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Summary. The effects of the side walls on the flows in ducts with suction and injection are examined. Three

illustrative examples are considered. The first example considers the effect of the side walls on the flow over

a porous plate. It is shown that the presence of the side walls provides a solution for both injection and

suction, although, in the absence of the side walls, a solution exists only in the case of suction. The second

example considers the flow between two porous plates and the third example the flow in a rectangular duct

with two porous walls. Analytical solutions are obtained for the velocity, the volume flux across a plane

normal to the flow and the vorticity. In order to show the effects of the side walls for the flow on a

rectangular duct, a comparison of these quantities with those in the flow between two parallel porous

plates is established. These three examples show that there are pronounced effects of the side walls on the

flows in ducts with suction and injection.

1 Introduction

The effects of the side walls on the porous plates are examined. For this purpose, three illus-

trative examples are given. These are: the asymptotic flow along a porous plate with uniform

suction bounded by two side walls, the flow between two parallel porous plates with suction at

one plate and injection at the other, and the flow in a rectangular duct with impermeable lateral

boundaries and upper and lower porous boundaries at which uniform suction and injection are

imposed. In order to show the effects of the side walls on the velocity, the flux across a plane

normal to the flow and the vorticity are calculated. These three examples show that there are

pronounced effects of the side walls on the flows in ducts with suction and injection.

The flow of fluids over boundaries of porous materials has many applications in practice such

as boundary-layer control. A surprisingly simple solution of the Navier-Stokes equations can

be obtained for the flow over a porous plane boundary at which there is a uniform suction

velocity. The solution was found by Griffith and Meredith [1], and it is an exact solution of

the Navier-Stokes equations. The velocity profile given by this solution has been called

the asymptotic suction profile [2]. The asymptotic suction profile is also the limiting form of the

velocity distribution for an arbitrary boundary layer flow when the rate of suction tends to

infinity, even when the velocity at infinity and the suction velocity are functions of the distance

along the surface [2]. It is clear from the discussion that this solution is very important in the

boundary layer theory not only for Newtonian fluids but also for non-Newtonian fluids [3] and

electrically conducting fluids [4]. There is no solution of the Navier-Stokes equations for flow

over a porous plane boundary at which there is a uniform injection velocity. The reason is that
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the boundary layer in the case of injection at the plane boundary grows gradually. However, if

the porous plate is bounded by two side walls, then, a solution of the Navier-Stokes equations

can be found for the uniform injection case. This is due to the effects of the side walls. In this

case the pressure gradient is constant, on the other hand, in the absence of the side walls the

pressure is constant. A pressure gradient in the presence of the side walls is necessary to

overcome the effects of the side walls. If the porous plate is moving with a constant velocity, an

exact solution of the Navier-Stokes equations is obtained with a constant pressure and zero

velocity at infinity.

The second illustrative example is the flow between two parallel porous plates with uniform

injection at the upper plate and uniform suction at the lower plate. When the distance between

two parallel plates goes to infinity, the velocity distribution reduces to that for the asymptotic

suction flow, and when the suction velocity goes to zero, it tends to that for the Poiseuille flow.

The velocity distribution depends on a single parameter called cross-Reynolds number which is

based on the distance between two plates and the suction velocity. For large values of this

parameter, the flow near the lower plate has a boundary-layer character, and the velocity varies

sharply [5]. It is important to note that the vorticity for large values of this parameter is

concentrated near the lower plate and it has a constant value across the channel [6]. The flow

between two parallel porous plates provides a comparison with the flow in a rectangular duct in

the presence of suction and injection.

The flow in a rectangular duct with uniform suction and injection has been examined by

Mehta and Jain [7], and Sai and Rao [8]. The form of the velocity given in [8] is not convenient

for use in this paper and therefore cannot be used to show the effects of the side walls. For this

reason, a new form for the velocity is given. It is found that the velocity has two terms; the first

term shows the velocity of the flow between two parallel porous plates and the second term

denotes the effect of the side walls. The velocity field depends on two parameters, one is the

cross-Reynolds number based on the suction velocity and the distance between two porous

walls, and the other is the aspect ratio b=c (Fig. 4). When the cross-Reynolds number goes to

zero, the velocity reduces to that for flow in a rectangular duct without porous walls. When the

aspect ratio b=c goes to zero, the velocity tends to that for the flow between two parallel porous

walls.

In order to show the effects of the side walls on the flow in a rectangular duct, it is compared

with the flow between two parallel porous plates. The effects of the side walls for the flow in a

rectangular duct with suction and injection are determined by the cross-Reynolds number and

the aspect ratio b=c. For a given value of the cross-Reynolds number, the effect of the side walls

is greatest for a duct with a square cross-section for which the aspect ratio is equal to 1. When

this ratio goes to zero the effect of the side walls disappears.

The volume flux across a plane normal to the flow in a rectangular duct with suction and

injection for a given value of the cross-Reynolds number decreases approximately linearly with

the aspect ratio. The volume flux for a given value of the aspect ratio decreases with the cross-

Reynolds number.

The vorticity in a rectangular duct with suction and injection has three components. In order

to compare the flow in a rectangular duct with the flow between two parallel porous plates, the

component of the vorticity perpendicular to the velocity is considered. This component of the

vorticity depends on the cross-Reynolds number and the aspect ratio. When the cross-Reynolds

number goes to zero, the vorticity reduces to that for the flow in a rectangular duct without

porous walls. When the aspect ratio goes to zero, the vorticity reduces to that for the flow

between two parallel porous plates. It is found that for large values of the cross-Reynolds

number the variation of the vorticity near the region of suction is sharp and has a boundary-
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layer character. In the other regions of the duct, the vorticity has a constant value. It is found

that for a given value of the cross-Reynolds number the effect of the side walls is greatest for a

duct with a square cross-section for which the aspect ratio is equal to 1. When the aspect ratio

goes to zero the effect of the side walls vanishes. It is clearly understood from the discussion

that the effect of the side walls is very important in practice [9], [10]. The effects of the side walls

in the Couette flow were investigated by Shermann [6]. For practical purposes one wishes to

know, for example, how the stress exerted on the bottom wall varies with the distance between

the side walls, for a given value of the aspect ratio of the channel. If this ratio is large enough,

for example, in the order of 5, the stress is nearly uniform and the measured value would be

unaffected by the presence of the side walls.

2 The effects of the side walls on the asymptotic suction flow

The physical model of the asymptotic suction flow is illustrated in Fig. 1. Rectangular Cartesian

coordinates are used. The x-axis is taken along the plate and the y-axis is normal to it. It is

assumed that the plate is infinitely long so that the components of the velocity depend on y

only. By the continuity equation the y-component of the velocity remains constant and equals

to its value �V , say V > 0, at the wall. The pressure remains constant throughout the flow. The

conditions on the plate and infinity are

u ¼ 0 at y ¼ 0; u! U as y!1:

Then the Navier-Stokes equations reduce to

�Vu0 ¼ vu00;

where primes denote differentiation with respect to y. The appropriate solution is

u

U
¼ 1� e

�Vy

m : ð2:1Þ

As m! 0 the disturbance to the main stream becomes more and more concentrated in a

boundary layer at the plate. It is known that for the uniform injection case ðV < 0Þ, the
governing equation does not give a solution for the velocity, since the vorticity layer over the

plate grows gradually. However, it will be shown that if the porous plate is bounded by two side

walls, one can then find a solution for the uniform injection due to the effects of the side walls.

The physical model of the flow in the presence of the side walls is illustrated in Fig. 2. The

side walls are at z ¼ �c . The governing equation is

y

U

x

V

Fig. 1. Physical model
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�V
@u

@y
¼ � 1

q
dp

dx
þ m

@2u

@y2
þ @

2u

@z2

� �
; ð2:2Þ

where dp=dx is the pressure gradient, and it can be easily shown that dp=dx is constant. The

boundary conditions are

u 0; zð Þ ¼ 0; u y;�cð Þ ¼ 0:

The boundary conditions suggest a solution for the velocity in the following form:

u y; zð Þ ¼
X

0

fn yð Þcoslnz; ð2:3Þ

where ln ¼ 2nþ 1ð Þp=2c and 2c is the distance between the side walls. fn yð Þ satisfies the

differential equation

f 00n þ
V

m
f 0n � l2

n fn ¼
1

l
dp

dx

4 �1ð Þn

2nþ 1ð Þp ;

where primes denote differentiation with respect to y. Using the form of fn yð Þobtained by the

differential equation, Eq. (2.3) can be written as

u y; zð Þ ¼ � 1

2l
dp

dx
c2

� �
32

p3

X
0

�1ð Þn

2nþ 1ð Þ3
1� eanyð Þcoslnz; ð2:4Þ

where an ¼ �ðV=2Þ � ½ðV2=4m2Þ þ l2
n�

1=2. When c goes to infinity one can find the asymptotic

suction case which is

u ¼ U 1� e�
Vy

m

� �
;

where for c!1, an ¼ �V=m and � dp=dxð Þc2=2l ¼ U. When V goes to zero, Eq. (2.4) reduces

to

u ¼ � 1

2l
dp

dx
c2

� �
32

p3

X
0

�1ð Þn

2nþ 1ð Þ3
1� e�lnyð Þcoslnz:

y

y

O–c c z

V

x

U

Fig. 2. Flow geometry. The side walls

are at z ¼ �c
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If the boundary conditions for the flow illustrated in Fig. 2 are in the following form:

u 0; zð Þ ¼ U; u y;�cð Þ ¼ 0;

the velocity distribution, in the absence of the pressure gradient, becomes

u ¼ 4U

p

X
0

�1ð Þn

2nþ 1ð Þ e
�anycoslnz:

As it is expected the velocity vanishes at infinity.

It is clearly seen from Eq. (2.4) that there are pronounced effects of the side walls. Indeed, at

y=c ¼ 1, for Vc=m ¼ 0:5, u=� ðdp=dxÞc2=2l becomes 0.9740, accurate to four decimal places

and for Vc=m ¼ 5, it is about 0.6615, which can be comparable with 0.6321 that corresponds to

the case in the absence of the side walls. It is very important that the velocity distribution given

by Eq. (2.4) can also be used for the injection case V < 0ð Þ. This is due to the effect of the side

walls.

3 Flow between two parallel porous plates

Two physical models, one of them in the limiting case reduces to the asymptotic suction flow,

and the other, in the limiting case, gives the Poiseuille flow, are illustrated in Fig. 3. The

governing equation is

�V
du

dy
¼ � 1

q
dp

dx
þ m

d2u

dy2
;

where dp=dx is the pressure gradient, and it can be easily shown that dp=dx is constant. The

boundary conditions are u �bð Þ ¼ 0. The solution can be written in four different forms,

u

� 1
2l

dp

dx
b2
¼ 2

k
1� gþ e�k � e�kg

sinhk

� �
; ð3:1Þ

u

� 1
2l

dp

dx
b2
¼ 2

k
coshk
sinhk

� g� e�kg

sinhk

� �
; ð3:2Þ

h
y y

x

x

O

a b

V

V

b

–b

Fig. 3. a Flow geometry; when h goes to infinity it gives the asymptotic suction flow, b flow geometry;

when V goes to zero it gives the Poiseuille flow
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u

� 1
2l

dp

dx
b2
¼ 2

k
ek � e�kg

sinhk
� 1� g

� �
; ð3:3Þ

u

� 1
2l

dp

dx
b2
¼ 2coshk

ksinhk
1� coshkg

coshk

� �
� 2

k
g� sinhkg

sinhk

� �
; ð3:4Þ

where k ¼ Vb=m and g ¼ y=b. When k goes to zero, the velocity field reduces to the case of the

Poiseuille flow. Throughout the paper the simplest form of the velocity given by Eq. (3.1) is

used. For large values of k, Eq. (3.1) reduces to

u

� 1
2l

dp

dx
b2
¼ 2

k
1� gð Þ:

This form of the velocity satisfies the boundary condition at g ¼ 1, but it does not satisfy the

one at g ¼ �1. This shows that there is a boundary layer at g ¼ �1 where the velocity profile

varies sharply [5]. It is important to note that the vorticity for large values of k is concentrated

near g ¼ �1 and has a constant value across the channel [6]. The vorticity is given in the

following form:

x
� dp=dxð Þb=l ¼

1

k
1� ke�kg

sinhk

� �
: ð3:5Þ

It is interesting that the difference between the values of the vorticities at the upper and lower

boundaries equals 2. This shows that this difference does not depend on the properties of the

fluid and the type of boundaries.

The volume flux across a plane normal to the flow is given by

Q kð Þ
Q 0ð Þ ¼

3

k
1

tanhk
� 1

k

� �
; ð3:6Þ

where Q 0ð Þ ¼ �2 dp=dxð Þb3=3l which corresponds to the Poiseuille flow with impermeable

walls. The results obtained by the examination of the flow between two parallel porous plates

will be used, in the next paragraph, for comparison with the flow in a rectangular duct with

suction and injection.

4 Flow in a rectangular duct with suction and injection

The sides of the rectangular section are at y ¼ �b and z ¼ �c. It is supposed throughout that

c � b. The boundaries at y ¼ �b are porous, and the boundaries at z ¼ �c are non-porous.

The flow geometry is denoted in Fig. 4. The governing equation is

�V
@u

@y
¼ � 1

q
dp

dx
þ m

@2u

@y2
þ @

2u

@z2

� �
; ð4:1Þ

and the boundary conditions are

u �b; zð Þ ¼ 0; u y;�cð Þ ¼ 0; ð4:2Þ

where dp=dx is the pressure gradient along the flow direction, and it can be easily shown that

dp=dx is constant. The solution of Eq. (4.1) subject to the boundary conditions (4.2) has been

given by Sai and Rao [8]. However, the form of their solution is not convenient for use in this

paper. Their solution cannot be used to show the effects of side walls. For this reason, a new

solution of Eq. (4.1) subject to the boundary conditions (4.2) is given. The required solution is
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u

� 1
2l

dp

dx
b2
¼ 2

k
1� gþ e�k � e�kg

sinhk

� �
þ e�

kg
2

X
0

Ancosh knzð Þcos knbð Þg; ð4:3Þ

where

An ¼ �
64 �1ð Þn knbð Þcosh k=2ð Þ
4k2

nb2 þ k2
� �2

cosh kncð Þ
;

kn ¼ 2nþ 1ð Þp=2b; kn ¼ 4k2
nb2 þ k2

� �1=2
.

2b; k ¼ Vb=m:

The first term in Eq. (4.3) shows the velocity field of the flow between two parallel porous walls,

and the second term denotes the effects of the side walls. Figure 5 shows the variation of the

velocity with y=b for various values of k for b=c ¼ 0, namely, for flow between two parallel

porous plates. The flow for non-porous walls corresponds to k ¼ 0, then the velocity profile is

symmetric. For large values of k the symmetry of the velocity profile breaks down and the

velocity near the lower wall has a boundary-layer character. Figure 6 denotes the variation of the

velocity with y=b for various values of k for b=c ¼ 1, namely, for flow in a duct of square cross-

section. It is clearly seen from Fig. 6 that there is a pronounced effect due to the side walls.

u/-(dp/dx)b2/2µ

0.80.4

0.4

10

y
b

–0.4

λ=015

Fig. 5. The variation of the velocity
with y=b for b=c ¼ 0

y

V

c
z

–b

–c

b

Fig. 4. Flow geometry for the flow in
a rectangular duct
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The volume flux across a plane normal to the flow is given by

Q k; b=cð Þ
�4 dp=dxð Þb3c=3l

¼ 1

k
1

tanhk
� 1

k

� �
� 768

b

c
cosh

k
2

� �2X
0

knbð Þ2tanh kncð Þ
4k2

nb2 þ k2
� �7=2

;

where the first term shows the flux for flow between two parallel porous plates and the second

term denotes the effect of the side walls. In the limiting case for k! 0, it gives the flux for flow

between two non-porous walls and for b=c! 0, it reduces to the flux for flow between two

parallel porous walls. It is clearly seen from Fig. 7 that there is a strong effect on the flux due to

the side walls.

The vorticity has three components. In order to compare with the two dimensional case, the

z-component of the vorticity at z ¼ 0 is considered and it is given in the following form:

x
� dp=dxð Þb=l ¼

1

k
1� ke�kg

sinhk

� �
þ 1

2
e� k=2ð Þg

X
0

Bn

k
2

cosknbgþ knbsinknbg

� �
; ð4:4Þ

u/-(dp/dx)b2/2µ

0.80.4

0.4
10

y
b

–0.4

λ=015

Fig. 6. The variation of the velocity
with y=b for b=c ¼ 1

1.0
Q

-4(dp/dx)b3c/3µ

1.0

λ=0

0

0.5

0.50

1

5

b c
Fig. 7. The variation of the flux with

b=c for various values of k
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where

Bn ¼
�64 �1ð Þn knbð Þcosh k=2ð Þ

4k2
nb2 þ k2

� �2
cosh kncð Þ

:

When k goes to zero, Eq. (4.4) reduces to

x
� dp=dxð Þb=l ¼

y

b
� 8

p2

X
0

�1ð Þn

2nþ 1ð Þ2
sinkny

cosh kncð Þ ;

which is the vorticity for flow in a duct of rectangular cross-section with non-porous walls.

When b=c goes to zero, Eq. (4.4) reduces to

x
� dp=dxð Þb=l ¼

1

k
1� ke�kg

sinhk

� �
;

1.0
y
b

5 1
λ=0

0.4

0

–0.4

–1.0
–2.0 –1.0 1.00 ω/-(dp/dx)b/µ

Fig. 8. The variation of the vorticity with y=b for b=c ¼ 0

1.0
y
b

5 1 λ=0

0.4

0

–0.4

–1.0
–2.0 –1.0 1.00 ω/-(dp/dx)b/µ

Fig. 9. The variation of the vorticity with y=b for b=c ¼ 1
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which is the vorticity for flow between two parallel porous walls. Figure 8 shows the variation of

the z-component of the vorticity at z ¼ 0 with y=b for various values of k for b=c ¼ 0, namely,

for flow between two parallel porous walls. The flow for non-porous walls corresponds to k ¼ 0,

where the vorticity profile is a straight line. For large values of k the variation of the vorticity

near the lower wall is sharp and it has a boundary-layer character. In the other regions of the

duct the vorticity has a constant value. Figure 9 denotes the variation of the vorticity with y=b

for various values of k for b=c ¼ 1, namely, for flow in a duct of square cross-section. It is clearly

seen from Figs. 8 and 9 that there is a pronounced effect due to the side walls.

4 Conclusions

In order to show the effects of the side walls on the flows in ducts with suction and injection,

three illustrative examples are given. The first example considers the flow over a porous plate

with side walls. It is found that the effect of the side walls provides a flow in the cases of both

injection and suction. However, it is well known that the flow over a porous plate occurs only in

the case of suction. The second example is devoted to the flow between two parallel porous plates

with suction at one plate and injection at the other. The third example considers the flow in a

rectangular duct with two porous walls. In order to show the effects of the side walls, a com-

parison of the velocity, the volume flux across a plane normal to the flow and the vorticity with

those for flow between two parallel porous plates is made. Three examples considered show that

there are pronounced effects of the side walls on the flows in ducts.
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