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Summary. The boundary-layer problem of a semi-infinite flat plate moving in a free stream with mass

transfer is discussed in this paper. The paper extends the work of previous researchers to the general

situations including mass injection as well as suction on the wall and the case of wall moving in the same

direction as the free stream velocity. The analysis is concentrated on the wall drag. The solutions are

obtained by numerical techniques. Under certain conditions, current results will reduce to those obtained

by other researchers.

1 Introduction

The similarity differential equation of the boundary-layer problem for a moving semi-infinite

flat plate in a constant velocity free stream flow was first derived by Klemp and Acrivos [1] as

follows:

f 000ðgÞ þ f ðgÞ f 00ðgÞ ¼ 0; ð1Þ

with the non-homogeneous boundary conditions

g ¼ 0; f ¼ 0; f 0 ¼ �k; g ¼ 1; f 0 ¼ 1; ð2Þ

where f is the nondimensional stream function f ¼ Wð2U1mxÞ�1=2, W is the stream function,

U1 is the free stream fluid velocity, m is the fluid kinematic viscosity, g is the similarity variable

defined as g ¼ yðU1=2mxÞ1=2, and k is the ratio of the wall velocity to the free stream fluid

velocity defined as k ¼ Uw=U1, and it is assumed that the flat plate moves opposite to the free

stream. The solution of Eq. (1) has been discussed by many researchers [2]–[5]. Vajravelu and

Mohapatra [6] extended the problem by including mass injection on the wall surface. The drag

reduction was discussed in their paper. In the above-mentioned paper, the discussions are

focused on mass injection and wall moving in the opposite direction to the free stream. Mass

transfer including injection and suction for a fixed flat plate was discussed by Schlichting and

Bussmann [7]. In the general case of a moving-wall problem, the wall may move in the same

direction as the free stream velocity, and mass suction can also be applied on the wall. In the

present paper, general results of a moving-wall boundary layer problem in a constant-velocity

free stream with mass transfer will be discussed.
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2 Mathematical formulation

The laminar incompressible flow with mass transfer over a moving flat plate can be described

by the following equations [6]:

u
@u

@x
þ v

@u

@y
¼ m

@2u

@y2
; ð3Þ

@u

@x
þ @v

@y
¼ 0 ð4Þ

subject to boundary conditions

uðx; 0Þ ¼ Uw; vðx; 0Þ ¼ VwðxÞ; and uðx;1Þ ¼ U1; ð5Þ

where Uw is the plate moving velocity and VwðxÞ is the mass transfer velocity at the plate surface.

The similarity equation can be obtained by defining a similarity variable as g ¼ yðU1=2mxÞ1=2 and

a stream function W ¼ f ðgÞð2U1mxÞ1=2. Plugging them into (3) and (4) yields

f 000 þ ff 00 ¼ 0 ð6Þ
with the associated boundary conditions

f ð0Þ ¼ f0; f 0ð0Þ ¼ k and f 0ð1Þ ¼ 1; ð7Þ

where k ¼ Uw=U1, which can be a positive number for Uw > 0 with the same direction as the

free stream velocity and a negative number for Uw < 0 opposite to the free stream velocity, and

f0 ¼ Vwð2x=mU1Þ1=2, which is positive for mass suction and negative for mass injection. The

general analytical solution of Eq. (6) is not available. A numerical method has to be used to

solve such a nonlinear ordinary differential equation. In the following section, a shooting

Runge-Kutta method [8] is adopted to solve Eq. (6) with boundary conditions (7).

3 Results and discussions

3.1 Results for kC � k � 1

The solution of Eq. (6) with boundary conditions (7) has been discussed for f0 < 0 and k < 0

[6]. It is shown that the solutions of Eq. (3) exist only for a certain range of wall moving

velocity, kC � k, and mass injection, f0;C � f0, where the subscript ‘‘C’’ denotes the critical

parameter. The discussion here will be focused on the influences of f0 and k on the wall dynamic

drag. Before solving the equation numerically, it is well known that the wall drag will reduce

with the increase of mass injection and will rise with the increase of mass suction. However, the

influence of the wall moving parameter, say k, is not as clear as that of mass transfer. Figure 1

shows the results of f 00ð0Þ, which is directly relevant to the dynamic local wall stress, for

different mass transfer and wall moving velocities. From Fig. 1, it is seen that, for k < 0 and

f0 < 0, the solution will reduce to that of Vajravelu and Mohapatra’s. In the figure, the blow-off

mass injection parameter, say f0 ¼ �0:8757, for a fixed wall boundary-layer flow is denoted by

a superscript ‘‘*’’. It is observed from Fig. 1 that, if there is mass suction on the wall surface, the

solution domain will be enlarged by the increase of mass suction, and the wall shear will also

increase with mass suction. Although mass suction will increase the wall drag, the heat transfer

will also be enhanced by mass suction in many applications. The critical inverse wall velocity

for flow separation will increase with the increase of mass suction. For a fixed wall boundary

layer, the flow will be blown off if the mass-transfer parameter f0 < �0:8757 [7].
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However, when the wall is moving in the same direction as the free stream, the flow will not

be blown off even for very large mass injection. Figure 2 shows the same results of Fig. 1 from

another perspective. The plots of f 00ð0Þ versa f0 for different k are illustrated in Fig. 2. It is found

that there exist two solutions for k < 0 no matter whether f0 is positive or negative, which is

also shown in Fig. 1. The interesting observation is that the movement of the wall in the same

direction as the free stream velocity has a similar influence to wall suction, which will restrain

flow separation. Figure 3 depicts the same results as function of f0 and k for different f 00ð0Þ,
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Fig. 1. Plots of f 00ð0Þ versus k for different mass transfer f0
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Fig. 2. Plots of f 00ð0Þ versus f0 for different k
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which also proves Vajravelu and Mohapatra’s results that the solution of Eq. (4) only exists for

a special domain of f0 and k.
Figure 4 shows the details for 0 � k < 1. It is found from Fig. 4 that when 0 < k < 1, there

exists a unique solution for �1 < f0 < þ1, which was proved by Hartman [9]. The wall local

drag will decrease with increasing mass injection. However, the influence of k on the wall drag is

much different from that of mass transfer. It is found from Fig. 4 that there is a maximum wall

drag for a constant mass injection in the domain of 0 < k < 1. Under certain mass injection,
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Fig. 3. Plots of k versus f0 for different f 00ð0Þ
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Fig. 4. Plots of f 00ð0Þ versus k under different mass transfer f0 for 0 < k < 1
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there exists a pair of k that will result in the same local wall drag. The physical meaning of this

is that when the mass injection of the wall is constant, the wall drag will increase with raising

wall velocity at first, then, after the wall drag reaches the peak point, it will decrease with

increasing wall velocity. Observation also shows that the maximum wall drag will shift to a

higher wall moving velocity with the increase of mass injection. A combination of Fig. 1 and

Fig. 4 can also give the same trend of maximum local wall drag under specific mass transfer in

the domain of kC < k < 1. When k ¼ 1, there is a trivial solution for Eqs. (6) and (7), which is

f ðgÞ ¼ f0 þ g, f 0ðgÞ ¼ 1, and f 00ð0Þ ¼ 0. In this case, the wall is moving at the same velocity as

the fluid. There is no shear stress in the fluid.

3.2 Results for k > 1

The above discussions are focused on kC � k � 1. Solutions of Eqs. (6) and (7) also exist for

k > 1. In this case, the wall moving velocity is greater than the free stream velocity, and the wall

drag force is opposite to the wall moving direction. The boundary layer is somehow similar to

the boundary layer over a continuously stretching surface [10]. The nondimensional wall drag

force is illustrated in Fig. 5 for k > 1 under different mass transfer parameters. It is seen from

Fig. 5 that the wall drag will increase with the increase of k and mass suction, and it will

decrease with increasing mass injection. It is also expected that the solution will exist for all

k > 1 and f0.

4 Conclusions

(i) This paper extends the boundary-layer problem of a semi-infinite moving wall in a free

stream with constant velocity to the general situations. Under some special conditions, the

problem will reduce to the results obtained by previous researchers.
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Fig. 5. Plots of f 00ð0Þ versus k under different mass transfer f0 for k > 1
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(ii) The critical reverse wall velocity will increase with the increase of mass suction without

flow separation.

(iii) When 0 < k < 1, the wall drag will be in the same direction as the free stream velocity,

there is no flow separation for any arbitrary mass transfer parameter, and there is

a maximum wall drag under a certain mass injection. However, when k > 1, the wall drag

is opposite to the free stream velocity direction, and the wall drag will increase with

increasing wall moving velocity ratio k and mass transfer parameter f0.

(iv) The analysis illustrates a general concept of interaction between mass transfer and wall

movement, which can give us a deep insight into the boundary-layer problem.
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