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Summary. The present treatise aims at deriving a general framework for the thermodynamics of open

systems typically encountered in chemo- or biomechanical applications. Due to the fact that an open

system is allowed to constantly gain or lose mass, the classical conservation law of mass has to be recast

into a balance equation balancing the rate of change of the current mass with a possible in- or outflux of

matter and an additional volume source term. The influence of the generalized mass balance on the balance

of momentum, kinetic energy, total energy and entropy is highlighted. Thereby, special focus is dedicated

to the strict distinction between a volume specific and a mass specific format of the balance equations

which is of no particular relevance in classical thermodynamics of closed systems. The change in density

furnishes a typical example of a local rearrangement of material inhomogeneities which can be charac-

terized most elegantly in the material setting. The set of balance equations for open systems will thus be

derived for both, the spatial and the material motion problem. Thereby, we focus on the one hand on

highlighting the remarkable duality between both approaches. On the other hand, special emphasis is

placed on deriving appropriate relations between the spatial and the material motion quantities.

The mathematical sciences particularly exhibit

order, symmetry, and limitation; and these are

the greatest forms of the beautiful.

Aristotle, Metaphysica

1 Introduction

It is a well-established fact, that in classical non-relativistic continuum mechanics, each part of

a body can be assigned a specific mass which never changes no matter how the body is moved,

accelerated or deformed. Although valid for most practical applications, the statement of the

‘‘conservation of mass’’ is nothing but a mere definition. Yet, there exist particular problem

classes for which the conservation of mass is no longer appropriate. Typical examples can be

found in chemomechanical or biomechanical applications. In both cases, the apparent changes

in mass result from confining attention to only a part of the overall matter present. Thus one

might argue, that these problems can be overcome naturally by using the ‘‘theory of mixtures’’,

as proposed by Truesdell and Toupin [50] x155 or Bowen [3]. Therein, the loss or gain of mass

of one constituent is compensated by the others while the mass of the overall mixture itself

remains constant.
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Nevertheless, it is possible to think of classes of problems for which it might seem more

reasonable to restrict focus to one single constituent which is allowed to exchange mass,

momentum, energy and entropy with its environment, i.e. the ‘‘outside world’’. This approach

typically falls within the category of ‘‘thermodynamics of open systems’’. Following the line of

thought introduced by Maugin [36] x2.1, such systems can be understood as being enclosed by a

permeable, deformable and diathermal membrane. A classical example of an open system that

can be found in nearly every textbook of mechanics is furnished by the motion of a burning

body typically encountered in rocket propulsion, see, e.g. Truesdell and Toupin [50] x155,
Müller [39] x1.4.6 or Haupt [20] x3.5. The behavior of open-pored hard tissues under quasi-

static loading is another example found in biomechanics, see, e.g. Cowin and Hegedus [6],

Carter and Beaupré [4] or Krstin, Nackenhorst and Lammering [26]. In soft tissue mechanics,

proliferation, hyperplasia, hypertrophy and atrophy can be considered as typical examples of

mass sources on the microlevel, while migration or cell movement might cause an additional

mass flux, as illustrated in the classical overview monographs by Taber [49], Humphrey [22],

and Humphrey and Rajagopal [23].

The first continuum model for open systems in the context of biomechanics has been pre-

sented by Cowin and Hegedus [6], [21] under the name of ‘‘theory of adaptive elasticity’’.

Nowadays, most of the biomechanical models and the related numerical simulations are based

on this theory for which the set of common balance equations has been enhanced basically by

additional volume sources, see, e.g. Beaupré, Orr and Carter [1], Weinans, Huiskes and

Grootenboer [51], Harrigan and Hamilton [18], [19]. Only recently, Epstein and Maugin [10]

have proposed the ‘‘theory of volumetric growth’’ for which the exchange with the environment

is not a priori restricted to source terms by allowing for additional fluxes of mass, momentum,

energy and entropy through the domain boundary, see also Kuhl and Steinmann [28]. Its

numerical realization within the context of the finite element method has been illustrated

recently by Kuhl and Steinmann [29].

Typically, the process or growth encountered in open systems will be accompanied by the

development of inhomogeneities responsible for residual stresses in the body. The interpreta-

tion of growth as ‘‘local rearrangement of material inhomogeneities’’ suggests the formulation

of the governing equations in the material setting as proposed by Epstein and Maugin [10]. The

appealing advantage of the material motion point of view is that local inhomogeneities such as

abrupt changes in density are reflected elegantly by the governing equations which result from a

complete projection of the standard balance equations onto the so-called material manifold.

The material motion point of view originally dates back to the early works of Eshelby [11] on

defect mechanics. It was elaborated in detail by Chadwick [5], Eshelby [12], and Rogula [40]

and has attracted an increasing attention only recently as documented by the trendsetting

textbooks by Maugin [34], Gurtin [17], Kienzler and Herrmann [25] and also by Silhavý [43] or

by the recent publications by Epstein and Maugin [9], Maugin and Trimarco [37], Maugin [35],

Gurtin [16]. Thereby, the remarkable duality between the spatial or ‘‘direct motion problem’’

and the material or ‘‘inverse motion problem’’ as pointed out originally by Shield [42] is of

particular importance. Our own attempts along these lines are documented in [30], [44], [45],

[46], [47] and [48] to which we refer for further motivation of the material motion point of view

in the context of fracture and defect mechanics.

This presentation aims at presenting a general framework for the thermodynamics of open

systems highlighting the striking duality between the spatial and the material motion approach.

Thereby, we shall consider the most general formulation by allowing for mass exchanges not

only through the supply of mass within the domain itself but also through the in- or outflux of

mass through the domain boundary. The influence of a non-constant mass on all the other
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balance equations will be discussed for both, the spatial and the material motion framework.

Thereby, particular emphasis is dedicated to the strict distinction between the ‘‘volume specific’’

and the ‘‘mass specific’’ format. Unlike in classical mechanics of closed systems, the balance

equations for the mechanics of open systems will be shown to differ considerably in the volume

specific and the mass specific context. In contrast to former models and in the autors’ opinion as

a benefit, the mass specific format introduced herein is free from explicit open system contri-

butions, thus taking the standard format typically encountered in classical thermodynamics.

To illustrate the nature of the mechanics of open systems, we begin by reviewing the classical

example of rocket propulsion in Chap. 2. After briefly summarizing the relevant kinematics of

continuummechanics in Chap. 3, we introduce the balance of mass for open systems in Chap. 4.

The notions of ‘‘volume specific’’ and ‘‘mass specific’’ format will be defined in Chap. 5 for a

generic prototype balance law.Having introduced the balance ofmomentum in the spatial and the

material motion context in Chap. 6, we can derive the balance of kinetic energy as a useful

byproduct in Chap. 7. The balance of energy and entropy will be highlighted in Chaps. 8 and 9

whereby the latter naturally lends itself to the formulation of the dissipation inequality which is

shown to place further restrictions on the constitutive response functions. The derivation of

appropriate constitutive equations is briefly sketched for the classical model problem of thermo-

hyperelasticity in Chap. 10.

Throughout the entire derivation, we apply a two-step strategy. First, the well-known balance

equations of the classical spatial motion problem are discussed. Next, guided by arguments of

duality, and beauty in the sense of our leitmotif, we shall formally introduce the material motion

balance equations in complete analogy to the corresponding spatial motion versions. In a second

step, appropriate transformations between both settings are set up helping to identify the

introduced material motion quantities in terms of their spatial motion counterparts.

2 Motivation

To illustrate the nature of open systems and the corresponding mechanics, we consider the

classical example of the loss of mass through combustion and ejection during rocket propul-

sion. Thereby, the rocket head, the subsystem of the rocket hull plus the amount of fuel present,

can be understood as an open system constantly losing mass due to the process of combustion

and ejection. Consequently, the balance of mass of the rocket head balances the time rate of

change of the rocket head mass m with the rate of mass ejection R.

Dtm ¼ R: ð2:1Þ

The case of combustion and ejection is characterized through negative growth R � 0 since the

mass of the rocket head decreases with time. The related balance of momentum states that the

time rate of change of the rocket head momentum p is equal to the total force f acting on it

Dtp ¼ f with f ¼ fclosed þ fopen and fopen ¼ �ffopen þ vR: ð2:2Þ

Thereby, the total force can be interpreted as the sum of the closed system contribution fclosed

and the open system contribution fopen. The latter can be understood as the sum of a reduced

open system term �ffopen and explicit effects due to the added or in this case removed amount of

mass vR. Note, that this version of the balance of momentum will be referred to as ‘‘volume

specific’’ version in the sequel. The momentum p of the rocket head is defined as the rocket

head velocity v weighted by its actual mass m. Consequently, the material time derivative of the

momentum p can be evaluated with the help of the chain rule with
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p ¼ mv thus Dtp ¼ mDtvþ vDtm ¼ mDtvþ vR: ð2:3Þ

A reduced form of the balance of momentum follows from subtracting the balance of mass

(2.1) weighted by the rocket head velocity v from the volume specific balance of momentum

(2.2).

mDtv ¼ �ff with �ff ¼ fclosed þ�ffopen ¼ f� vR: ð2:4Þ

The above equation, which we will refer to as ‘‘mass specific’’ version of the balance of mo-

mentum, defines the reduced force �ff, the overall force responsible for changes in the rocket

velocity, as the sum of the closed system contributions, i.e. the mechanical forces fclosed, and a

reduced open system forces term �ffopen, the so-called propulsive force. However, of course, the

standard balance equations hold for the overall closed system composed of the rocket head and

the exhausted mass. The balance of momentum of this overall system requires that the sum of

the rate of change of rocket head momentum Dtp minus the rate of change of the momentum of

the ejected mass �vvR be in equilibrium with closed system force term fclosed,

Dtp� �vvR ¼ fclosed; ð2:5Þ

whereby �vv denotes the total velocity of the ejected mass, see Goldstein [13] x1.6. From the above

equations, the reduced open system force term �ffopen, which is responsible for the rocket thrust

can be identified as the force caused by the difference of the velocity of the ejection �vv with

respect to the rocket head velocity v.

fopen ¼ �vvR thus �ffopen ¼ �vv� v½ �R: ð2:6Þ

In Ref. [10], the propulsive term �vv� v½ �R is referred to as ‘‘irreversible’’ contribution while the

extra force vR generated by the ejection leaving the system at the same velocity as the re-

maining rocket head is then denoted as ‘‘reversible’’ contribution. In what follows, we will

generalize the above considerations to the continuum mechanics of open systems.

3 Kinematics

To clarify the following discussions, we shall strictly distinguish between the terminology of

parametrization, reference, description and motion, as suggested by Steinmann [45], [47].

Thereby, any quantity expressed in terms of the spatial coordinate x as f�gðx; tÞ will be

referred to as spatial parametrization of f�g, while the material parametrization f�gðX; tÞ is
formulated in terms of the material coordinate X. Irrespective of the parametrization, we will

distinguish between the spatial and material reference of a scalar- or tensor-valued quantity

denoted as f�gt or f�g0, respectively. Thereby, the former relates to the spatial domain Bt

while the latter represents a quantity in the material domain B0. Moreover, for tensor-valued

quantities, we shall distinguish between the spatial, the material and the two-point descrip-

tion. While tensorial quantities in the spatial description are elements of the tangent or

cotangent space to Bt, tensorial quantities in the material description are elements of the

tangent or cotangent space to B0. Tensorial quantities in the two-point description are

elements of the tangent or cotangent spaces to Bt and B0. Finally, we will discuss all balance

equations (except for the balance of mass) in the spatial and the material motion context.

Thereby, the classical spatial motion problem, which is sometimes introduced as ‘‘direct

motion problem’’ is based on the idea of following ‘‘physical particles’’ from a fixed material

position X through the ambient space. In contrast to this, within the material motion or
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‘‘inverse motion problem’’, ‘‘physical particles’’ are followed through the ambient material at

fixed spatial position x.

3.1 Spatial motion problem

The spatial motion problem is characterized through the spatial motion map

x ¼ uðX; tÞ : B0 ! Bt ð3:1Þ

mapping the material placement X of a ‘‘physical particle’’ in the material configuration B0, to

the spatial placement x of the same ‘‘physical particle’’ in the spatial configuration Bt, see

Fig. 1. The related spatial deformation gradient F and its Jacobian J

F ¼ rXuðX; tÞ : TB0 ! TBt J ¼ det F > 0 ð3:2Þ

define the linear tangent map from the fixed material tangent space TB0 to the time-dependent

tangent space TBt. The right spatial motion Cauchy–Green strain tensor C,

C ¼ Ft � g � F; ð3:3Þ

i.e. the spatial motion pull back of the covariant spatial metric g, can be introduced as a typical

strain measure of the material motion problem. Moreover, with the material time derivative Dt

of an arbitrary quantity f�g at fixed material placement X

Dtf�g ¼ @tf�gjX ; ð3:4Þ

the spatial velocity v is introduced as the material time derivative of the spatial motion map u,

v ¼ DtuðX; tÞ: ð3:5Þ

Its material gradient is equal to the material time derivative of the spatial deformation gradient

F while its spatial gradient will be denoted as l in the sequel

DtF ¼ rXv l ¼ rxv: ð3:6Þ

With these definitions at hand, e.g., the material time derivative of the spatial motion Jacobian

J can be expressed through the well-known Euler identity DtJ ¼ J div v with div v ¼ F�t : DtF

denoting the spatial divergence of the spatial velocity v.

3.2 Material motion problem

Accordingly, the material motion map U with

X ¼ Uðx; tÞ : Bt ! B0 ð3:7Þ

defines the mapping of the spatial placement of a ‘‘physical particle’’ x in the spatial config-

uration Bt to the material placement of the same ‘‘physical particle’’ in the material configu-

rationB0, see Fig. 2. The related linear tangent map from the fixed spatial tangent space TBt to

C
F, J, Dt F

g

l

v

0 t

Fig. 1. Spatial motion problem:

Kinematics
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the time-dependent tangent space TB0 is defined through the material deformation gradient f

and its Jacobian j.

f ¼ rxUðx; tÞ : TBt ! TB0 j ¼ det f > 0: ð3:8Þ

The material motion pull back of the covariant material metric G introduces the right material

motion Cauchy–Green strain tensor c.

c ¼ f t �G � f : ð3:9Þ

With the definition of the spatial time derivative dt of a quantity f�g at fixed spatial placements

x

dtf�g ¼ @tf�gjx ð3:10Þ

the material velocity V can be defined as spatial time derivative of the material motion map U,

V ¼ dtUðx; tÞ: ð3:11Þ

Its spatial gradient is equal to the spatial time derivative of the material motion deformation

gradient f while the material gradient of the material velocity will be denoted as L

dtf ¼ rxV L ¼ rXV: ð3:12:1; 2Þ

Consequently, the spatial time derivative of the material motion Jacobian j can be expressed as

dt j ¼ j Div V, wherebydiv V ¼ f�t : dtf denotes thematerial divergence of thematerial velocityV.

3.3 Spatial vs. material motion problem

The spatial and the material motion problem are related through the identity maps in B0 and

Bt

idB0
¼ U � uðX; tÞ ¼ UðuðX; tÞ; tÞ idBt

¼ u �Uðx; tÞ ¼ uðUðx; tÞ; tÞ ð3:13:1; 2Þ

with � denoting the composition of mappings. Consequently, the spatial and the material

deformation gradient are simply related by their inverses

F�1 ¼ f � uðX; tÞ ¼ fðuðX; tÞ; tÞ f�1 ¼ F �Uðx; tÞ ¼ FðUðx; tÞ; tÞ: ð3:14:1; 2Þ

Note, that the total differentials of the spatial and material identity map1 yield the following

fundamental relations between spatial and material velocities, see Maugin [34].

V ¼ �f � v v ¼ �F � V: ð3:15:1; 2Þ

V
G
L

c
f, j,dt  f

0 t

Fig. 2. Material motion problem:

Kinematics

1 dX ¼ dtU dtþrxU � dx

¼ dtU dtþrxU � Dtu dtþrXu � dX½ �
¼ V dtþ f � v dtþ F � dX½ �

¼ Dtu dtþrXu � dX

¼ Dtu dtþrXu � dtU dtþrxU � dx½ �
¼ v dtþ F � V dtþ f � dx½ �
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In the following, we will distinguish between scalar-valued or tensorial quantities with material

reference f�g0 and spatial reference f�gt whereby the integration of a quantity in material

reference over the material domain B0 yields the identical result as the integration of a quantity

in spatial reference over the spatial domain BtZ

B0

f�g0 dV ¼
Z

Bt

f�gt dv: ð3:16Þ

The above equation introduces the well-known transformation formulae

f�g0 ¼ Jf�gt f�gt ¼ jf�g0: ð3:17:1; 2Þ

Moreover, the equivalence of a vector- or tensor-valued surface contribution f(g on the

boundary of the material domain @B0 and the corresponding contribution f}g on the spatial

boundary @Bt asZ

@B0

f(g � dA ¼
Z

@Bt

f}g � da ð3:18Þ

can be transformed into the following relationZ

B0

Divf(gdV ¼
Z

Bt

divf}gdv ð3:19Þ

through the application of Gauss’ theorem. Clearly, the material and spatial flux terms f(g
and f}g are related through the well-known Nanson’s formula.

f(g ¼ Jf}g � F�t f}g ¼ jf(g � f�t: ð3:20:1; 2Þ

In the dynamic context, the subscripts d ¼ D;d will be assigned to the material and spatial flux

terms as f(gd and f}gd indicating that the corresponding flux refers either to the material or

to the spatial time derivative Dt or dt of the related balanced quantity. The notion of the

material time derivative Dt of a scalar- or vector-valued function f�g as introduced by Euler

relates the material and the spatial time derivative Dt and dt through the individual convective

terms rxf�g � v and rXf�g � V,

Dtf�g ¼ dtf�g þ rxf�g � v dtf�g ¼ Dtf�g þrXf�g � V: ð3:21:1; 2Þ

From the above equations, we obtain the differential form of the spatial and material motion

version of Reynold’s transport theorem.

j Dtf�g0 ¼ dtf�gt þ div f�gt � v
� �

J dtf�gt ¼ Dtf�g0 þ Div f�g0 � V
� �

: ð3:22:1; 2Þ

The global form of the spatial motion version of Reynold’s transport theorem (3.22.1), which

originally goes back to Kelvin in 1869, states that the rate of change of the quantity f�g0 over a

material volumeB0 equals the rate of change of the quantity over a spatial volumeBt being the

instantaneous configuration of B0 plus the flux through the boundary surface @Bt.

4 Balance of mass

While in classical mechanics of closed systems, the amount of matter contained in a body B0

generally does not change, the mass of a body can no longer be considered a conservation

property within the thermodynamics of open systems. Accordingly, the balance of mass plays a
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key role within the present theory. It can be used to transform the volume specific version of

any other balance law into its mass specific counterpart. In abstract terms, the local balance of

mass states that the appropriate rate of change of the density qs with s ¼ 0; t is equal to the sum

of the divergence of the related mass flux Md or md with d ¼ D;d and the mass source Ms, see

Fig. 3. It should be emphasized that most theories for open systems except for the one de-

veloped by Epstein and Maugin [10] a priori exclude the influx of mass as MD ¼ 0 and mD ¼ 0.

Although according to the ‘‘equivalence of surface and volume sources’’ as stated by Truesdell

and Toupin [50] x157, it is in principle possible to express any influx Md or md through an

equivalent source term of the form Div Md or div md, we shall allow for independent flux terms

to keep the underlying theory as general as possible for the time being. Thus, the balance of

mass with material reference and material parametrization takes the following form

Dt q0 ¼ Div MD þM0: ð4:1Þ

With the standard Piola transforms

q0 ¼ Jqt M0 ¼ J Mt MD ¼ J mD � F�t ð4:2:1; 2; 3Þ

the push forward of the different terms in Eq. (4.1) yields the balance of mass with spatial

reference and material parametrization,

j Dt q0 ¼ div mD þMt: ð4:3Þ

Note, that in classical continuum mechanics, Eq. (4.2.1) is usually referred to as ‘‘equation of

material continuity’’. The application of Reynold’s transport theorem (3.22.1)

j Dt q0 ¼ dt qt þ divðqtvÞ and md ¼ mD � qtv ð4:4:1; 2Þ

introduce the spatial parametrization of the balance of mass.

dt qt ¼ div md þMt ð4:5Þ

Equation (4.4.1) which has been introduced as ‘‘spatial continuity equation’’ by Euler as early

as 1757, represents one of the basic equations in classical fluid mechanics. The above statement

with spatial reference and spatial parametrization can easily be transformed into the local

balance of mass with material reference and spatial parametrization by applying the related

Piola transforms

qt ¼ j q0 Mt ¼ jM0 md ¼ j Md � f�t ð4:6:1; 2; 3Þ

together with the classical pull back formalism

J dt qt ¼ Div Md þM0: ð4:7Þ

The application of Reynold’s transport theorem (3.22.2) with

J dt qt ¼ Dt q0 þ DivðqtVÞ and MD ¼ Md � q0V ð4:8:1; 2Þ

can be used to finally retransform equation (4.7) into the original version (4.1). In summary,

four different versions of the balance of mass can be distinguished.

0 t

r0

Md md

rt

0 t
Fig. 3. Balance of mass: densities,

mass fluxes and mass sources
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mr mp Dt q0 ¼ Div MD þM0

sr mp j Dt q0 ¼ div mD þMt

mr sp J dt qt ¼ Div Md þM0

sr sp dt qt ¼ div md þMt

: ð4:9Þ

Thereby, the mass fluxes Md and md can be understood as the sum of a ‘‘convective contri-

bution’’ �MMd and �mmd and the open system contribution through the influx of mass R or

r ¼ jR � f�t,

MD ¼ �MMD þ R �MMD ¼ 0

mD ¼ �mmD þ r �mmD ¼ 0

Md ¼ �MMd þ R �MMd ¼ þq0V

md ¼ �mmd þ r �mmd ¼ �qtv

; ð4:10Þ

while the corresponding extra mass sources Ms are formally given as follows

M0 ¼ �MM0 þR0
�MM0 ¼ 0

Mt ¼ �MMt þRt
�MMt ¼ 0

: ð4:11Þ

For further elaborations, it proves convenient to independently introduce the abbreviations ms

and Ms solely taking into account the effects of convection of mass as present in classical

continuum mechanics.

m0 ¼ Div �MMD þ �MM0 ¼ 0

mt ¼ div �mmD þ �MMt ¼ 0

M0 ¼ Div �MMd þ �MM0 ¼ þDivðq0VÞ
Mt ¼ div �mmd þ �MMt ¼ �divðqtvÞ

: ð4:12Þ

In the following, the convective terms ms and Ms, which vanish for the spatial motion

problem but are nonzero in the material motion case, will prove instrumental to highlight the

dualities between the spatial and the material motion problem. In particular, we will make

use of the definition of M0 as M0 ¼ rXq0 � V þ q0f�t : dtf . With their help, the four funda-

mental versions of the balance of mass (4.9) can be reformulated in the following form, which

is particularly tailored to our needs since closed and open system contributions are clearly

separated.

mr mp Dt q0 ¼ Div RþR0 þm0

sr mp j Dt q0 ¼ div rþRt þmt

mr sp J dt qt ¼ Div RþR0 þM0

sr sp dt qt ¼ div rþRt þMt

: ð4:13Þ

Note, that by making use of the balance of mass, the volume specific forms of Reynold’s

transport theorem (3.22) can be transformed into corresponding mass specific formulations.

qt Dtf�g ¼ qt dtf�g þ divðqtf�g � vÞ þ Mt �mt½ �f�g ð4:14:1Þ

q0 dtf�g ¼ q0 Dtf�g þ Divðq0f�g � VÞ þ m0 �M0½ �f�g: ð4:14:2Þ

Herein, f�g denotes the mass specific density of a scalar- or vector-valued quantity which is

related to its volume specific density as f�gs ¼ qsf�g. While the volume specific version of

Reynold’s transport theorem (3.22) will lateron be applied to relate the spatial and material

motion quantities in the volume specific format, the mass specific version of the transport

theorem (4.14) will serve to relate the corresponding mass specific quantities.
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5 Generic balance law

In what follows, we will illustrate how the different versions of a balance law can be derived

from one another. For the sake of transparency, we will restrict ourselves to the discussion of

the local or differential forms of the master balance law

Dtf�g0 ¼ Divf(gD þ f�g0 ð5:1:1Þ
dtf�gt ¼ divf}gd þ f�gt ð5:1:2Þ

which can of course be derived from the related global or integral form

Dt

Z

B0

f�g0 dV ¼
Z

@B0

f(gD � dA þ
Z

B0

f�g0 dV ð5:2:1Þ

dt

Z

Bt

f�gt dv ¼
Z

@Bt

f}gd � daþ
Z

Bt

f�gt dv ð5:2:2Þ

if sufficient smoothness criteria are fulfilled by the related fields of the balance quantity f�gs
itself, the related fluxes f(gd and f}gd and the related source terms f�gs. In classical con-

tinuum mechanics, it is not necessary to distinguish between volume and mass specific rep-

resentations of the balance equations. In this context, in a material parametrization with

material reference, which is commonly referred to as Lagrangian formulation, not only the

mass flux and source but also the convective terms vanish. Consequently, the rate of change

of the density of any quantity Dtf�g0 ¼ q0Dtf�g, e.g., the momentum density or the energy

density, is equivalent to the rate of change of f�g weighted by the material density q0 since

Dt q0 ¼ 0. Within the thermodynamics of open systems, however, the volume and the mass

specific version of the balance laws differ considerably since Dt q0 6¼ 0. In the following, we

will derive a prototype set of balance laws in the volume and in the mass specific format.

Particular interest will be dedicated to the fact, that the mass specific version of a balance law

takes the standard format known from classical continuum mechanics, merely enhanced by

the effects of convection of mass.

5.1 Volume specific version

In the volume specific version of a balance law, the quantity to be balanced f�gs can either be

given in a material or spatial reference as f�g0 ¼ q0f�g or f�gt ¼ qtf�g. It is balanced with the

sum of the divergence of the corresponding fluxes f(gd, f}gd and the volume sources f�gs, see
Fig. 4. In analogy to the balance of mass, we start with the formulation with material reference

and material parametrization

Dtf�g0 ¼ Divf(gD þ f�g0: ð5:3Þ

Fig. 4. Generic balance law: quanti-

ties to be balanced, fluxes and sources
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Its individual terms can be pushed forward by making use of the related Piola transforms

f�g0 ¼ Jf�gt f�g0 ¼ Jf�gt f(gD ¼ Jf}gD � F�t ð5:4:1–3Þ

to render the formulation with spatial reference and material parametrization,

j Dtf�g0 ¼ divf}gD þ f�gt: ð5:5Þ

The application of Reynold’s transport theorem (3.22.1) with

j Dtf�g0 ¼ dtf�gt þ div f�gt � v
� �

and f}gd ¼ f}gD � f�gt � v ð5:6:1; 2Þ

yield the corresponding version with spatial reference and spatial parametrization.

dtf�gt ¼ divf}gd þ f�gt: ð5:7Þ

The related Piola transforms

f�gt ¼ jf�g0 f�gt ¼ jf�g0 f}gd ¼ jf(gd � f�t ð5:8:1–3Þ

together with the classical pull back formalism yield the general form of a balance law with

material reference and spatial parametrization.

J dtf�gt ¼ Divf(gd þ f�g0: ð5:9Þ

The original equation (5.3) can eventually be rederived by applying the appropriate version of

Reynold’s transport theorem (3.22.2)

J dtf�gt ¼ Dtf�g0 þ Div f�g0 � V
� �

and f(gD ¼ f(gd � f�g0 � V: ð5:10:1; 2Þ

The closed loop of transformations inherit to any balance equation is illustrated in Fig. 5. In

summary, each balance equation can be expressed in four different ways

mr mp Dtf�g0 ¼ Divf(gD þ f�g0

sr mp j Dtf�g0 ¼ divf}gD þ f�gt

mr sp J dtf�gt ¼ Divf(gd þ f�g0

sr sp dtf�gt ¼ divf}gd þ f�gt

: ð5:11Þ

Therein, the flux terms f(gd and f}gd with either d ¼ D for the spatial motion problem or

d ¼ d for the material motion problem are related to the corresponding Neumann boundary

conditions in terms of the standard closed system surface contributions jclosed and r
closed and

the open system supplements jopen and r
open.

f(gd �N ¼ jclosed þjopen jopen ¼ �jj
open þ f�g � R½ � �N

f}gd � n ¼ r
closed þr

open
r

open ¼ �rr
open þ f�g � r½ � � n

ð5:12Þ

Fig. 5. Transformation of balance laws
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Moreover, the source terms are composed of the standard closed and the additional open

system contributions

f�g0 ¼ f�g
closed

0 þ f�gopen

0 f�gopen

0 ¼ f ���gopen

0 þ f�gR0 �rXf�g � R
f�gt ¼ f�g

closed

t þ f�gopen

t f�gopen

t ¼ f ���gopen

t þ f�gRt �rxf�g � r
: ð5:13Þ

5.2 Mass specific version

Each balance law can be transformed into a mass specific version balancing the rate of change

of the mass specific quantity f�g ¼ f�gs=qs with the corresponding reduced flux f �((gd and

f �}}gd and the reduced source terms f���gs, whereby s ¼ 0; t and d ¼ d;D. The mass specific

version can be derived by subtracting f�g times the balance of mass (4.13) from the corre-

sponding volume specific version of the balance law (5.11). Consequently, we obtain the fol-

lowing remarkably simple generic forms of the mass specific balance laws,

mr mp q0 Dtf�g ¼ Divf �((gD þ f ���g0 �m0f�g
sr mp qt Dtf�g ¼ div f �}}gD þ f ���gt �mtf�g
mr sp q0 dtf�g ¼ Div f �((gd þ f ���g0 �M0f�g
sr sp qt dt f�g ¼ div f �}}gd þ f ���gt �Mtf�g

; ð5:14Þ

whereby the reduced flux terms f �((gd and f �}}gd are related to their overall counterparts

as f �((gd ¼ f(gd � f�g � R and f �}}gd ¼ f}gd � f�g � r. Again, the reduced fluxes are

related to the corresponding Neumann boundary conditions in terms of the standard

closed system contributions jclosed and r
closed and the reduced open system supplements

�jj
open

and �rr
open

.

f �((gd �N ¼ jclosed þ �jj
open ð5:15:1Þ

f �}}gd � n ¼ r
closed þ �rr

open
: ð5:15:2Þ

For the spatial motion problem, these Neumann boundary conditions are given for the fluxes

denoted by d ¼ D while for the material motion problem, we can formally introduce Neumann

type of boundary conditions for the fluxes d ¼ d. In a similar way, the reduced source terms of the

mass specific balance equations are composed of closed and reduced open system contributions

f��g0 ¼ f�g
closed

0 þ f��gopen

0 ð5:16:1Þ
f��gt ¼ f�g

closed

t þ f��gopen

t : ð5:16:2Þ

Note, that the mass specific format is free from all the explicit extra terms caused by the changes

in mass. The influence of the open system manifests itself only implicitly through the prescribed

boundary terms �jj
open

and �rr
open

and the prescribed volume sources f ���gopen

s . The convective

influence introduced through the ms and Ms terms, however, is also present in the closed system

case.

Remark 5.1: It is worth noting, that in the ‘‘theory of volumetric growth’’ derived

earlier by Epstein and Maugin [10], the source terms in Eq. (5.11) are introduced in the

following form

f�g0 ¼ f�g
closed

0 þ f�gopen

0 f�gopen

0 ¼ f�̂�gopen

0 þ f�gR0

f�gt ¼ f�g
closed

t þ f�gopen

t f�gopen

t ¼ f�̂�gopen

t þ f�gRt

:
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Consequently, the gradient terms �rXf�g � R and �rxf�g � r that are part of the volume

specific definition (5.13) in our formulation appear with a positive sign in the definition of the

reduced source terms of Epstein and Maugin [10] pertaining to Eq. (5.14).

f ���g0 ¼ f�g
closed

0 þ f�̂�gopen

0 þrXf�g � R
f ���gt ¼ f�g

closed

t þ f�̂�gopen

t þrxf�g � r
:

The different introduction of these source terms is visible in every balance equation and

finally results in a significantly different dissipation inequality. The line of thought followed

within this paper is believed to be more convenient especially in pointing out the duality

between the spatial and the material motion problem. However, both formulations can be

understood as a natural extension of the classical formulation of growth, the ‘‘theory of

adaptive elasticity’’ by Cowin and Hegedus [6] which does not include any flux of mass since

R ¼ 0 and r ¼ 0.

6 Balance of momentum

Keeping in mind the derivation of the generic balance laws of the preceding chapter, we

now elaborate their specification to yield the balance of linear momentum. Unlike the

balance of mass, the balance of momentum takes different forms in the spatial and the

material motion context due to the vector-valued nature of the balanced quantity. Conse-

quently, we will discuss the spatial and the material motion problem in separate subchap-

ters.

6.1 Volume specific version

6.1.1 Spatial motion problem

The balance of momentum, which can be understood as the continuum version of Newton’s

axiom for a system of discrete particles, balances the rate of change of the spatial momentum

density ps with the spatial or rather physical forces generated by a change in actual spatial

placement of ‘‘physical particles’’. These can essentially be divided into two types, namely the

contact or surface forces represented by the momentum fluxes Pt
d and rt

d and the at-

a-distance forces, i.e. the momentum sources bs. The volume specific momentum density ps

of the spatial motion problem is canonically defined as spatial covector given through the

partial derivative of the volume specific kinetic energy density Ks

Ks ¼
1

2
qsv � g � v ð6:1Þ

with respect to the spatial velocity v.

ps ¼ @vKs ¼ qsg � v: ð6:2Þ

The volume specific balance of momentum with material reference and material parametriza-

tion can thus be expressed as

Dtp0 ¼ Div Pt
D þ b0; ð6:3Þ

whereby Pt
D is referred to as the classical two-field first Piola–Kirchhoff stress tensor in stan-

dard continuum mechanics. With the help of the well-known Piola transforms
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p0 ¼ Jpt b0 ¼ Jbt Pt
D ¼ Jrt

D � F�t ð6:4:1–3Þ

the individual terms of Eq. (6.3) can be pushed forward to the spatial configuration

jDtp0 ¼ div rt
D þ bt: ð6:5Þ

Note, that the corresponding momentum flux rt
D is commonly denoted as Cauchy stress tensor

in standard continuum mechanics. The application of Reynold’s transport theorem (3.22.1)

jDtp0 ¼ dtpt þ divðpt � vÞ and rt
d ¼ rt

D � pt � v ð6:6:1; 2Þ

yield the balance of momentum with spatial reference and spatial parametrization.

dtpt ¼ div rt
d þ bt: ð6:7Þ

The definition of the stress tensor rt
d reflects the convective nature of the above equation in

terms of the ‘‘transport of linear momentum’’ pt � v. The individual terms of equation (6.7)

which is typically applied in classical fluid mechanics can be pulled back to the material

configuration with the help of the related Piola transforms

pt ¼ jp0 bt ¼ jb0 rt
d ¼ jPt

d � f�t ð6:8:1–3Þ

thus leading to the following expression

Jdtpt ¼ Div Pt
d þ b0: ð6:9Þ

Finally, the starting point version of the balance of momentum (6.3) can be recovered though

the application of Reynold’s transport theorem (3.22.2)

Jdtpt ¼ Dtp0 þ Divðp0 � VÞ and Pt
D ¼ Pt

d � p0 � V: ð6:10:1; 2Þ

In summary, the four different versions of the volume specific balance of momentum can be

distinguished for the spatial motion problem

mr mp Dt p0 ¼ Div Pt
D þ b0

sr mp jDt p0 ¼ div rt
D þ bt

mr sp Jdt pt ¼ Div Pt
d þ b0

sr sp dt pt ¼ div rt
d þ bt

: ð6:11Þ

On the Neumann boundary, the normal projection of the momentum fluxes Pt
D and rt

D is

required to be in equilibrium with the corresponding closed and the open system spatial stress

vector contributions tclosed
s and topen

s .

Pt
D �N ¼ tclosed

0 þ t
open

0 t
open

0 ¼ �ttopen

0 þ ½p�R� �N
rt

D � n ¼ tclosed
t þ t

open
t t

open
t ¼ �ttopen

t þ ½p� r� � n
: ð6:12Þ

Correspondingly, the momentum sources bs can be understood as the sum of the closed and the

open system volume force contributions bclosed
s and bopen

s

b0 ¼ bclosed
0 þ b

open

0 b
open

0 ¼ �bb
open

0 þ pR0 �rXp � R
bt ¼ bclosed

t þ b
open
t b

open
t ¼ �bb

open

t þ pRt �rxp � r
: ð6:13Þ

6.1.2 Material motion problem

Generally speaking, the balance of momentum of the material motion problem follows from

a complete projection of the classical version of the standard momentum balance (6.11)

onto the material manifold. For the particular case of a thermo-hyperelastic material, this
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projection is illustrated in detail in chap. 10.3. For the time being, we will introduce the

balance of momentum of the material motion problem in a more abstract way. For that

purpose, we make use of the definition of the volume specific material motion momentum

density based on the related volume specific kinetic energy density Ks.

Ks ¼
1

2
qsV �C � V: ð6:14Þ

Consequently, the rate of change of the volume specific material momentum densitiy Ps,

Ps ¼ @VKs ¼ qsC � V; ð6:15Þ

which is typically referred to as ‘‘pseudomomentum’’ by Maugin [34] is balanced with the

momentum fluxes pt
d and Rt

d and the momentum sources Bs. The balance of momentum of the

material motion problem with spatial reference and spatial parametrization can thus be pos-

tulated as

dtPt ¼ div pt
d þ Bt; ð6:16Þ

whereby the related Piola transforms

Pt ¼ jP0 Bt ¼ jB0 pt
d ¼ jRt

d � f�t ð6:17:1–3Þ

and a pull back to the material configuration yield the following expression

JdtPt ¼ Div Rt
d þ B0: ð6:18Þ

In the honor of Eshelby who originally introduced the material momentum flux Rt as energy

momentum tensor, Rt
d is nowadays often referred to as the dynamic generalization of the

classical Eshelby stress tensor in the related literature. The application of Reynold’s transport

theorem (3.22.2)

JdtPt ¼ DtP0 þ DivðP0 � VÞ and Rt
D ¼ Rt

d � P0 � V ð6:19:1; 2Þ

lead to the formulation with material reference and material parametrization

DtP0 ¼ Div Rt
D þ B0: ð6:20Þ

The individual terms of the latter can again be transformed by the related Piola transforms

P0 ¼ JPt B0 ¼ JBt Rt
D ¼ Jpt

D � F�t ð6:21:1–3Þ

and pushed forward to the spatial configuration

jDtP0 ¼ div pt
D þ Bt: ð6:22Þ

Again, the application of Reynold’s transport theorem (3.22.1)

jDtP0 ¼ dtPt þ divðPt � vÞ and pt
d ¼ pt

D � Pt � v ð6:23:1; 2Þ

can be used to gain back the original formulation (6.16). The four different versions of the volume

specific balance of momentum of the material motion problem are summarized in the following

mr mp Dt P0 ¼ Div Rt
D þ B0

sr mp j Dt P0 ¼ div pt
D þ Bt

mr sp J dt Pt ¼ Div Rt
d þ B0

sr sp dt Pt ¼ div pt
d þ Bt

: ð6:24Þ

To illustrate the duality with the spatial motion problem, we can formally introduce

the following Neumann type boundary conditions relating the momentum fluxes pt
d and Rt

d

to the sum of the closed and the open system material stress vector contributions Tclosed
s and

Topen
s
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pt
d � n ¼ Tclosed

t þ T
open
t T

open
t ¼ �TTopen

t þ ½P� r� � n
Rt

d �N ¼ Tclosed
0 þ T

open

0 T
open

0 ¼ �TTopen

0 þ ½P�R� �N : ð6:25Þ

Moreover, the volume specific momentum sources Bs can be expressed as the sum of the closed

and the open system material force contributions Bclosed
s and Bopen

s

Bt ¼ Bclosed
t þ B

open
t B

open
t ¼ �BBopen

t þ PRt �rxP � r
B0 ¼ Bclosed

0 þ B
open

0 B
open

0 ¼ �BBopen

0 þ PR0 �rXP � R : ð6:26Þ

6.1.3 Spatial vs. material motion problem

In order to distinguish the balance of momentum of the spatial and the material motion

problem, the former has been introduced as the ‘‘balance of physical momentum’’ while the

latter is referred to as the ‘‘balance of pseudomomentum’’ by Maugin [34]. The balance of

momentum of the material motion problem (6.24) can be interpreted as a projection of the

corresponding spatial motion balance Eqs. (6.11) onto the material manifold B0. In this

respect, the spatial and the material momentum densities are clearly related via the spatial and

the material deformation gradient F and f

p0 ¼ �f t � P0 P0 ¼ �Ft � p0

pt ¼ �f t � Pt Pt ¼ �Ft � pt

: ð6:27Þ

At this point, it proves convenient to additively decompose the dynamical stress measures Pt
D

rt
D, pt

d and Rt
d into the static stress measures Pt, rt, pt and Rt and additional contributions

stemming from the volume specific kinetic energy density Ks, see Steinmann [47].

Pt
D ¼ Pt � DFK0 Rt

d ¼ Rt � K0Iþ Ft � dFK0

rt
D ¼ rt � KtIþ f t � DfKt pt

d ¼ pt � dfKt

: ð6:28Þ

With the help of the partial derivative of the kinetic energy with respect to the deformation

gradients2, we conclude that the dynamic stress measures of the spatial motion problemPt
D ¼ Pt

and rt
D ¼ rt remain unaffected by these additional contributions. In a similar manner, the asso-

ciated volume forces bs and Bs can be introduced as the sum of an external and an internal static

contribution and an additional dynamic term whereby the latter can be expressed in terms of the

explicit derivative @u and @U of the volume specific kinetic energy density Ks

b0 ¼ bext
0 þ bint

0 þ @uK0 B0 ¼ Bext
0 þ Bint

0 þ @UK0

bt ¼ bext
t þ bint

t þ @uKt Bt ¼ Bext
t þ Bint

t þ @UKt

: ð6:29Þ

While the standard forces bs perform work over positional changes relative to the ambient

space, the configurational forces Bs perform work over positional changes relative to the

ambient material. The latter have originally been introduced by Eshelby [11] as forces acting

on defects. As a matter of fact, the internal forces, which are sometimes also interpreted as

a measure of inhomogeneity in the material motion context, vanish identically for the

spatial motion problem as bint
s ¼ 0. Likewise, the dynamic contributions can only be found

in the material motion context since @uKs ¼ 0 whereas @UKs ¼ @UqsK . Note, that in the

above decomposition, the external forces bext
s and Bext

s are composed of a closed and an

open system contribution while the internal forces bint
s and Bint

s can be understood as a

natural outcome of the particular underlying constitutive assumption

2 DFK0 ¼ 0 Ft � dFK0 ¼ P0 � V

f t � Df Kt ¼ KtI df Kt ¼ KtF
t þ Pt � v
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Remark 6.1: It shall be emphasized, that the balance of momentum of the spatial motion

problem which is often introduced as the ‘‘physical force balance’’ can be interpreted as a

natural consequence of the invariance of the working under changes in spatial observer, see,

e.g. Gurtin [17] x4b. The balance of momentum of the material motion problem can be un-

derstood as the ‘‘balance of configurational forces’’. In complete analogy to the spatial motion

problem, it follows from invariance requirements posed on the working under changes in

material observer, see Gurtin [17] x5c.

6.2. Mass specific version

6.2.1 Spatial motion problem

The mass specific version of the balance of momentum is based on the mass specific kinetic

energy density

K ¼ 1

2
v � g � v ð6:30Þ

defining the quantity to be balanced as its partial derivative with respect to the spatial

velocity v.

p ¼ @vK ¼ g � v: ð6:31Þ

The rate of change of the mass specific spatial motion momentum density p, i.e. the covariant

spatial velocity, is balanced with the reduced momentum fluxes �PPt
d and �rrt

d, the reduced mo-

mentum sources �bbs and a convective contribution in terms of ms which vanishes for the spatial

motion problem. By subtracting the balance of mass (4.13) weighted by the momentum density

p from the volume specific momentum balance (6.11), we can derive the four different versions

of the mass specific momentum balance.

mr mp q0Dtp ¼ Div �PPt
D þ �bb0 �m0p

sr mp qtDtp ¼ div �rrt
D þ �bbt �mtp

mr sp q0dtp ¼ Div �PPt
d þ �bb0 �m0p

sr sp qtdtp ¼ div �rrt
d þ �bbt �mtp

: ð6:32Þ

Note, that the reduced momentum fluxes �PPt
d and �rrt

d which are related to the overall momentum

fluxes Pt
d and rt

d through �PPt
d ¼ Pt

d � p� R and �rrt
d ¼ rt

d � p� r are determined by the

closed and open system spatial stress vector contributions tclosed
s and �ttopen

s on the Neumann

boundary,

�PPt

D �N ¼ tclosed
0 þ �tt

open

0 ;

�rrt
D � n ¼ tclosed

t þ �tt
open

t ;
ð6:33Þ

while the reduced spatial momentum sources �bbs are given as the sum of the classical closed

system volume force contributions bclosed
s and the reduced open system contributions �bbopen

s ,

�bb0 ¼ bclosed
0 þ �bb0

open

�bbt ¼ bclosed
t þ �bbt

open ð6:34Þ

whereby bclosed
s contributes to the external, the internal and the kinetic contributions bext

s , bint
s

and @uKs while �bb
open

s contributes exclusively to the external sources bext
s .
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6.2.2 Material motion problem

In a similar way, the mass specific balance of momentum of the material motion problem is

based on the material version of the mass specific kinetic energy density

K ¼ 1

2
V �C � V ð6:35Þ

defining the mass specific material momentum density.

P ¼ @VK ¼ C � V: ð6:36Þ
Its rate of change is balanced with the reduced momentum fluxes �ppt

d and Rt
d, the reduced

momentum sources �BBs and the additional Ms-term taking into account the convective contri-

butions. Again, four different versions can be derived as the difference of the volume specific

balance ofmomentum (6.24) and the balance ofmass (4.13) weighted by themass specificmaterial

momentum density P, i.e., the covariant material velocity with the appropriate metric C.

mr mp q0DtP ¼ Div �RRt
D þ �BB0 �M0P

sr mp qtDtP ¼ div �ppt
D þ �BBt �MtP

mr sp q0dtP ¼ Div �RR
t

d þ �BB0 �M0P

sr sp qtdtP ¼ div �ppt
d þ �BBt �MtP

: ð6:37Þ

Thereby, the corresponding reduced momentum fluxes �ppt
d and �RRt

d which are related to the

overall momentum fluxes pt
d and Rt

d as �ppt
d ¼ pt

d � P� r and �RRt
d ¼ Rt

d � P� R are formally

determined by the corresponding material stress vectors Tclosed
t and �TTopen

t through the Neu-

mann boundary conditions

�ppt
d � n ¼ Tclosed

t þ �TT
open

t

�RRt
d �N ¼ Tclosed

0 þ �TTopen

0

: ð6:38Þ

Moreover, the reduced material volume forces �BBs are given as the sum of the standard closed

system material volume forces Bclosed
s and the reduced open system contribution �BBopen

s

�BBt ¼ Bclosed
t þ �BBopen

t

�BB0 ¼ Bclosed
0 þ �BBopen

0

: ð6:39Þ

Again, the closed system part Bclosed
s contributes to the external, the internal and the kinetic

contributions Bext
s , Bint

s and @UKs while the open system term �BBopen
s only contributes to the

external sources Bext
s .

6.2.3 Spatial vs. material motion problem

Similar to the kinematic relation (3.15) between the contravariant velocities v and V, the

covariant mass specific spatial and material momentum densities p and P are related via the

corresponding deformation gradients

p ¼ �f t � P P ¼ �Ft � p: ð6:40Þ

Moreover, the additive decomposition of the dynamic momentum fluxes introduced for the

volume specific case can be transferred to the mass specific context, thus

�PP
t

D ¼ �PP
t � DFK0

�RRt
d ¼ �RRt � K0Iþ Ft � dFK0

�rrt
D ¼ �rrt � KtIþ f t � DfKt �ppt

d ¼ �ppt � dfKt:
ð6:41Þ

Correspondingly, the additive decomposition of the volume forces bs and Bs is likewise valid

for the reduced volume forces �bbs and �BBs.
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�bb0 ¼ �bb0
ext þ �bb0

int þ @uK0
�BB0 ¼ �BBext

0 þ �BBint
0 þ @UK0

�bbt ¼ �bb
ext

t þ �bbt
int þ @uKt

�BBt ¼ �BBext
t þ �BBint

t þ @UKt

: ð6:42Þ

7 Balance of kinetic energy

The balance of kinetic energy can be interpreted as a particular weighted form of the balance of

momentum, i.e., weighted by the appropriate velocity field v or V modified by a weighted

version of the balance of mass in case of open systems. Thus, the balance of kinetic energy does

not constitute an independent balance law. Yet, it proves significant to discuss it in detail since

it will help to introduce work conjugate stress and strain pairs. Moreover, the balance of kinetic

energy will be used to identify the external and internal mechanical power which are essential

for our further thermodynamical considerations.

7.1 Volume specific version

7.1.1 Spatial motion problem

The material time derivative of the volume specific kinetic energy density K0 ¼ 1=2q0v � g � v
can be expressed as follows

DtK0 ¼ v � ½Dtp0 � @uK0� � DFK0 : DtF� K ½Dtq0 �m0�; ð7:1Þ

whereby the second, the third and the fifth term vanish identically for the spatial motion

problem as @uK0 ¼ 0, DFK0 ¼ 0 and m0 ¼ 0. With the projection of the volume specific balance

of momentum (6.3) with the spatial velocity v

v � Dtp0 ¼ Divðv �Pt
DÞ þ v � ½bext

0 þ bint
0 þ @uK0� � ½Pt � DFK0� : DtF ð7:2Þ

and the balance of mass (4.13.1) weighted by the mass specific kinetic energy density K

KDtq0 ¼ DivðKRÞ þ KR0 �rXK � Rþm0K ; ð7:3Þ

Eq. (7.1) can be rewritten in explicit form

DtK0 ¼ Divðv �Pt
D � K RÞ þ v � bext

0 � KR0 þrXK � R�Pt : DtFþ v � bint
0 : ð7:4Þ

In what follows, it will prove convenient to reformulate the above equation in terms of the

reduced momentum flux �PP
t

D and the reduced momentum source �bbext
0 which can be related to

their overall counterparts Pt
D and bext

0 through the following identities

Divðv �Pt
DÞ ¼ Divðv � �PP

t

DÞ þ Divð2KRÞ ð7:5:1Þ
v � bext

0 ¼ v � �bbext
0 þ 2KR0 � v � rXp � R ð7:5:2Þ

Pt : DtF ¼ �PPt : DtFþ p � rXv � R: ð7:5:3Þ

With the help of the above equations and the identity v � rXpþ p � rXv ¼ 2rXK following

from v � p ¼ 2K , Eq. (7.4) can be reformulated in the following way

DtK0 ¼ Divðv � �PP
t

D þ K RÞ þ v � �bbext

0 þ KR0 �rXK � R� �PP
t

: DtFþ v � �bbint

0 : ð7:6Þ

As stated already be Stokes as early as 1857, the rate of increase of the kinetic energy is equal to

the input of external mechanical power minus the internal mechanical power, i.e., in the spatial
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motion context the stress power. The righthand side of the above equation thus motivates the

identification of the volume specific external and internal mechanical power pext
0 and pint

0 ,

pext
0 :¼ Divðv � �PP

t

D þ KRÞ þ v � �bbext

0 þ KR0 �rXK � R
pint

0 :¼ �PPt
: DtF� v � �bbint

0 ;
ð7:7Þ

whereby pext
0 characterizes the total rate of working of mechanical actions on the body. This

rate of working consists of the flux contribution v � �PPt
D þ KR and the source term

v � �bbext

0 þ KR0 �rXK � R. The internal mechanical power pint
0 includes the production term for

the kinetic energy as �PPt : DtF� v � �bbint
0 . The definition of the latter suggests the interpretation

of the reduced momentum flux �PPt and the material time derivative of the spatial motion

deformation gradient DtF as work conjugate pairs. To highlight the duality with the material

motion problem, the internal force contribution has been included in the definition of the

internal mechanical power pint
0 although this terms vanishes identically in the spatial motion

case as �bb
int

0 ¼ 0. With the above abbreviations at hand, the balance of kinetic energy can be

rewritten in the following form

DtK0 ¼ pext
0 � pint

0 ð7:8Þ

which has been denoted as the local form the ‘‘theorem of energy’’, by Maugin [34]. With the

related Piola transforms K0 ¼ JKt, p
ext
0 ¼ Jpext

t and pint
0 ¼ Jpint

t and the volume specific version

of Reynold’s transport theorem (3.22), we easily obtain the alternative versions of the volume

specific kinetic energy balance of the spatial motion problem with spatial reference and spatial

parametrization.

7.1.2 Material motion problem

In complete analogy to the spatial motion problem, the spatial time derivative of the volume

specific kinetic energy density Kt ¼ 1=2qtV �C � V is given in the following form

dtKt ¼ V � dtPt � @UKt½ � � dfKt : dtf � K dtqt �Mt½ �: ð7:9Þ

Note, however, that in contrast to the spatial motion problem, the terms @UKt, dfKt and Mt do

not vanish for the material motion problem. With the projection of the volume specific balance

of momentum (6.16) with the material velocity V

V � dtPt ¼ div V � pt
d

� �
þ V � Bext

t þ Bint
t þ @UKt

� �
� pt � dfKt

� �
: dtf ð7:10Þ

and the balance of mass (4.13.4) weighted by the mass specific kinetic energy density K

Kdtqt ¼ divðKrÞ þ KRt �rxK � rþMtK ð7:11Þ

the above stated balance of kinetic energy takes the following explicit form

dtKt ¼ div V � pt
d � Kr

� �
þ V � Bext

t � KRt þrxK � r� pt : dtf þ V � Bint
t : ð7:12Þ

Similar to the spatial motion problem, we will reformulate the above equation by making use of

the fundamental relations between the reduced and non-reduced flux and source terms

divðV � pt
dÞ ¼ divðV � �ppt

dÞ þ Divð2KrÞ ð7:13:1Þ
V � Bext

t ¼ V � �BBext
t þ 2KRt � V � rxP � r ð7:13:2Þ

pt : dtf ¼ �ppt : dtf þ P � rxV � r ð7:13:3Þ

which eventually render the following expression

dtKt ¼ div V � �ppt
d þ Kr

� �
þ V � �BBext

t þ KRt �rxK � r� �ppt : dtf þ V � �BBint
t : ð7:14Þ
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Notice the remarkable duality of the above expression with its spatial motion counterpart (7.6).

This beautiful analogy, see again our leitmotif, is only possible due to our specific choice of

volume sources. The identification of the material motion external and internal mechanical

power Pext
t and Pint

t

Pext
t :¼ div V � �ppt

d þ Kr
� �

þ V � �BBext
t þ KRt �rxK � r ð7:15:1Þ

Pint
t :¼ �ppt : dtf � V � �BBint

t ð7:15:2Þ

allows for the following shorthanded notation of Eq. (7.14).

dtKt ¼ Pext
t � Pint

t : ð7:16Þ

Similar to the spatial motion problem, the definition of the material motion internal power Pint
t

motivates the definition of the reduced momentum flux �ppt and the spatial time derivative of the

material motion deformation gradient dtf as work conjugate pairs. The appropriate Piola

transforms Kt ¼ jK0, Pext
t ¼ jPext

0 and Pint
t ¼ jPint

0 and the application of the volume specific

version of Reynold’s transport theorem (3.22) could be used to derive the alternative formu-

lations with material reference and material parametrization.

7.1.3 Spatial vs. material motion problem

A comparison of the spatial and the material motion problem (7.8) and (7.16) based on

the volume specific version of Reynold’s transport theorem (3.22) defines the following

identities

pext
0 � pint

0 ¼ Pext
0 � Pint

0 � Div K0Vð Þ ð7:17:1Þ
Pext

t � Pint
t ¼ pext

t � pint
t � div Ktvð Þ: ð7:17:2Þ

7.2 Mass specific version

7.2.1 Spatial motion problem

To investigate the mass specific version of the balance of kinetic energy, we need to evaluate the

material time derivative of the mass specific kinetic energy density K ¼ 1=2v � g � v which can

easily be derived by subtracting the weighted balance of mass (7.3) from the material time

derivative of the volume specific kinetic energy density K0 given in Eq. (7.6) as

q0DtK ¼ DtK0 � KDtq0 ð7:18Þ

and thus

q0DtK ¼ Div v � �PPt
D

� �
þ v � �bbext

0 �m0K � �PPt : DtFþ v � �bbint
0 : ð7:19Þ

Consequently, we can identify the mass specific external and internal mechanical power �ppext
0 and

�ppint
0 ,

�ppext
0 :¼ pext

0 � KDtq0 þm0K ¼ Divðv � �PPt
DÞ þ v � �bbext

0 ð7:20:1Þ
�ppint

0 :¼ pint
0 ¼ �PPt : DtF� v � �bb0

int ð7:20:2Þ

keeping in mind that the internal force term �bbint
0 ¼ 0 vanishes identically for the spatial motion

case and has only been included to stress the duality with the definition based on the material

motion problem. With the above definitions at hand, the mass specific balance of kinetic energy

can be expressed in the following form

q0DtK ¼ �ppext
0 � �ppint

0 �m0K : ð7:21Þ
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It is worth noting, that the difference of the mass and volume specific formulation manifests

itself only in the definition of the external mechanical power while the mass specific internal

power is identical to its volume specific counterpart as �ppint
0 ¼ pint

0 . To derive the alternative

formulations of Eq. (7.21) we have to make use of the related Piola transforms with

�ppext
0 ¼ J�ppext

t and �ppint
0 ¼ J�ppint

t and the Euler theorem (3.21).

7.2.2 Material motion problem

In analogy to the spatial motion problem, the spatial time derivative of the mass specific kinetic

energy density K ¼ 1=2V � C � V is given as the difference of the volume specific version (7.14)

and the corresponding weighted balance of mass (7.11)

qtdtK ¼ dtKt � Kdtqt: ð7:22Þ

Consequently, the explicit form

qtdtK ¼ divðV � �ppt
dÞ þ V � �BBext

t �MtK � �ppt : dtf þ V � �BBint
t ð7:23Þ

defines the mass specific external and internal power �PP
ext

t and �PP
int

t as

�PP
ext

t :¼ Pext
t � Kdtqt þMtK ¼ divðV � �ppt

dÞ þ V � �BBext
t ð7:24:1Þ

�PPint
t :¼ Pint

t ¼ �ppt : dtf � V � �BBint
t ; ð7:24:2Þ

whereby again, the mass specific internal power is defined to be identical to its volume specific

counterpart as �PP
int

t ¼ Pint
t . The mass specific balance of kinetic energy of the material motion

problem

qtdtK ¼ �PP
ext

t � �PP
int

t �MtK ð7:25Þ

could alternatively be reformulated with the related Piola transforms �PPt
ext ¼ j�PP

ext

0 and
�PP

int

t ¼ j�PP
int

0 and the corresponding versions of the Euler theorem (3.21).

7.2.3 Spatial vs. material motion problem

A comparison of the spatial and the material motion formulations (7.21) and (7.25) based

on the mass specific version of Reynold’s transport theorem (4.14) reveals the following

identities

�ppext
0 � �ppint

0 ¼ �PPext
0 � �PP

int

0 � DivðK0VÞ ð7:26:1Þ
�PPext

t � �PPint
t ¼ �ppext

t � �ppint
t � divðKtvÞ: ð7:26:2Þ

Remarkably, the difference of the spatial and the material motion quantities, DivðK0VÞ or
divðKtvÞ, respectively, is identical for the volume specific and the mass specific formulation,

compare (7.17).

8 Balance of energy

The balance of total energy as a representation of the first law of thermodynamics balances

the rate of change of the volume specific total energy density Es ¼ qsE as the sum of the

kinetic and internal energy density Es ¼ Ks þ Is with the external power. In classical con-

tinuum mechanics of closed systems, this external power is composed of a purely me-

chanical contribution pext
s or Pext

s and a non-mechanical thermal contribution qext
s or Qext

s .

Therefore, the balance of energy is sometimes referred to as ‘‘principle of interconvertibility
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of heat and mechanical work’’, a notion which goes back to Carnot 1832. However, when

dealing with open systems, we have to generalize the definition of the non-mechanical

external power by including an additional external open system contribution in the defi-

nition of qext
s and Qext

s .

8.1. Volume specific version

8.1.1 Spatial motion problem

For the spatial motion problem, the rate of change of the volume specific total energy density

E0 ¼ q0E can be expressed in the following form

DtE0 ¼ Divðv � �PPt
D � �QQD þ ERÞ þ v � �bbext

0 þ �QQ0 þ ER0 �rXE � R: ð8:1Þ

Thereby, in addition to the purely mechanical external power pext
0 already defined in Eq. (7.7),

we have included the non-mechanical external power qext
0 accounting for the classical thermal

effects of the closed system and the additional open system effects as an additional non-

mechanical supply of energy.

qext
0 :¼ Divð�QDÞ þ Q0: ð8:2Þ

Similar to the mechanical power, the non-mechanical power consists of a flux and a source

contribution, denoted by QD and Q0, respectively. The former is composed of the reduced

outward non-mechanical energy flux �QQD modified by the explicit extra flux due to the open

system IR, while the latter is the sum of the reduced non-mechanical energy source �QQ0 enhanced

by the explicit effects of the open system IR0 and rXI � R

pext
0 :¼ Divðv � �PP

t

D þ KRÞ þ v � �bbext
0 þ KR0 �rXK � R; ð8:3:1Þ

qext
0 :¼ Divð��QQD þ IRÞ þ �QQ0 þ IR0 �rXI � R: ð8:3:2Þ

Equation (8.1) can thus be reformulated in the following concise form

DtE0 ¼ pext
0 þ qext

0 ð8:4Þ

which for the classical closed system case dates back to the early works of Duhem in 1892. The

appropriate Piola transforms E0 ¼ JEt, pext
0 ¼ Jpext

t , qext
0 ¼ Jqext

t , QD ¼ JqD � F�t and
�QQD ¼ J�qqD � F�t can be used together with the application of the volume specific transport

theorem to derive the alternative formulations of Eq. (8.4). On the Neumann boundary, the

non-mechanical energy fluxes of Piola–Kirchhoff and Cauchy type QD and qd are given in

terms of the normal projection of the classical heat flux related to the closed system qclosed
s and

the additional open system contribution qopen
s

QD �N ¼ qclosed
0 þ q

open

0 q
open

0 ¼ �qqopen

0 � IR �N;
qD � n ¼ qclosed

t þ q
open
t q

open
t ¼ �qqopen

t � Ir � n :
ð8:5Þ

Moreover, the non-mechanical energy sources Qs can be understood as the sum of the classical

heat source of the closed system Qclosed
s and an additional non-mechanical energy source taking

into account the nature of the open system Qopen
s

Q0 ¼ Qclosed
0 þ Qopen

0 Qopen

0 ¼ �QQ0
open þ IR0 �rXI � R;

Qt ¼ Qclosed
t þ Qopen

t Qopen
t ¼ �QQ

open

t þ IRt �rxI � r :
ð8:6Þ

By subtracting the balance of kinetic energy (7.8) from the total energy balance (8.4), we obtain

in addition the balance equation of the internal energy density I0 ¼ E0 � K0,
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DtI0 ¼ pint
0 þ qext

0 ð8:7Þ

which will be useful for our further thermodynamical considerations.

8.1.2 Material motion problem

The balance of the volume specific total energy density Et ¼ qtE of the material motion

problem can formally be stated as follows

dtEt ¼ divðV � �ppt
d � �qqd þ ErÞ þ V � �BBext

t þ �QQt þ ERt �rxE � r: ð8:8Þ

It balances the spatial rate of change of the total energy density Et ¼ Kt þ It with the material

external mechanical power Pext
t and the external non-mechanical power Qext

t , whereby the latter

consists of the material motion flux of non-mechanical energy qd and the related material

motion source Qt

Qext
t :¼ divð�qdÞ þ Qt: ð8:9Þ

As for the spatial motion problem, the contributions qd and Qt can be expressed explicitly in

terms of their reduced counterparts �qqd and �QQt and the additional open system extra terms Ir,

IRt and rxI � r.

Pext
t :¼ divðV � �ppt

d þ KrÞ þ V � �BBext
t þ KRt �rxK �r; ð8:10:1Þ

Qext
t :¼ Divð��qqd þ IrÞ þ �QQt þ IRt �rxI � r: ð8:10:2Þ

Equation (8.8) can thus be rewritten as follows

dtEt ¼ Pext
t þQext

t : ð8:11Þ

Its alternative formulations could be derived through the application of the related Piola

transforms Et ¼ jE0, Pext
t ¼ jPext

0 , Qext
t ¼ jQext

0 , qd ¼ jQd � f�t and �qqd ¼ j �QQd � f�t in combina-

tion with the volume specific transport theorem (3.22). In complete analogy to the spatial

motion problem, we can formally introduce boundary conditions for the non-mechanical en-

ergy flux qd and Qd

qd � n ¼ Q
closed
t þ Q

open
t Q

open
t ¼ �QQopen

t � Ir � n;
Qd �N ¼ Qclosed

0 þ Q
open

0 Q
open

0 ¼ �QQopen

0 � IR �N
ð8:12Þ

and define the non-mechanical heat sources Qs in formal analogy to the spatial motion case

Qt ¼ Qclosed
t þ Qopen

t Qopen
t ¼ �QQopen

t þ IRt �rxI � r;
Q0 ¼ Qclosed

0 þ Qopen

0 Qopen

0 ¼ �QQopen

0 þ IR0 �rXI � R:
ð8:13Þ

Again, a reduction to the useful balance of internal energy density It ¼ Et � Kt can be derived

by subtracting the balance of kinetic energy (7.16) from the balance of total energy (8.11)

dtIt ¼ Pint
t þ Qext

t : ð8:14Þ

8.1.3 Spatial vs. material motion problem

A comparison of the balance of total energy of the spatial and the material motion problem

(8.4) and (8.11) together with the volume specific version of Reynold’s transport theorem (3.22)

reveals the following relations

pext
0 þ qext

0 ¼ Pext
0 þQext

0 � DivðE0VÞ; ð8:15:1Þ

Pext
t þ Qext

t ¼ pext
t þ qext

t � divðEtvÞ: ð8:15:2Þ
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Furthermore, we can state the following identities

pint
0 þ qext

0 ¼ Pint
0 þ Qext

0 � DivðI0VÞ; ð8:16:1Þ

Pint
t þQext

t ¼ pext
t þ qext

t � divðItvÞ ð8:16:2Þ

which follow from a comparison of the different version of the volume specific balance of internal

energy. Note in anticipation of chap. 8.2.3, that their closer evaluation yields the same results as

the evaluation of the corresponding mass specific equations which will be elaborated later on.

8.2 Mass specific version

8.2.1 Spatial motion problem

The mass specific counterpart of the equations derived above balances the mass specific energy

density E ¼ E0=q0 with the mass specific external mechanical power �ppext
0 introduced in (7.20)

and the mass specific non-mechanical power �qqext
0 as

�qqext
0 :¼ qext

0 � IDtq0 þm0I ¼ �Div �QQD þ �QQ0: ð8:17Þ

The corresponding balance equation

q0DtE ¼ �ppext
0 þ �qqext

0 �m0E ð8:18Þ

follows from subtracting the corresponding balance of mass (4.13.1) weighted by the total

energy E from the volume specific energy balance (8.4.1). Alternative formulations can be

derived by applying the corresponding Piola transforms with �ppext
0 ¼ J�ppext

t and �qqext
0 ¼ J�qqext

t and

the Euler theorem (3.21). Again, we can relate the reduced energy fluxes �QQD and �qqD defined

through �QQD ¼ QD � IR and �qqD ¼ qD � Ir to the classical heat flux qclosed
s and the energy flux

caused by additional effects of the open system �qqopen
s

�QQD �N ¼ qclosed
0 þ �qqopen

0 ; ð8:19:1Þ
�qqD � n ¼ qclosed

t þ �qqopen
t : ð8:19:2Þ

Moreover, the reduced non-mechanical energy sources �QQs are given as the sumof the classical heat

source of a closed system Qclosed
s and the additional open system contribution to the energy �QQopen

s

�QQ0 ¼ Qclosed
0 þ �QQ

open

0 ; ð8:20:1Þ
�QQt ¼ Qclosed

t þ �QQt
open

: ð8:20:2Þ

A reduction to the balance of internal energy I ¼ E� K follows from by subtracting the

balance of kinetic energy (7.21) from the balance of total energy (8.18)

q0DtI ¼ �ppint
0 þ �qqext

0 �m0I: ð8:21Þ

Recall, that the convective mass contribution m0 ¼ 0 vanishes identically for the spatial motion

case. Consequently, the mass specific balance equations of total and internal energy are free

from all the explicit extra terms caused by the changes in mass and, remarkably, take a similar

structure as the standard balance equations for classical closed systems.

8.2.2 Material motion problem

The mass specific balance of energy of the material motion problem balances the rate of change

of the mass specific energy E ¼ Et=qt with the corresponding mechanical external power �PP
ext

t

and the non-mechanical external power �QQ
ext

t with
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�QQ
ext

t :¼ Qext
t � Idtqt þMtI ¼ �div �qqd þ �QQt: ð8:22Þ

In short form, the mass specific balance of energy with spatial reference and spatial paramet-

rization can be expressed as

qtdtE ¼ �PP
ext

t þ �QQ
ext

t �MtE ð8:23Þ

while alternative formulations can be derived through the corresponding Piola transforms with
�PP

ext

t ¼ j�PP
ext

0 and �QQ
ext

t ¼ j�QQ
ext

0 in combination with the Euler theorem (3.21). Again, to illustrate

the duality with the classical spatial motion problem, Neumann boundary conditions can

formally be introduced for the reduced non-mechanical energy fluxes �qqd and �QQd defined

through �qqd ¼ qd � Ir and �QQd ¼ Qd � IR in the following way

�qqd � n ¼ Q
closed
t þ �QQopen

t ; ð8:24:1Þ
�QQd �N ¼ Qclosed

0 þ �QQopen

0 ð8:24:2Þ

while the reduced non-mechanical energy sources are given as follows:

�QQt ¼ Qclosed
t þ �QQ

open

t ; ð8:25:1Þ
�QQ0 ¼ Qclosed

0 þ �QQ
open

0 : ð8:25:2Þ

Finally, by subtracting the balance of kinetic energy (7.25) from the balance of total energy

(8.23) the mass specific balance of internal energy I ¼ E� K can be derived.

qtdtI ¼ �PP
int

t þ �QQ
ext

t �MtI: ð8:26Þ

8.2.3 Spatial vs. material motion problem

By comparing the spatial motion balance Eqs. (8.18) and (8.21) with their material motion

counterparts (8.23) and (8.26), we easily obtain the identities

�ppext
0 þ �qqext

0 ¼ �PP
ext

0 þ �QQ
ext

0 � DivðE0VÞ; ð8:27:1Þ
�PP

ext

t þ �QQt
ext ¼ �ppext

t þ �qqext
t � divðEtvÞ ð8:27:2Þ

and

�ppint
0 þ �qqext

0 ¼ �PPint
0 þ �QQ

ext

0 � DivðI0VÞ; ð8:28:1Þ
�PPint

t þ �QQ
ext

t ¼ �ppint
t þ �qqext

t � divðItvÞ ð8:28:2Þ

by making use of the mass specific version of Reynold’s transport theorem (4.14). Remarkably,

the differences of the spatial and the material motion quantities DivðE0VÞ or divðEtvÞ as well as
DivðI0VÞ or divðItvÞ are identical to the volume specific case. According to Gurtin [17], we now

introduce the scalar fields C0 and Ct which are related through the corresponding Jacobians.

Ct ¼ jC0 C0 ¼ JCt: ð8:29:1; 2Þ

For the time being, the fields Cs which can be interpreted as configurational energy change

are introduced by mere definition while in the following chapter they will be determined

explicitly by exploiting the balance of entropy. With the help of the fields Cs, we can set up

the following relations between the spatial and material reduced non-mechanical energy

fluxes

�qqD ¼ �qqd � Ctv �QQd ¼ �QQD � C0V: ð8:30:1; 2Þ
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Remarkably, in the above equations, the energy outfluxes �qqd and �QQd are related via the con-

figurational energy change �Cs while the mass fluxes �mmD ¼ �mmd þ qtv and �MMd ¼ �MMD þ q0V

introduced in Eq. (4.10) are related in an identical format via the density qs. With the help of

the configurational energy change and the definitions of the external power, the comparisons

(8.27) can be restated as follows

Divðv � �PPDÞ þ v � �bbext
0 ¼ DivðV � �RRd þ ½C0 � E0�VÞ þ V � �BBext

0 ; ð8:31:1Þ
divðV � �ppdÞ þ V � �BBext

t ¼ divðv � �rrD þ ½Ct � Et�vÞ þ v � �bbext
t : ð8:31:2Þ

A comparison of the flux terms reveals the following identities in terms of the spatial and the

material motion reduced dynamic momentum fluxes �PPD, �rrD, �ppd and �RRd.

v � �rrt
D ¼ v � ½½Et � Ct�I� f t � �ppt

d�; ð8:32:1Þ

V � �RRt
d ¼ V � ½½E0 � C0�I� Ft � �PP

t

D�: ð8:32:2Þ

These can be further simplified by making use of the definition of the dynamic momentum

fluxes (6.28) as �ppd ¼ �pp� KtF
t � Pt � v and �RRd ¼ �RR� K0Iþ P0 � V and the identities �rrD ¼ �rr

and �PPD ¼ �PP. Consequently, Eqs. (8.32) can be rewritten as follows

v � �rrt ¼ v � ½½Et � Ct þ Kt�I� f t � �ppt � pt � v�; ð8:33:1Þ
V � �RRt ¼ V � ½½E0 � C0 þ K0�I� Ft � �PPt � P0 � V�: ð8:33:2Þ

Taking into account the fact that Es ¼ Ks þ Is along with the orthogonality conditions

v � ½2KtI� pt�v� ¼ 0; ð8:34:1Þ
V � ½2K0I� P0�V� ¼ 0 ð8:34:2Þ

emphasized in Steinmann [45], we end up with the following tentative relations between the

spatial and the material motion reduced static momentum fluxes �PP, �rr, �pp and �RR.

�rrt ¼ ½It � Ct�I� f t � �ppt; ð8:35:1Þ
�RR

t ¼ ½I0 � C0�I� Ft � �PP
t

A comparison of the related source terms yields the transformation formulae between the

spatial and the material motion reduced external forces,

�bb
ext

t ¼ �f t � �BBext
t ; ð8:36:1Þ

�BBext
0 ¼ �Ft � �bbext

0 ; ð8:36:2Þ

see also Steinmann [47].

9 Balance of entropy and dissipation inequality

The first law of thermodynamics in the form of the balance of energy expresses the intercon-

vertibility of heat and work. However, the balance of energy itself does not place any restric-

tions on the direction of the thermodynamical process. The second law of thermodynamics, the

balance of entropy, postulates the existence of an absolute temperature and of a specific

entropy as a state function. Through the internal production of the latter, which is required

to either vanish for reversible processes or to be strictly positive for irreversible processes,

a direction is imposed on the thermodynamical process.
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9.1 Volume specific version

9.1.1 Spatial motion problem

The balance of entropy balances the volume specific entropy density S0 ¼ q0S with the external

entropy input hext
0 and the internal entropy production hint

0 . Thereby, the former consists of the

entropy flux HD across the material surface @B0 and the entropy source H0 in the material

domain B0

hext
0 :¼ Divð�HDÞ þH0: ð9:1Þ

Recall, that we are dealing with open systems for which a fixed material volumeB0 is allowed to

constantly gain or lose mass. Open systems naturally exhibit an additional entropy flux and

entropy source caused by the added mass as pointed out earlier in the famous monograph by

Schrödinger [41] x6 aswell as byMalvern [33] x5.6 or only recently byEpstein andMaugin [10]. As

one consequence, the external entropy flux HD is introduced as the sum of the reduced external

entropy flux �HHD enhanced by the explicit open system contribution SR. Accordingly, the external

entropy sourceH0 consists of the reduced entropy source �HH0 modified by additional terms SR0

and �rXS � R accounting for the explicit open system contribution to the entropy supply

hext
0 :¼ Divð��HHD þ SRÞ þ �HH0 þ SR0 �rXS � R;

hint
0 � 0:

ð9:2Þ

Just like in classical thermodynamics, the internal entropy production hint
0 is required to be point-

wise non-negative. This condition naturally induces a direction to the thermodynamic process.

Consequently, the local version of the balance of entropy of the material motion problem with

material reference and material parametrization can be stated in the following form

DtS0 ¼ hext
0 þ hint

0 : ð9:3Þ

By making use of the requirement that the internal entropy production be non-negative as

hint
0 � 0, the above equation can be recast into the inequality DtS0 � hext

0 � 0 which is referred

to as ‘‘postulate of irreversibility’’ in classical thermodynamics, see Truesdell and Toupin [50]

x258. Again, we can derive alternative formats of the above statement by applying the related

Piola transforms S0 ¼ JSt, hext
0 ¼ Jhext

t , hint
0 ¼ Jhint

t , HD ¼ JhD � F�t and �HHD ¼ J�hhD � F�t in

combination with the volume specific version of Reynold’s transport theorem. Next, we will

introduce Neumann boundary conditions for the spatial motion Kirchhoff and Cauchy type

entropy flux HD and hD in terms of the classical closed system entropy flux contribution hclosed
s

and the additional open system contribution hopen
s

HD �N ¼ hclosed
0 þ h

open

0 h
open

0 ¼ �hhopen

0 � SR �N;
hD � n ¼ hclosed

t þ h
open
t h

open
t ¼ �hhopen

t � Sr � n:
ð9:4Þ

Accordingly, the entropy sources Hs are introduced as the sum of the classical entropy source

of the closed system Hclosed
s and the additional entropy source accounting for the nature of the

open system Hopen
s

H0 ¼Hclosed
0 þHopen

0 Hopen

0 ¼ �HH
open

0 þ SR0 �rXS � R;
Ht ¼Hclosed

t þHopen
t Hopen

t ¼ �HH
open

t þ SRt �rxS � r :
ð9:5Þ

9.1.2 Material motion problem

In complete analogy to the spatial motion problem, we can formally introduce the balance of

entropy for the material motion problem balancing the rate of change of the volume specific
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entropy density St ¼ qtS with the external entropy input Hext
t and the internal entropy

production Hint
t . The former can be introduced as the sum of the material motion entropy flux

hd and the material motion entropy source Ht

Hext
t :¼ divð�hdÞ þHt: ð9:6Þ

Again, the contributions hd and Ht will be expressed in terms of their reduced counterparts �hhd

and �HHt and the explicit open system extra terms Sr, SRt and rxS � r,

Hext
t :¼ divð��hhd þ SrÞ þ �HHt þ SRt �rxS � r ð9:7:1Þ

Hint
t � 0 ð9:7:2Þ

giving rise to the material motion entropy balance of the following form

dtSt ¼ Hext
t þ Hint

t : ð9:8Þ

The related transport theorem and the corresponding Piola transforms with St ¼ jS0,

Hext
t ¼ jHext

0 , Hint
t ¼ jHint

0 , hd ¼ jHd � f�t and �hhd ¼ j �HHd � f�t can be used to derive alternative

formats of the statement (9.8). Again, we can formally introduce Neumann boundary condi-

tions for the material motion entropy fluxes hd and Hd

hd � n ¼ Hclosed
t þ H

open
t H

open
t ¼ �HHopen

t � Sr � n ;
Hd �N ¼ Hclosed

0 þ H
open

0 H
open

0 ¼ �HHopen

0 � SR �N
ð9:9Þ

and define the material motion entropy sources Hs in complete analogy to the spatial motion

case

Ht ¼Hclosed
t þHopen

t Hopen
t ¼ �HH

open

t þ SRt �rxS � r;
H0 ¼Hclosed

0 þHopen

0 Hopen

0 ¼ �HH
open

0 þ SR0 �rXS � R:
ð9:10Þ

9.1.3 Spatial vs. material motion problem

A comparison of the rate of change of the entropy density based on the spatial and the material

motion problem (9.3) and (9.8) with the help of the volume specific version of Reynold’s

transport theorem (3.22) reveals the following identities

hext
0 þ hint

0 ¼ Hext
0 þ Hint

0 � DivðS0VÞ; ð9:11:1Þ

Hext
t þ Hint

t ¼ hext
t þ hint

t � divðStvÞ: ð9:11:2Þ

In addition, we will make use of the natural but crucial assumption that the internal

entropy production is independent of the particular type of motion problem considered by

postulating that

hint
0 ¼ Hint

0 ð9:12:1Þ
Hint

t ¼ hint
t ; ð9:12:2Þ

see, e.g. Steinmann [47]. It will turn out in the sequel, that this assertion essentially

determines the connection between the constitutive relations of the spatial and the material

motion problem.

Remark 9.1: Alternatively, the balance of entropy can be derived from the energy balance

rather than being introduced as a mere definition. This approach has been suggested by Green

and Naghdi [14], [15] who interprete the balance of entropy as a natural consequence of the

invariance of working under changes of a thermal motion observer. A similar approach

has been followed for the material motion problem only recently by Kalpakides and

Dascalu [24].
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9.2 Mass specific version

9.2.1 Spatial motion problem

The mass specific counterpart of the above equations states, that the rate of change of the mass

specific entropy S ¼ S0=q0 be in equilibriumwith themass specific external entropy input �hh
ext

0 and

the mass specific internal entropy production �hh
int

0 which are introduced in the following way

�hh
ext

0 :¼ hext
0 � SDtq0 þm0S ¼ �Div �HHD þ �HH0 ð9:13:1Þ

�hh
int

0 :¼ hint
0 � 0: ð9:13:2Þ

The resulting mass specific balance of entropy

q0DtS ¼ �hh
ext

0 þ �hh
int

0 �m0S ð9:14Þ

which can be derived by subtracting S times the balance of mass (4.13) from the volume specific

balance of entropy (9.3) can be recast into the related alternative forms by applying the Piola

transforms �hh
ext

0 ¼ J�hh
ext

t and �hh
int

0 ¼ J�hh
int

t and the Euler theorem (3.21). Moreover, we can relate

the reduced entropy fluxes �HHD and �hhD defined through �HHD ¼ HD � SR and �hhD ¼ hD � Sr to the

classical entropy flux of the closed system hclosed
s and the entropy flux caused by additional

effects of the open system �hhopen
s

�HHD �N ¼ hclosed
0 þ �hhopen

0 ; ð9:15:1Þ
�hhD � n ¼ hclosed

t þ �hhopen
t : ð9:15:2Þ

Accordingly, the reduced entropy sources �HH0 ¼H0 � SR0 þrXS � R and
�HHt ¼Ht � SRt þrxS � r are given as the sum of the classical closed system entropy source

Hclosed
s and the additional open system contribution to the entropy source �HHopen

s

�HH0 ¼Hclosed
0 þ �HH

open

0 ;

�HHt ¼Hclosed
t þ �HH

open

t :
ð9:16Þ

For further elaborations, it proves convenient to set up relations between the reduced entropy flux
�HHD and the reduced non-mechanical energy flux �QQD as well as between the reduced entropy source
�HH0 and the reduced non-mechanical energy source �QQ0 in terms of the absolute temperature h

�HHD ¼
1

h
�QQD þ S ð9:17:1Þ

�HH0 ¼
1

h
�QQ0 þS0: ð9:17:2Þ

Thereby, the above equations can be understood as a generalization of the ideas of Cowin and

Hegedus [6] who have suggested to include the additional entropy source S0 accounting for

changes in entropy caused by changes in mass that are not considered implicitly through the

changes in energy �QQ0. To keep the underlying theory as general as possible, we suggest to

additionally include an extra entropy flux S accounting for the in- or outflux of entropy that is

not implicitly included in the reduced energy flux term �QQD. This extra entropy flux resembles

the exposition in Maugin [36] x3.3. and x4.7 and has to be determined by a constitutive

equation. Both, the additional entropy flux and source S and S0, which we shall summarize in

the term s0 ¼ �Div SþS0 in the sequel, can be understood as an explicit representation of the

exchange of entropy with the ‘‘outside world’’. Notice, however, that these two terms are not

included in the ‘‘theory of volumetric growth’’ by Epstein and Maugin [10], who relate the

reduced entropy flux and source to the reduced non-mechanical energy flux and source as
�HHD ¼ �QQD=h and �HH0 ¼ Q̂Q0=h with Q̂Q0 ¼ Q0 � SR. We now turn to the evaluation of the above
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stated second law of thermodynamics by recasting it into an appropriate form of the dissipation

inequality, a statement that places further restrictions on the form of the constitutive response

functions. For this purpose, we shall introduce the dissipation rate �dd0 as the internal entropy

production weighted by the absolute temperature as �dd0 :¼ h �hh
int

0 � 0. With the help of

Eqs. (9.17) as �HHD ¼ �QQD=hþ S and �HH0 ¼ �QQ0=hþS0 and the appropriate transformations3 the

dissipation rate can be reformulated yielding the spatial motion version of the Clausius–Duhem

inequality in an internal energy based fashion

�dd0 ¼ �ppint
0 � q0 Dt½I � hS� �m0½I � hS� � q0S Dth� s0h� �QQD � rX ln h � 0: ð9:18Þ

By making use of the appropriate Legendre–Fenchel transform introducing the Helmholtz free

energy W ¼ I � hS, we end up with classical free energy based version of the Clausius–Duhem

inequality

�dd0 ¼ �PPt : DtF� v � �bbint
0 � q0 DtW�m0W� q0S Dth� s0h� �QQD � rX ln h � 0: ð9:19Þ

This formulation is particularly useful when the temperature h rather than the entropy S is used

as independent variable. Recall, that for reasons of notational comparability we have included

the internal force contribution v � �bbint
0 ¼ 0 and the term reflecting the convective effects of

growth m0W ¼ 0 keeping in mind that both vanish identically for the spatial motion problem.

In classical thermodynamics, the Clausius–Duhem inequality (9.19) is typically decomposed

into a local and a conductive contribution �dd
loc

0 and �dd
con

0

�dd
loc

0 ¼ �PPt : DtF� v � �bbint
0 � q0 DtW�m0W� q0S Dth� s0h � 0 ð9:20:1Þ

�dd
con

0 ¼ ��QQD � rX ln h � 0: ð9:20:2Þ

The conductive term �dd
con

0 � 0 represents the classical Fourier inequality while the remaining

local term �dd
loc

0 � 0 is typically referred to as Clausius–Planck inequality. Both are required to

hold separately as a sufficient condition for �dd0 � 0.

9.2.2 Material motion problem

For the material motion problem, the rate of change of the mass specific entropy S ¼ St=qt is

balanced with the mass specific material motion external entropy input �HH
ext

t and the internal

entropy production �HH
int

t

�HH
ext

t :¼ Hext
t � S dtqt þMtS ¼ �div �hhd þ �HHt; ð9:21:1Þ

�HH
int

t :¼ Hint
t � 0: ð9:21:2Þ

The mass specific entropy balance of the material motion problem

qt dtS ¼ �HH
ext

t þ �HH
int

t �MtS ð9:22Þ

can be derived by subtracting S times the balance of mass (4.13) from the volume specific

balance of entropy (9.8). Again, we could derive the alternative versions of the above equation

through the corresponding Piola transforms �HH
ext

t ¼ j�HH
ext

0 and �HH
int

t ¼ j�HH
int

0 and the Euler the-

orem (3.21). In complete analogy to the spatial motion problem, the reduced entropy fluxes
�hhd ¼ hd � Sr and �HHd ¼ Hd � SR can be defined through the corresponding Neumann

boundary conditions as

3 �dd0 ¼ m0hSþ hq0 DtS� h �hh
ext

0

¼ m0hSþ hq0 DtS� �qqext
0 � s0h� �QQD � rX ln h

¼ m0hSþ q0 Dt½hS� � q0S Dthþ �ppint
0 �m0I � q0DtI � s0h� �QQD � rX ln h
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�hhd � n ¼ Hclosed
t þ �HHopen

t ; ð9:23:1Þ
�HHd �N ¼ Hclosed

0 þ �HHopen

0 ð9:23:2Þ

while the reduced entropy sources are given as follows:

�HHt ¼Hclosed
t þ �HHopen

t ; ð9:24:1Þ
�HH0 ¼Hclosed

0 þ �HHopen

0 : ð9:24:2Þ

Subsequently, we assume that the reduced material entropy flux �hhd and the reduced entropy

source �HHt can be related to the corresponding energy flux �qqd and source �QQt through the

absolute temperature h. Generalizing the ideas of Cowin and Hegedus [6], we shall again

include the entropy in- or outflux s and the corresponding entropy sourceSt accounting for the

explicit entropy exchange with the ‘‘outside world’’,

�hhd ¼
1

h
�qqd þ s ð9:25:1Þ

�HHt ¼
1

h
�QQt þSt; ð9:25:2Þ

whereby this extra external entropy input will be summarized in the term St ¼ �div sþSt.

Next, we can again reinterpret the balance of entropy by introducing the nonnegative dissi-

pation rate �DDt as �DDt :¼ h �HH
int

t � 0. By making use of Eqs. (9.25), we can transform the dissi-

pation rate4 into the internal energy based version of the Clausius–Duhem inequality,

�DDt ¼ �PP
int

t � qtdt½I � hS� �Mt½I � hS� � qtS dth� Sth� �qqd � rx ln h � 0: ð9:26Þ

Finally, the introduction of the corresponding Legendre–Fenchel transform W ¼ I � hS renders

the more familiar free energy based version of the Clausius–Duhem inequality,

�DDt ¼ �ppt : dtf � V � �BBint
t � qt dtW�MtW� qtS dth� Sth� �qqd � rx ln h � 0 ð9:27Þ

which can again be additively decomposed into a local and a conductive contribution �DD
loc

t and
�DD

con

t

�DD
loc

t ¼ �ppt : dtf � V � �BBint
t � qt dtW�MtW� qtS dth� Sth ð9:28:1Þ

�DD
con

t ¼ ��qqd � rx ln h: ð9:28:2Þ

However, neither the material motion counterpart of the Fourier inequality �DD
con

t , nor of the

material motion Clausius–Planck inequality �DD
loc

t can be required to become nonnegative

independently, but rather �DDt ¼ �DD
loc

t þ �DD
con

t � 0.

9.2.3 Spatial vs. material motion problem

In the balance of entropy, the influence of the ‘‘outside world’’ is reflected through the extra

entropy fluxes S and s and the entropy sources S0 and St for the spatial and the material

motion problem, respectively. While the extra entropy fluxes are related through the appro-

priate Piola transforms,

s ¼ jS � f�t S ¼ Js � F�t ð9:29:1; 2Þ

4 �DDt ¼ MthSþ hqt dtS� h �HH
ext

t

¼ MthSþ hqt dtS� �QQ
ext

t � Sth� �qqd � rx ln h

¼ MthSþ qt dt½hS� � qtS dthþ �PP
int

t �MtI � qt dtI � Sth� �qqd � rx ln h:
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the transformations between the extra entropy sources

St ¼ jS0 S0 ¼ JSt ð9:30:1; 2Þ

and the spatial and material motion extra external entropy input s0 and St

St ¼ st ¼ j s0 s0 ¼ S0 ¼ J St ð9:31:1; 2Þ

are given in terms of the corresponding Jacobians. Next, by comparing the spatial and the

material motion entropy balance in its mass specific format (9.14) and (9.22) with the help of

the mass specific version of Reynold’s transport theorem (4.14), we find the following

identities which again take a remarkably similar structure as for the volume specific case

compare (9.11).

�hh
ext

0 þ �hh
int

0 ¼ �HH
ext

0 þ �HH
int

0 � Div S0Vð Þ ð9:32:1Þ
�HH

ext

t þ �HH
int

t ¼ �hh
ext

t þ �hh
int

t � div Stvð Þ: ð9:32:2Þ

With the help of the definitions of the external entropy input of the spatial and the material

motion problem hext
0 in (9.2) and Hext

0 in (9.7) and the essential assertion that hint
0 ¼ Hint

0 and

Hint
t ¼ hint

t stated in Eq. (9.12), the above identities yield the fundamental relations between the

spatial and the material entropy fluxes

�hhD ¼ �hhd � Stv �HHd ¼ �HHD � S0V: ð9:33:1; 2Þ

Recall the relation between the spatial and material non-mechanical energy fluxes introduced in

(8.30) as �qqD ¼ �qqd � Ctv and �QQd ¼ �QQD � C0V. With the help Eqs. (9.17) and (9.25) relating

corresponding energy and entropy fluxes through the temperature as �HHd ¼ �QQd=hþ S and
�hhd ¼ �qqd=hþ s and the relations between the extra entropy fluxes S and s as stated in Eq. (9.29),

we can easily identify the configurational energy increase Cs as the entropy density Ss weighted

by the absolute temperature h

Ct ¼ hSt C0 ¼ hS0 ð9:34:1; 2Þ

This interpretation enables us to formulate the following relations between the external entropy

input, the external non-mechanical energy, the external mechanical energy and the internal

mechanical energy of the spatial and the material motion problem

�HH
ext

0 ¼ �hh
ext

0 þ Div S0Vð Þ
�QQ

ext

0 ¼ �qqext
0 þ Div hS0Vð Þ

�PP
ext

0 ¼ �ppext
0 þ Div K0 þW0½ �Vð Þ

�PP
int

0 ¼ �ppint
0 þ Div W0Vð Þ

�hh
ext

t ¼ �HH
ext

t þ div Stvð Þ

�qqext
t ¼ �QQ

ext

t þ div hStvð Þ

�ppext
t ¼ �PP

ext

t þ div Kt þWt½ �vð Þ

�ppint
t ¼ �PP

int

t þ div Wtvð Þ

: ð9:35Þ

Moreover, with the relation between the non-mechanical energy fluxes (8.30) and the inter-

pretation of the configurational energy increase (9.34), we can easily relate the spatial and the

material motion version of the conductive dissipation �DD
con

0 and �dd
con

t and set up an equivalent

relation between the local dissipation terms �DD
loc

0 and �dd
loc

t

j �DD
con

0 ¼ �dd
con

t þ Strxh � v
J �dd

con

t ¼ �DD
con

0 þ S0rXh � V
j �DD

loc

0 ¼ �dd
loc

t � Strxh � v;
J �dd

loc

t ¼ �DD
loc

0 � S0rXh � V:
ð9:36Þ

Remark 9.2: Note, that at this stage, the identification of the reduced entropy fluxes and sources

in terms of the reduced non-mechanical energy fluxes and sources, the absolute temperature
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and the additional extra terms �HHd ¼ �QQd=hþ S, �hhd ¼ �qqd=hþ s and �HH0 ¼ �QQ0=hþSs as

introduced in Eqs. (9.17) and (9.25) is a mere constitutive assumption. Nevertheless, for

particular constitutive model problems, the postulated relations can be verified through the

evaluation of the dissipation inequality according to Liu [31], andMüller [38], see also Liu [32]. It

will turn out that in most cases, Eqs. (9.17) and (9.25) are justified with S ¼ 0, s ¼ 0 andSs ¼ 0.

However, assuming this result from the outset might be too restrictive for complex constitutive

models when diffusive processes other than heat phenomena are included, see Epstein and

Maugin [10].

Remark 9.3: At first sight, the above derivations might seem to be closely related to the ‘‘theory

of mixtures’’, see, e.g. Truesdell and Toupin [50], Bowen [3], Ehlers [8], de Boer [2], Kühn and

Hauger [27], Diebels [7]. Indeed, up to the second law of thermodynamics, the balance equa-

tions for one single constituent of a mixture are formally almost identical to the balance

equations for open systems. However, in the theory of mixtures, the dissipation inequality is

usually stated for the mixture as a whole rather than for each individual constituent. The latter

approach, which is indeed a sufficient condition, is thus felt to be too restrictive in most

practical applications, see, e.g. Bowen [3]. Nevertheless, here, we shall focus on the open system

itself rather than aiming at characterizing the other constituents representing the ‘‘outside

world’’, since in our case, the constituents are not superposed at each spatial point as in the

‘‘theory of mixtures’’ but are rather spatially separated. In this context, recall the example of

rocket propulsion due to combustion which would typically never be modelled within the

mixture theory. In the present case, the influence of the ‘‘outside world’’ is represented through

the extra terms s0 and St in the spatial and the material motion dissipation inequality. In what

follows, we shall apply the dissipation inequalities (9.20) and (9.28) to derive constitutive

equations for the reduced momentum fluxes �PPt and �ppt, the entropy S and the internal forces
�bbint

0 and �BBint
t . In addition, the evaluation of the dissipation inequalities places further

restrictions related to the extra entropy terms s0 and St. The underlying procedure will be

highlighted in detail for the simple model problem of thermo-hyperelasticity in the

following chapter.

10 Thermo-hyperelasticity

We are now in the position to exploit the second law of thermodynamics in the form of the

Clausius–Duhem inequality for the thermo-hyperelastic case. We will thus restrict ourselves to

a locally reversible model problem for which all the dissipation is caused exclusively by heat

conduction and possibly by an additional contribution of the ‘‘outside world’’.

10.1 Spatial motion problem

For the spatial motion problem, we shall assume, that the free energy density W0 is a linear

function of the material density q0 and can thus be multiplicatively decomposed in the fol-

lowing way

W0 ¼ q0W: ð10:1Þ

Thereby, the free energy density W can be expressed in terms of the material motion defor-

mation gradient F and the absolute temperature h with a possible explicit dependence on the
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material placement X. Within the thermodynamics of open systems, the material density q0 is

allowed to vary in space and time is thus introduced as function of the material placement X

and the time t.

W ¼ WðF; h; XÞ q0 ¼ q0ðX; tÞ: ð10:2:1; 2Þ

Consequently, the material time derivative of the free energy density can be expressed as

DtW ¼ DFW : DtFþ DhW Dth: ð10:3Þ

The evaluation of the Clausius–Planck inequality (9.20.1)

�dd
loc

0 ¼ �PPt � q0DFW
� �

: DtF� v � �bbint
0 �m0W� q0Sþ q0 DhW½ �Dth� s0h � 0 ð10:4Þ

with m0 ¼ 0 defines the reduced first Piola–Kirchhoff stress tensor �PPt and the mass specific

entropy S as thermodynamically conjugate variables to the spatial motion deformation gra-

dient F and the absolute temperature h

�PPt ¼ q0DFW S ¼ �DhW �bbint
0 ¼ 0: ð10:5:1–3Þ

From the dissipation inequality (10.4) we conclude, that the reduced internal forces �bbint
0 of the

spatial motion problem vanish identically. Furthermore, similar to Cowin and Hegedus [6], we

are left with the inequality �s0h ¼ �S0h � 0, which places additional restrictions on the con-

stitutive assumptions for the extra external entropy input s0 through the extra entropy flux S

and the extra entropy source S0, the trivial choice being s0 ¼ 0.

10.2 Material motion problem

In a similar way, the free energy density Wt of the material motion problem can be assumed to

be representable by the free energy W weighted by the spatial density qt

Wt ¼ qtW: ð10:6Þ

Within the material motion context, the free energy W consequently depends on the material

motion deformation gradient f , the absolute temperature h and the material placement

U ¼ UðxÞ, representing a field in spatial parametrization. The spatial density qt is thus a function

of the material motion deformation gradient f , the material placement U and the time t.

W ¼ Wðf ; h;UÞ qt ¼ qtðf ;U; tÞ ð10:7:1; 2Þ

The spatial time derivative of the free energy W thus takes the following form

dtW ¼ dfW : dtf þ dhW dthþ @UW � dtU: ð10:8Þ

Recall, that dtU ¼ V by definition, compare (3.11). The evaluation of the dissipation inequality

of the material motion problem expressed by Eq. (9.36) as �dd
loc

t ¼ �DD
loc

t � StrXh � V

�dd
loc

t ¼ �ppt � qtdfW
� �

: dtf � �BBint
t � qtSrXhþ qt@UW

� �
� V �MtW

� qtSþ qt dhW½ �dth� Sth ð10:9Þ

with MtW ¼ W@Uqt � V þWdfqt : dtf renders the definition of the reduced momentum flux �ppt,

the mass specific entropy S and the reduced internal forces �BBint
t of the material motion problem.

�ppt ¼ qtdfWþWdfqt S ¼ �dhW �BBint
t ¼ qtSrXh� qt@UW�W@Uqt: ð10:10:1–3Þ

Again, the remaining inequality �sth ¼ �Sth � 0 can be used to define constitutive assump-

tions for the extra external entropy input St in terms of the extra entropy flux s and the extra

entropy source St.
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10.3 Spatial vs. material motion problem

The relations between the balance of momentum of the spatial motion problem and the ma-

terial motion problem have already been sketched in Sect. 6.1.3. They are characterized by the

complete pull back of the balance of physical momentum onto the material manifold. For a

specific choice of constitutive relations, e.g. the presented thermo-hyperelastic material, the

transitions between the spatial and the material motion problem can be further specified,

compare, e.g. Maugin [34] or also Steinmann [47]. Equation (6.3), the spatial motion mo-

mentum balance with material reference and material parametrization

Dtp0 ¼ Divð �PPt
D þ p� RÞ þ �bb0 þR0p�rXp � R ð10:11Þ

serves as starting point for this derivation. Thereby, we have made use of the definitions

Pt
D ¼ �PPt

D þ p� R and b0 ¼ �bb0 þR0p�rXp � R. The pull back of the momentum

rate term, the momentum flux term and the momentum source term yields the following

results:

� jFt � Dt p0 ¼ dt �jFt � p0

� �
þ div qtdfKð Þ � qt@UK ; ð10:12:1Þ

� jFt � Div Pt
D ¼ div �jFt � �PPt

D � Ft þ P� r
� �

þ j �PPt : rXFþ j p� R½ � : rXF; ð10:12:2Þ

� jFt � b0 ¼ �jFt � �bb0 þRtP�rxP � r� j p� R½ � : rXF: ð10:12:3Þ

Herein, we have applied the transport theorem (3.22) and the appropriate Piola transforms.

Furthermore, the definition of the dynamic momentum flux �PPt
D ¼ �PPt and the kinematic

compatibility condition rXFt : �PPt ¼ �PPt : rXF have been included. Next, we shall assume the

existence of a potential W0 ¼ q0W according to the thermo-hyperelastic model problem ad-

vocated in the present chapter. Consequently, the second term of the pull back of the diver-

gence of the momentum flux can be further specified

W ¼ WðF; h; XÞ j �PPt : rXF ¼ divðqtWFtÞ þ qtSrXh� qt@UW: ð10:13:1; 2Þ

By introducing the material motion momentum density Pt, the material motion momentum flux

�ppt
d and the material motion source �BBt as

Pt ¼ �jFt � p0; ð10:14:1Þ
�ppt

d ¼ �jFt � �PPt
D � Ft þ qtWFt � qtdfK ; ð10:14:2Þ

�BBt ¼ �jFt � �bb0 þ qtSrXhþ qt@U½K �W�; ð10:14:3Þ

we end up with the balance of momentum of the material motion problem with spatial refer-

ence and spatial parametrization (6.16),

dtPt ¼ divð�ppt
d þ P� rÞ þ �BBt þRtP�rxP � r; ð10:15Þ

whereby we have made use of the definitions pt
d ¼ �ppt

d þ P� r and Bt ¼ �BBt þRtP�rxP � r.
Again, due to the specific choice of the source terms, we can observe the remarkable duality of

Eqs. (10.11) and (10.15).

11 Conclusion

We have derived a general framework for the thermodynamics of open systems. The provided

set of equations is believed to be particularly useful for problems typically encountered in the

fields of chemo- and biomechanics. In contrast to most existing formulations for open systems
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in which an interaction with the environment takes part exclusively via the exchange of source

terms, we have allowed for an additional in- or outflux of matter keeping the underlying theory

as general as possible. Consequently, not only the balance of mass, but also all the other

balance equations had to be reconsidered. To clarify the influence of the non-constant amount

of mass, we have introduced the notions of ‘‘volume specific’’ and ‘‘mass specific’’ format.

Thereby, the latter is believed to be of particular interest, since the mass specific balance

equations were set up in complete analogy to the classical thermodynamical case.

Throughout the entire derivation, we have followed a two-step strategy. First, we have

formally introduced the balance equations for the material motion problem in complete analogy

to the well-known balance equations of the classical spatial motion problem. Thereby, the

quantities introduced in the material motion context, the related fluxes and sources, have

initially been introduced through mere definitions guided by duality arguments in comparison to

the spatial motion setting. In a second step, we focused on bridging the gap between the spatial

and the material motion problem. For this purpose, the first and second law of thermodynamics

have been further elaborated to yield additional useful relations between various spatial and

material motion fluxes and sources. These relations give rise to further physical interpretations

of the material motion problem which is believed to be particularly well-suited to characterize

the nature of open systems, especially in the presence of material inhomogeneities.
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