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Summary. The interaction of an edge dislocation with an inclusion of arbitrary shape is analyzed based on

the Eshelby equivalent inclusion method. A general solution to determine the force on the dislocation is

obtained, from which a set of simple approximate formulae is also suggested.

1 Introduction

The study of interaction between dislocation and inclusion has received considerable interest

over years because the interaction is evidently important for understanding the mechanical

behavior of many materials. The study is traditionally based on the solution of appropriate

boundary value problems in the linear theory of elasticity, and only for a few and highly

idealized cases there were obtained analytical solutions. Among these are the circular inclusion

[1]–[4], the elliptical inclusion [5]–[7], the lamellar inclusion [8], and a surface layer [9]. Fur-

thermore, no generalizations that could be used to construct quantitative physical theories have

emerged because of the intricacy of results in the individual situations. Thus, the knowledge of

the interaction between dislocation and inclusion comes by slow accumulation of results for

special cases, rather than by the establishment of general propositions.

A general solution of the interaction between dislocation and inclusion of arbitrary config-

uration is very difficult to obtain based on the linear theory of elasticity. The present study

investigates the interaction of an edge dislocation with an inclusion of arbitrary shape. The

analysis is based on the Eshelby equivalent inclusion theory. A general approximate solution to

determine the force on the dislocation is obtained, from which a set of simple approximate

formulae is suggested. It is shown that, in comparison with corresponding classical solutions for

some special cases, these simple formulas have satisfactory accuracy.

2 Model and formulation

The physical problem to be studied is shown in Fig. 1. A straight edge dislocation whose line

coincides with the z-axis of a Cartesian coordinate system is located at the point (0,0,0). An

inclusion of arbitrary shape is near the edge dislocation, within the dislocation stress-strain
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field, which is assumed to be unperturbed by the inclusion. The inclusion will undergo an

equivalent transformation strain eT induced by the dislocation strain due to the inhomogeneity

between matrix material and the inclusion. Now consider a differential element dA within the

inclusion. According to the Eshelby equivalent inclusion approach, the transformation strain in

dA can be expressed by [10], [11]

eT ¼ ½ðCi � CmÞS þ Cm��1ðCm � CiÞeA; ð1Þ

where S is the Eshelby tensor, dependent solely upon the inclusion shape and the Poisson’s

ratio m of the matrix material. Ci and Cm are the elastic tensors of the inclusion and the matrix

material, respectively. eA is the strain field of the edge dislocation with a Burger’s vector b [12]:

eA ¼ � bð1 � 2mÞsin h
4p rð1 � mÞ ; � bð1 � 2mÞsin h

4p rð1 � mÞ ; 0;
bcos h

4prð1 � mÞ ; 0; 0

� �
ð2Þ

for plane strain. As shown in (1), the equivalent transformation strain eT in the inclusion varies

with the dislocation strain eA, and is not zero for an inhomogeneous inclusion (Ci 6¼ Cm).

For simplicity, it is assumed that the inclusion and the matrix material are isotropic and their

Poisson’s ratios are the same, denoted by m. Then we have

Ci ¼ aCm; ð3Þ

where

a ¼ li

lm

: ð4Þ

li and lm are the shear moduli of the inclusion and the matrix material, respectively.

Combining (1) and (3), it gives

eT ¼ LeA; ð5Þ

where

L ¼ ½ða � 1ÞS þ I��1ð1 � aÞ; ð6Þ

where I is the unit tensor. Thus, the tensor L relates the equivalent transformation strain eT in

the inclusion to the dislocation strain eA without going into the details of the form of Ci and

Cm tensors.

For a differential element with circular section inside the inclusion, the components of the

Eshelby tensor are given by [12]

S1111 ¼ S2222 ¼ 5 � 4m
8ð1 � mÞ ; S1122 ¼ S2211 ¼ 4m � 1

8ð1 � mÞ ; ð7:1Þ
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Fig. 1. An edge dislocation near an
inclusion of arbitrary shape
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S1133 ¼ S2233 ¼ m
2ð1 � mÞ ; S1212 ¼ 3 � 4m

4ð1 � mÞ ; ð7:2Þ

S1313 ¼ S2323 ¼ 1

2
: ð7:3Þ

Other components of the Eshelby tensor are zero. Substituting (7) into (6) yields:

L1111 ¼ L2222 ¼ ð1 � aÞð1 � mÞð3 � 4m þ 5a � 4maÞ
ð1 þ a � 2mÞð1 þ 3a � 4maÞ ; ð8:1Þ

L1122 ¼ L2211 ¼ ð1 � aÞ2ð1 � mÞð1 � 4mÞ
ð1 þ a � 2mÞð1 þ 3a � 4maÞ ; ð8:2Þ

L1133 ¼ L2233 ¼ ð1 � aÞ2m
ð1 þ a � 2mÞ ; L3333 ¼ ð1 � aÞ; ð8:3Þ

L1212 ¼ 4ð1 � aÞð1 � mÞ
ð1 þ 3a � 4maÞ ; L1313 ¼ L2323 ¼ 2ð1 � aÞ

1 þ a
: ð8:4Þ

And other components of the L tensor are zero. Combining (2), (5) and (8), the transformation

strain eT in dA is given by

eT ¼ bð1 � aÞ
pr

� ð1 � 2mÞsin h
2ð1 þ a � 2mÞ ; � ð1 � 2mÞsin h

2ð1 þ a � 2mÞ ; 0;
cos h

ð1 þ 3a � 4amÞ ; 0; 0

� �
ð9Þ

for plane strain.

The elastic interaction energy per unit length in z-direction between the differential element

and the dislocation is

dUint ¼ rAeTdA;

where rA is the stress field of the edge dislocation

rA ¼ �lmb

2prð1 � mÞ sin h; sin h; 2msin h; �cos h; 0; 0f g: ð10Þ

Then we have:

dUint ¼
1

r2

1

2
C1 þ C2sin 2h

� �
dA; ð11Þ

where

C1 ¼ lmb2ð1 � aÞ
p2ð1 � mÞð1 þ 3a � 4amÞ ; ð12:1Þ

C2 ¼ lmb2að1 � aÞð1 � 4mÞ
p2ð1 þ a � 2mÞð1 þ 3a � 4amÞ : ð12:2Þ

From (11) we gain the force acting on the dislocation unit length,

dFr ¼
@ðdUintÞ

@r
¼ � 1

r3
ðC1 þ 2C2sin 2hÞdA: ð13Þ

The total forces on the dislocation along the x- and y-directions are, respectively, the glide and

climb forces:

Interaction of an edge dislocation 33



Fglide ¼
Z
Ac

dFx ¼ �C1

Z
Ac

cos h
r3

dA � C2

Z
Ac

sin 2h sin h
r3

dA; ð14Þ

Fclimb ¼
Z
Ac

dFy ¼ �C1

Z
Ac

sin h
r3

dA � 2C2

Z
Ac

sin 3h
r3

dA: ð15Þ

The integration is carried out over the whole domain Ac occupied by the inclusion. A positive

value of F is corresponding to repulsion.

3 Some special cases

Some simply approximate formulas can be obtained for several special inclusion shapes:

(a) For a small circular inclusion of radius R centered at ðr; 0Þ on the x-axis, the maximum

glide force on the inclusion is approximated from (14) by

Fglide ¼ � lmb2ð1 � aÞ
pRð1 � mÞð1 þ 3a � 4amÞ

1

b3
; ð16Þ

where b ¼ r=R. Equation (16) is just the approximation of the classical solution [1]:

F ¼ � lmb2

pRðj þ 1Þ
1

b3

B þ A

1 � 1=b2
þ 3A � B

 !
ð17Þ

for b � 1. Here,

A ¼ 1 � a
1 þ aj

; B ¼ ð1 � aÞj
j þ a

; j ¼ 3 � 4m:

When the inclusion is on the y-axis, we can obtain the maximum climb force from (15),

Fclimb ¼ �ðC1 þ 2C2Þ
p

Rb3
: ð18Þ

(b) A lamellar inclusion of length 2l and width wð1 � wÞ perpendicular to the x axis located

with its center at ðr0; 0Þ as shown in Fig. 2a. By use of dA ¼ wrd h= cos h in (15) and (14), we
have Fclimb ¼ 0, and

Fglide ¼
Z
Ac

dFx ¼ �2
w

r2
0

C1

Zh0

0

cos 2h dh þ 2C2

Zh0

0

sin 2h cos 2h dh

2
4

3
5

¼ � w

r2
0

C1 h0 þ
1

2
sin 2h0

� �
þ 1

2
C2 h0 �

1

4
sin 4h0

� �� 

; ð19Þ

where h0 ¼ arctan l=r0. When l=r0 � 1, one obtains

Fglide ¼ � wp

2r2
0

C1 þ
1

2
C2

� �
: ð20Þ

(c) A lamellar inclusion of length l and width wðl � wÞ lies on the x-axis, Fig. 2b. The

distance of the near dislocation end of the inclusion to the dislocation is r0. By use of

dA ¼ w dr and sin h ¼ 0, cos h ¼ 1 in (15) and (14), we have Fclimb ¼ 0, and
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Fglide ¼ �C1w

Zr0þl

r0

1

r3
dr ¼ � 1

2
C1w

1

r2
0

� 1

ðr0 þ lÞ2

 !
; ð21Þ

when l=r0 � 1, it gives

Fglide ¼ � 1

2r2
0

C1w: ð22Þ

4 Discussion and conclusions

The Eshelby approach is mathematically rigorous for an infinite matrix containing a single

ellipsoidal inclusion. When the inclusion undergoes a uniform stress-free transformation strain,

the stress and strain within the inclusion are uniform. However, in order to utilize the approach

in more realistic situations, there has been considerable activity in extending the Eshelby

approach to a variety of practical problems, such as the interaction of two ellipsoidal inclusions

[13], the behavior of a hybrid composite [14] and short fibre reinforced composites [11], and the

calculation of the stress fields inside a non-ellipsoidal inclusion which are not uniform [15], to

cite only a few examples. In the present study, we extend the Eshelby approach to the case of an

inclusion with arbitrary shape within the dislocation stress-strain field. Either the non-ellip-

soidal shape of the inclusion considered or the nonuniform dislocation stress-strain field will

result in a nonuniform stress-strain field within the inclusion. However, we assume that the

Eshelby theory can be used to each differential element within the inclusion, which undergoes

uniform transformation strain determined by Eq. (1).

Although the fundamental equation (13) is derived based on an approximate application of

the Eshelby equivalent inclusion theory, the resultant solution for a circular inclusion (16) is

very close to the classical one.

To assess the possible error range of the approximate approach used in the above analysis,

we consider an extreme case: the finite inclusion shown in Fig. 1 degenerates into a semi-infinite

plane. From (14) we have the force acting on the dislocation:

Fpresent ¼ � p
4r0

ð2C1 þ C2Þ ¼ � lmb2ð1 � aÞð2 þ 3a � 4m � 5am þ 4am2Þ
4pr0ð1 � mÞð1 þ 3a � 4maÞð1 þ a � 2mÞ ; ð23Þ
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Fig. 2. The interaction of a lamellar inclusion with an edge dislocation; a the distance of the dislocation
to the center of the inclusion is r0, b the distance of the dislocation to the end of the inclusion is r0
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where r0 is the distance of the dislocation to the semi-infinite plane. The classical solution for

the problem is given by [9]:

Fclassical ¼ �lmb2ð1 � aÞð3 þ 5a � 4m � 12am þ 8am2Þ
4pr0ð1 � mÞð1 þ 3a � 4maÞð3 þ a � 4mÞ : ð24Þ

Figure 3 displays the relative error of the present solution to the classical one as a function of

the moduli ratio a for m ¼ 0:25, 0.3 and 0.35. The maximum error is 100% when the inclusion

becomes a semi-infinite space, which may be viewed as the limit of the error for a finite

inclusion. For a small finite inclusion the fundamental equation will give a much more accurate

result.

The special advantage of the present solution is that the fundamental equation, in integral

form, can be conventionally used to treat the interaction of an edge dislocation with an in-

clusion of arbitrary shape, which is difficult, even impossible to treat by the rigorous solution of

appropriate boundary value problems in the linear theory of elasticity.
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