the velocity components in r; h and / directions (Hðg; sÞ,
H=ðg; sÞ, Gðg; sÞ) for A ¼ �2, M ¼ 1, e ¼ 0:2 is shown in Figs. 17–19. The velocity profiles reach

the new (final) steady state after time s ¼ 3.

6 Conclusions

In the presence of suction and (or) a magnetic field, it is possible to obtain the solution of the

flow problem near the equator when the fluid and the body either rotate in the same direction

or in opposite directions. For large suction or magnetic field, analytical solutions have been

obtained for the final and initial steady-state cases. Suction and (or) magnetic field reduce the

surface shear stress in the meridional direction, but increase the surface shear stress in the

rotational direction. The spin-up time reduces with increasing suction or magnetic field.
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