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Summary. Looking at rational mixture theories within the context of a new perspective, this work aims to

put forward a proposal for an Eshelbian approach to the nonlinear mechanics of a constrained solid-fluid

mixture, made up of an inhomogeneous poroelastic solid and an inviscid compressible fluid, which do not

undergo any chemical reaction.

1 Introduction

A binary solid-fluid mixture is usually thought of as a couple of body manifolds, BS and BF ,

embedded into the three-dimensional Euclidean space so as to occupy, in the course of their

independent motions, a common smooth region of the physical environment (see, e.g., Atkin

and Craine [1], Bowen [2], Rajagopal and Tao [24], Truesdell [28], [29]). If a smooth region of the

space is chosen as a reference shape, which need not ever be occupied by the solid constituent,

then a motion of BS can be described as a time sequence of mappings which carry the solid

manifold from the reference to the current shape, whereas the motion of the fluid constituent can

be conceived as a time sequence of embeddings of BF into the three-dimensional physical space.

By virtue of such a customary fundamental assumption, any place in the current shape of the

mixture is simultaneously occupiedby amaterial point belonging to each constituent.Henceforth,

themotionof the fluid-bodymanifoldmaybedescribedby taking into account that anyfluidpoint

is naturally associatedwith the 1-parameter family of reference places occupied by the solid points

that are currently overlapped with it (see Wilmanski [31]–[33]). Accordingly, both the Eulerian

fluid and solid velocity fields can be pulled back to the linear vector space associated with the

reference shape of the solid constituent (Sect. 2), and a referential description of all relevant fluid

properties can be furthermore introduced and motivated (Sect. 3).

In order to derive the required number of field balance equations and boundary conditions

which govern the dynamics of unconstrained solid-fluid mixtures (Sect. 4), a suitable expression

for the power expended by internal and external actions on any admissible test velocity field is

postulated within the framework of a first-order gradient theory (Sects. 4.1–4.3), and the thorny

issue of splitting the overall traction applied on the boundary of the mixture is briefly addressed

(Sect. 4.3).

Recalling the duality highlighted by d’Alembert, the principle of virtual power (see, e.g.

Di Carlo [11], Germain [15], [16], Maugin [19]) is finally used as a main tool to introduce the

actions which expend power on the kinematical descriptors admissible in the theory [23],
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leading to consistent straightforward definitions of peculiar Cauchy-like [28], Piola-like [31] and

Eshelby-like stress tensors. In this way we extend the notion of material action (see, e.g. Eshelby

[12]–[14], Maugin [20], [21]) to any rational theory of solid-fluid mixtures.

As the investigation of the historical development of the theory of porous media seems to

point out (de Boer [6], [8]), a mathematical theory of mixtures, enriched by the concept of

volume fractions, also provides a suitable framework for the development of a consistent

macroscopic theory of porous solids saturated with fluids (Bowen [3], [4], de Boer [7], [8],

Wilmanski [33]).

If the saturation constraint is satisfied (Klisch [17], Svendsen and Hutter [26]), i.e. the volume

occupied by the constituents equals the volume available to the mixture, then the stress re-

sponse is determined by the motion except for an arbitrary contribution, due to the pressure

reaction which arises in the material so as to maintain each constituent in contact with the other

one. Within the framework of a variational theory (Sects. 4.4–4.7), the saturation pressure can

be truly interpreted as a Lagrangian multiplier in the expression of the strain-energy density per

unit volume of the mixture [9], so as to extend the concept of effective stress and derive, as a

result of the theory, the splitting rule which governs the distribution of such a pressure among

the constituents of a saturated solid-fluid mixture.

2 Kinematics

Let us focus our attention on the kinematics of a binary mixture B, consisting of two smooth

three-dimensional1 material manifolds,

B :¼ fBS;BFg: ð1Þ

In order to avoid confusion between particles which belong to any constituent of the mixture,

we refer to material points Xa 2 Ba (Fig. 1) as a-points, with a 2 S; Ff g.
By assumption [22], there exists a smooth embedding of the body manifold BS into the three-

dimensional Euclidean space E,

KS : BS ! E; ð2Þ

which associates any material S-point with a reference place. As the embedding KS does not

depend on time, a smooth motion of BS may be simply thought of as a time sequence of

mappings,

vS �; tð Þ : B ! E; ð3Þ

which carry the body manifold BS from the reference shape B 	 E to the current shape

vSðB; tÞ 	 E. Similarly, a smooth motion of BF may be described by a time sequence of

embeddings,

vF �; tð Þ : BF ! E; ð4Þ

which map the body manifold BF onto the current shape vF BF; tð Þ 	 E.

According to the classical theory of mixtures, any place x 2 Bt in the current shape

Bt :¼ fvSðKSðBSÞ; tÞg
\

fvFðBF; tÞg ð5Þ

1 We definitely do not deal with Cantor dust (fluid drops or solid slivers) and fractals such as Menger

sponges and Sierpinski gaskets.
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is simultaneously occupied by a material point of each constituent, XS 2 BS and XF 2 BF , such

that

x ¼ vS KSðXSÞ; tð Þ ¼ vFðXF ; tÞ: ð6Þ

The Eulerian velocity fields

vað�; tÞ : x 7! va x; tð Þ; a 2 S; Ff g ð7Þ

associate the velocity pair vS x; tð Þ; vF x; tð Þ with the place currently occupied by XS and XF . In

particular, as the reference shape B of the material manifold BS does not depend on time, the

velocity of any S-point can be easily obtained by taking the partial derivative of the motion vS

with respect to time,

vS x; tð Þ :¼ DS

Dt
vS �; tð Þ �KS½  XSð Þ ¼ @vS

@t
X; tð Þ; ð8Þ

where X ¼ KSðXSÞ and x ¼ vS X; tð Þ.
As we exclude a priori the possibility that a three-dimensional region of the reference shape

can collapse under the motion vS,

det FS > 0; FS :¼ Grad vS ¼ @vS

@X
; ð9Þ

there exists a smooth inverse mapping,

v�1
S �; tð Þ : Bt ! E; ð10Þ

which satisfies the trivial identity

X ¼ v�1
S vS X; tð Þ; tð Þ; for any X 2 B: ð11Þ

Denoting by VS the referential description of the partial derivative of v�1
S with respect to time

[20],
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Fig. 1. Kinematics of a binary solid-

fluid mixture
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VS �; tð Þ : X 7!VS X; tð Þ :¼ @v�1
S

@t
x; tð Þ; ð12Þ

it can be easily shown that the following property holds:

I ¼ @v�1
S

@x
� vS

� �
@vS

@X
¼) grad v�1

S

��
x;t

¼ Grad vSð Þ�1
���
X;t
: ð13Þ

Moreover, we notice that the material S-derivative of the identity (11) leads to the further

remarkable property

FSVS þ @vS

@t
¼ 0; ð14Þ

which asserts that VS is just the opposite of the pull-back of vS.

Bearing in mind the identity (14) and the following definition:

Grad FS :¼ Grad Grad vSð Þ; ð15Þ

we can furthermore deduce that

Grad
@vS

@t
¼ � Grad FSð ÞVS � FS Grad VSð Þ: ð16Þ

In order to deal with a description of the motion of F-points through the reference shape of

the solid constituent, we notice that any F-point which belongs to the mixture at time t, namely

XF 2 v�1
F Bt; tð Þ 	 BF, interacts with a 1-parameter family of S-points, moving along the curve

v�1
S vF XF ; �ð Þ; �ð Þ : t 7!X; ð17Þ

at the velocity wF X; tð Þ, defined by

vF x; tð Þ ¼ FS X; tð Þ wF X; tð Þ þ vS x; tð Þ; ð18Þ

with x ¼ vF XF; tð Þ ¼ vS X; tð Þ 2 Bt.

Finally, we introduce the velocity field VF, which identically meets the requirement

vF x; tð Þ þ FS X; tð Þ VF X; tð Þ ¼ 0; ð19Þ

such that

VF � VS ¼ �wF: ð20Þ

With the aim to sketch out the role played in the theory by the velocity fields VS and VF [23], a

few concluding remarks can be made.

Let us consider a migrating surface which envelops, at time t, a smooth region of the current

shape of the mixture, Vt ¼ c tð Þ 	 Bt. If such a surface moves independently of the solid

constituent, the time derivative of the integral of any smooth Eulerian scalar field u, following
the motion of the migrating surface, is given by the expression:

d

ds

Z
c sð Þ

u

8><
>:

9>=
>;

s¼t

¼ d

ds

Z
VS sð Þ

u

8><
>:

9>=
>;

s¼t

þ
Z

@Vt

u v � vSð Þ � n; ð21Þ

where v represents the independent velocity of the moving boundary, VS sð Þ the shape at time s
of the solid subbody associated with the smooth fixed region of the reference shape

V? ¼ v�1
S Vt; tð Þ, and n the outward normal to the migrating surface.

As the inverse mapping v�1
S carries c sð Þ onto c? sð Þ at any time s, denoting by w the velocity at

which the boundary @c? sð Þ moves through the reference shape B,
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w X; tð Þ ¼ F�1
S X; tð Þ v x; tð Þ � vS x; tð Þf g; ð22Þ

and by u? the referential description of the Eulerian scalar field u,

u? X; tð Þ ¼ det FS X; tð Þ u x; tð Þ; ð23Þ

we may also consider the alternative expression:

d

ds

Z
c? sð Þ

u?

8><
>:

9>=
>;

s¼t

¼ d

ds

Z
V?

S
sð Þ

u?

8><
>:

9>=
>;

s¼t

þ
Z

@V?
t

u?w � N; ð24Þ

where V?
SðsÞ ¼ V? for any s, and V?

t ¼ c? tð Þ ¼ V?
S tð Þ. If we introduce the velocity field V,

which identically meets the requirement

v x; tð Þ þ FS X; tð Þ V X; tð Þ ¼ 0; ð25Þ

such thatZ
@Vt

u v � vSð Þ � n ¼ �
Z

@V?
t

u? V � VSð Þ � N ¼
Z

@V?
t

u?w � N; ð26Þ

then we can deduce [10] that, at any time t, the integral of the partial time derivative of the

smooth scalar field u over Vt is given by the expression:

Z
Vt

@u
@s

 �
s¼t

¼ d

ds

Z
cðsÞ

u

8><
>:

9>=
>;

s¼t

�
Z

@Vt

uv � n ¼ d

ds

Z
c? sð Þ

u?

8><
>:

9>=
>;

s¼t

þ
Z

@V?
t

u?V � N: ð27Þ

Moreover, if we think of a fixed Eulerian surface @V 	 Bt, we notice that if the material

solid surface currently overlapped with @V expands, then the migrating surface associated with

@V by the inverse mapping v�1
S shrinks; conversely, if the material solid surface currently

overlapped with @V shrinks, then the associated surface expands,

Z
@V

vS � n ¼ �
Z

@V?
t

det FSð ÞVS � N; V?
t ¼ v�1

S ðV; tÞ: ð28Þ

3 Mass balance

Let us consider a subset of the solid material manifold, PS 	 BS, and denote by V?
S ¼ KSðPSÞ

its reference shape. At any given time t, the solid motion vS carries the material subbody Ps

from its reference shape V?
S to its current shape, VSðtÞ ¼ vSðV?

S; tÞ 	 Bt.

Focusing our attention on the solid constituent, we can properly introduce at least two different

mass densities per unit volume of the mixture, namely the smooth scalar fields .S and .?S, defined
in such a way that the solid-mass content of both VSðtÞ 	 Bt and V?

S 	 B equals the measure

MS Vtð Þ ¼
Z

VSðtÞ

.S ¼
Z
V?

S

.?S ; .?SðX; tÞ ¼ JSðx; tÞ.Sðx; tÞ; ð29Þ

where JSðx; tÞ ¼ det FSðX; tÞ and Vt ¼ VSðtÞ.
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If no phase transition between the constituents of the mixture is allowed, at any given time

s ¼ t, the value of the material S-derivative of MSðVsÞ vanishes for any VSðtÞ,

d

ds

Z
VSðsÞ

.S

8><
>:

9>=
>;

s¼t

¼
Z

VSðtÞ

@.S

@t
þ div ð.SvSÞ

� �
¼ 0; ð30Þ

leading to the following expression of the local conservation law:

@.S

@t
þ divð.SvSÞ ¼ 0: ð31Þ

Recalling the definition of the referential mass density (29), we may also notice that the

smooth scalar map .?S does not depend on time,

d

ds

Z
VSðsÞ

.S

8><
>:

9>=
>;

s¼t

¼ d

ds

Z
V?

S

.?S

8><
>:

9>=
>;

s¼t

¼
Z
V?

S

@.?S
@s

 �
s¼t

¼ 0; ð32Þ

and therefore the local conservation law (31) can be rewritten in the alternative form:

@.?S
@t

¼ 0: ð33Þ

Because of the overlapping between the two constituents, any smooth region of the current

shape of the mixture can also be associated with a fluid subbody; in particular, there exists a

subbody PF 	 BF such that VFðsÞ ¼ vFðPF ; sÞ, with VFðsÞ ¼ VSðsÞ at time s ¼ t. As a

consequence, we can state the integral conservation law

d

ds

Z
VFðsÞ

.F

8><
>:

9>=
>;

s¼t

¼
Z

VFðtÞ

@.F

@t
þ div ð.FvFÞ

� �
¼ 0; ð34Þ

which yields the local expression

@.F

@t
þ div ð.FvFÞ ¼ 0: ð35Þ

As the fluid-mass content of any smooth region of the current shape of the mixture,

Vt ¼ VFðtÞ 	 Bt, equals the measure [31]

MFðVtÞ ¼
Z

VFðtÞ

.F ¼
Z

V?
F
ðtÞ

.?F; ð36Þ

where .?F is the fluid-mass density per unit reference volume,

.?F X; tð Þ ¼ JS x; tð Þ.F x; tð Þ; ð37Þ

and

V?
FðtÞ ¼ v�1

S VFðtÞ; tð Þ 	 B; ð38Þ

by definition, at any given time t, the value of the material F-derivative ofMF Vsð Þ vanishes for
any Vt ¼ VFðtÞ,
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d

ds

Z
VFðsÞ

.F

8><
>:

9>=
>;

s¼t

¼
Z

V?
F
ðtÞ

@.?F
@t

þ Div .?FwF

� �� �
¼ 0; ð39Þ

leading to the following expression of the local conservation law:

@.?F
@t

þ Div .?FwF

� �
¼ 0: ð40Þ

Finally, let us think of both mass conservation laws (30) and (34) from a slightly different point

of view, referring to themotionof themixture as a single body [29]. In particular, let us assume that

any material point of the mixture as a whole moves at the given velocity

v :¼ nSvS þ nFvF ; ð41Þ

where na represents the mass fraction associated with the a-th constituent,

na :¼
.a

.
; a 2 S; Ff g; ð42Þ

i.e. the dimensionless ratio of the current mass density of the a-th constituent to the current

mass density of the mixture per unit volume,

. :¼ .S þ .F ; ð43Þ

such that, by definition,

nS þ nF ¼ 1: ð44Þ

Taking into account the assumptions (30) and (34), we find out that the following integral

conservation law of global mass holds for any smooth region of the current shape of the

mixture:

d

ds

Z
VSðsÞ

.S þ
Z

VFðsÞ

.F

0
B@

1
CA

8><
>:

9>=
>;

s¼t

¼
Z
Vt

@.
@t

þ div .vð Þ
� �

¼ 0; ð45Þ

where, as usual, Vt ¼ VSðtÞ ¼ VFðtÞ. Similarly, referring to the reference shape of the solid

constituent, we can write that

d

ds

Z
V?

S

.?S þ
Z

V?
F
ðsÞ

.?F

0
B@

1
CA

8><
>:

9>=
>;

s¼t

¼
Z
V?

t

@.?

@t
þ Div .?wð Þ

� �
¼ 0; ð46Þ

where .? is the mass density of the mixture per unit reference volume,

.? X; tð Þ :¼ .?S X; tð Þ þ .?F X; tð Þ ¼ JS x; tð Þ. x; tð Þ; ð47Þ

and

w :¼ nFwF : ð48Þ

As a general rule, we finally notice that the time derivative of the a-mass content

of any smooth region Vs 	 Bs, enveloped by a migrating surface which follows the

motion of the mixture as a whole, does not vanish at any time s ¼ t. This means that the

quantity
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d

ds

Z
Vs

.a

8><
>:

9>=
>;

s¼t

¼
Z
Vt

.
Dna

Ds

 �
s¼t

¼ �
Z

@Vt

.a va � vð Þ � n; ð49Þ

where the difference va � v represents the velocity of diffusion of the a-th constituent through

the mixture, may be non-vanishing.

4 Dynamics

4.1 Stress power

By assumption, any given place in the current shape of the mixture is simultaneously occupied

by both an S-point and an F-point (Fig. 1).

In order to describe their local interactions within the framework of a first-order gradient

theory, we assume that the stress power x, expended on any pair of smooth velocity fields

(vS; vF), is given by the expression [16]:

x :¼
X

a2 S; Ff g
pa � va þ ra � grad vað Þ: ð50Þ

According to the principle of material frame-indifference, the stress power expended on any

rigid-body velocity field,

vS x; tð Þ ¼ vF x; tð Þ ¼ wo tð Þ þ WðtÞ x � xoð Þ; WðtÞ 2 Skw; ð51Þ

vanishes for any choice of spatially uniform woðtÞ and WðtÞ,

wo �
X

a2 S; Ff g
pa þ W �

X
a2 S; Ff g

ra þ pa � x � xoð Þf g ¼ 0: ð52Þ

As a consequence, only the constitutive assumptions which meet the following preliminary

requirements,

skw rS þ rFð Þ ¼ O; ð53Þ

pS þ pF ¼ 0; ð54Þ

can be considered admissible in the theory; in particular, while the former restriction (53) states

that the sum of peculiar Cauchy-like stress tensors has to be symmetric, the latter (54) states

that the force exerted on any S-point by the overlapped F-point is just the opposite of the force

exerted on the F-point by the overlapped F-point.

4.2 Kinetic energy

Keeping in mind both definitions (43) and (41), and denoting the diffusion velocity of the a-th
constituent by da,
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dS :¼ vS � v ¼ nF vS � vFð Þ; ð55Þ

dF :¼ vF � v ¼ nS vF � vSð Þ; ð56Þ

we define the kinetic energy density per unit volume of the mixture, conceived as a single body

in motion at the velocity v, by the expression2

K :¼ 1

2
.v � v; ð57Þ

which results in the sum:

K ¼ .S.F

.S þ .F

vS � vF þ
X

a2 S; Ff g

1

2
.ava � nava ¼

¼ � 1

2

.S.F

.S þ .F

vF � vSð Þ � vF � vSð Þ þ
X

a2 S; Ff g

1

2
.ava � va ¼

¼ 1

2
. dS � dFð Þ þ

X
a2 S; Ff g

1

2
.ava � va: ð58Þ

Accordingly, the time derivative of the kinetic energy associated with any smooth region of the

current shape, enveloped by a migrating surface which follows the motion of the mixture as a

single body, equals the integral of the power expended by inertial forces on the mean velocity

field v,

d

ds

Z
Vs

1

2
.v � v

8><
>:

9>=
>;

s¼t

¼
Z
Vt

v � .a; a :¼ Dv

Ds

 �
s¼t

; ð59Þ

where the differential operator D
Ds denotes the material derivative following the motion of the

mixture as a single body.

It may be pointed out that, while the velocity of the centre of mass is given by the sum of

peculiar velocities va weighted by mass fractions na,

v � .a ¼
X

a2 S; Ff g
va � .aa; ð60Þ

as a general rule [28], the material derivative of v, following the motion of the mixture as a

single body, does not equal the mean of peculiar accelerations aa, associated with the over-

lapped a-points,

a ¼
X

a2 S; Ff g
naaa �

1

.
div .ada � dað Þ

 �
; aa :¼

Dava

Ds

 �
s¼t

; ð61Þ

where the differential operator Da

Ds denotes the material derivative following the a-motion.

Moreover, denoting by �rr the second-order tensor which takes into account the apparent stress

due to diffusive motions,

�rr :¼
X

a2 S; Ff g
.ada � da; ð62Þ

and recalling the property

2Alternative forms (and the associated drawbacks) are discussed in de Boer [8].
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na div �rr ¼ div na�rrð Þ � �rr grad na; 8 a 2 S;Ff g; ð63Þ

the expression (61) finally results in:

.Sa ¼ .SaS � div nS�rrð Þ þ .S.F

.S þ .F

aF � aSð Þ þ �rr grad nS; ð64Þ

.Fa ¼ .FaF � div nF�rrð Þ þ .S.F

.S þ .F

aS � aFð Þ þ �rr grad nF : ð65Þ

4.3 The principle of virtual power

So as to deduce the required number of local balance equations which govern the dynamics of

the mixture, we state that the total power expended vanishes on any conceivable smooth test

velocity field v̂va,

X
a2 S; Ff g

Z
Bt

.a f � að Þ � v̂va þ
Z
@Bt

nat � v̂va

 �
�

X
a2 S; Ff g

Z
Bt

pa � v̂va þ ra � grad v̂vað Þ
 �

¼ 0; ð66Þ

where f is the applied external force per unit mass of the mixture,

.f ¼
X

a2 S;Ff g
.af ; ð67Þ

and t the overall external boundary traction.

Keeping in mind that, for any a 2 S; Ff g,
ra � grad v̂va ¼ div rT

a v̂va
� �

� v̂va �div ra; ð68Þ
the integral equation (66) leads to the set of local equations:

div ra þ .af � pa ¼ .aa; ð69Þ

ran ¼ nat: ð70Þ

Consistently [28], taking the sum over a and recalling the requirements (53) and (54), it is

possible to show that the dynamics of the mixture as a single body results to be governed by the

equations

div r þ .f ¼ .a; ð71Þ

rn ¼ t; ð72Þ

with

r :¼
X

a2 S;Ff g
ra; r 2 Sym: ð73Þ

As the tricky question of splitting the overall applied boundary traction t (72) among the

constituents still stands as one of the greatest challenges that have to be faced up in order to put

mixture theories to use [24], it is worth recalling that, within the framework of variational

principles, boundary conditions are straightforwardly derived, as well as governing equations,

as a result of the theory. All conclusions drawn here might be consistently extended to higher-

order gradient theories, provided that a meaningful physical interpretation of further emerging

boundary conditions can be taken for granted [9]. Nevertheless, such an approach is far from

general (see, e.g. Reynolds and Humphrey [25]), as well as other available approaches [5], [24],

[33] do not exhaust the list of possibilities that need to be considered, for instance, within the

framework of biomechanical applications of mixture theories [27].
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Finally, bearing in mind the expressions (64) and (65), and denoting by ~rra and ~ffa, respec-

tively, the a-th peculiar stress tensor [2], [29], [30] and the external force per unit mass of the

a-th constituent,

~rra :¼ ra þ na�rr; ð74Þ

.a
~ffa :¼ .af þ .a aa � að Þ � pa �div na�rrð Þ; ð75Þ

Cauchy’s first law of motion (69) and the expression of the symmetric stress tensor (73)

respectively, result in

div ~rra þ .a
~ffa ¼ .aaa ð76Þ

and

r ¼
X

a2 S; Ff g
~rra � na�rrð Þ ¼

X
a2 S; Ff g

~rra � .ada � dað Þ: ð77Þ

4.4 Constitutive prescriptions: a variational approach

In order to investigate the configurational nature of hyperelastic interactions, let us assume that

there exists a strain-energy density per unit volume of the current shape of the mixture, such

that [9] the material time derivative of the strain-energy content, associated with any fit region

which follows the motion of the mixture,

d

ds

Z
Vs

W

8><
>:

9>=
>;

s¼t

¼
Z
Vt

@W

@t
þdiv Wvð Þ

� �
; ð78Þ

is equal to the stress power expended on the velocity pair (vS; vF),

d

ds

Z
Vs

W

8><
>:

9>=
>;

s¼t

¼
X

a2 S; Ff g

Z
Vt

pa � va þ ra �grad vað Þ: ð79Þ

As the previous integral definition holds for any choice of Vt 	 Bt, we can properly localize it

on the current shape of the mixture,

@W

@t
þ W div v þ v � grad W ¼

X
a2 S; Ff g

pa � va þ ra �grad vað Þ: ð80Þ

4.5 The configurational nature of interactions

Let us introduce a partial Piola-Kirchhoff stress tensor Ta for each constituent of the mixture

[31], such that, for any V 	 B,Z
V

Ta � Grad va ¼
Z
Vt

ra � grad va; Vt ¼ vS V; tð Þ; ð81Þ

i.e.

Ta ¼ JSraF
�T
S ; a 2 S; Ff g: ð82Þ
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By assumption, the time derivative of the stored energy associated with any fit region of the

reference shape, enveloped by a migrating surface which follows the motion of the mixture as a

whole, equals the power expended by internal actions,

d

ds

Z
Vs

?

JSW

8><
>:

9>=
>;

s¼t

¼
X

a2 S;Ff g

Z
V?

t

JSpa � va þ Ta �Grad vað Þ: ð83Þ

Bearing in mind the identity (27), let us consider the possibility to define a further set of

dynamical descriptors, ba and sa, which satisfy the identity

X
a2 S;Ff g

Z
B

JSpa � v̂va þ Ta �Grad v̂vað Þ þ
Z
@B

JSW V̂V � N ¼

¼
X

a2 S;Ff g

Z
B

sa � V̂Va þ ba �Grad V̂Va

� �
; ð84Þ

for any choice of smooth velocity fields V̂Va and v̂va, such that v̂va þ FSV̂Va ¼ 0 for any a 2 fS; Fg,
and V̂V ¼ nSV̂VS þ nFV̂VF . As a consequence, we obtain that

ba ¼ naJSW I � FT
STa; ð85Þ

sa ¼ Grad naJSWð Þ � Grad FSð ÞT
Ta � JSFT

Spa; ð86Þ

where ba represents the peculiar Eshelby stress tensor (see, e.g. Eshelby [12]–[14], Maugin [20],

[21]), associated with the a-th constituent of the mixture. Moreover, in order to meet the

requirement (53), it may be pointed out that the sum of peculiar stress tensors (85) needs to

be symmetric with respect to the right Cauchy-Green tensor CS ¼ FT
S FS (Quiligotti [23],

cf. Maugin [19]), i.e.,

skw bS þ bFð ÞCS½  ¼ O: ð87Þ

4.6 Unconstrained solid-fluid mixtures

So as to describe the macroscopic interactions exchanged by an inhomogeneous poroelastic

solid and a compressible inviscid fluid (Krishnaswamy and Batra [18], Rajagopal and Tao [24],

Svensen and Hutter [26]), we assume that the value of the strain-energy density, W x; tð Þ,
depends on the value of both the gradient of the S-motion, referred to the S-point which

occupies the current place x at time t, and the fluid-mass density per unit volume of the

mixture, referred to the overlapped F-point. Finally, as the solid body is assumed to be in-

homogeneous, a further dependence of the strain-energy density on reference places is taken

into account, i.e.,

W FS X; tð Þ; .F x; tð Þ;Xð Þ; X ¼ v�1
s x; tð Þ: ð88Þ

This hypothesis yields the following constitutive prescriptions for both p-like interactions:

pðuÞ
S ¼ nS � 1ð Þ grad FSð ÞT @W

@FS

þ W grad nS þ nS

@W

@.F

grad .F þ nS � 1ð ÞF�T
S

@W

@X
; ð89Þ

pðuÞ
F ¼ nF grad FSð ÞT @W

@FS

þ W grad nF þ nF � 1ð Þ @W

@.F

grad .F þ nFF�T
S

@W

@X
; ð90Þ

and the r-like interactions
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rðuÞ
F ¼ � .F

@W

@.F

� nFW

� �
I; ð91Þ

rðuÞ
S ¼ @W

@FS

FT
S þ nSWI: ð92Þ

It may be pointed out that, while the sum of p-like interactions satisfies the condition (54),

the requirement (53) should be met by taking into account that the stress tensor r results in

rðuÞ
S þ rðuÞ

F ¼ @W

@FS

FT
S þ .F

W

.F

� @W

@.F

� �
I: ð93Þ

Accordingly, the identity (85) leads to the following straightforward expressions for the

peculiar Eshelby stress tensors:

b
ðuÞ
S

¼ �JSFT
S

@W

@FS

; and b
ðuÞ
F ¼ JS.F

@W

@.F

I; ð94Þ

whose definitions seem to corroborate the importance of the role played by partial chemical

potentials within the context of solid-fluid mixture theories (see Bowen [2]–[4]). Finally, the

identity (86) yields the following expressions of s-like interactions:

sðuÞS ¼ JS

@W

@X
; and sðuÞF ¼ @W

@.F

Grad JS.Fð Þ; ð95Þ

for which the contributions given by partial derivatives of the strain-energy density with respect

to the state variables .F and FS are uncoupled.

4.7 The saturation constraint

So as to develop a consistent macroscopic theory of saturated poroelastic media (see, e.g.

Bowen [3], [4], Svendsen and Hutter [26], Klisch [17]), let us enrich the mathematical theory of

binary solid-fluid mixtures with the introduction of the concept of volume fractions,

ma :¼
.a

.̂.a
;

givenby thedimensionless ratio of themacroscopicmass density .a to themicroscopicmass density

.̂.a, which depends on the usual state variables (Fillunger, see de Boer [6], dell’Isola et al. [9]),

.̂.a FS X; tð Þ; .F x; tð Þ;Xð Þ; X ¼ v�1
S x; tð Þ: ð96Þ

A poroelastic solid infused with a compressible fluid is saturated if the solid skeleton is

perfectly permeated by the fluid, i.e. if the saturation constraint is satisfied,

mS þ mF � 1 ¼ 0: ð97Þ

As constraints are naturally associated with reactive actions, a saturation pressure p, which

does not expend power on any motion compatible with the constraint (97), arises in the

material so as to maintain each constituent in contact with the other one. We think of such a

pressure as a Lagrangian multiplier in the expression of the strain-energy density [9],

W þ p mS þ mF � 1ð Þ; ð98Þ

and generalize the effective stress principle, bearing in mind that

@mS

@FS

¼ �mS F�T
S þ mS

.S

@.̂.S

@FS

� �
; ð99Þ
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@mF

@FS

¼ � m2
F

.F

@.̂.F

@FS

; ð100Þ

@mS

@.F

¼ � m2
S

.S

@.̂.S

@.F

; ð101Þ

and

@mF

@.F

¼ mF

.F

1 � mF

@.̂.F

@.F

� �
: ð102Þ

Neglecting the dependence on X in (88) and (96) for the sake of simplicity, we find out the

following expressions of p-like interactions:

pðcÞ
S

¼ p̂pðuÞ
S

þ pmF

nS

.F

1 � mF

@.̂.F

@.F

� m2
S

mF

.F

.S

@.̂.S

@.F

� �
grad .F

� pmS nS � 1ð Þ grad FSð ÞT
F�T

S þ mS

.S

@.̂.S

@FS

þ m2
F

mS

1

.F

@.̂.F

@FS

� �
; ð103Þ

pðcÞ
F ¼ p̂pðuÞ

F þ p nF � 1ð Þ mF

.F

1 � mF

@.̂.F

@.F

� m2
S

mF

.F

.S

@.̂.S

@.F

� �
grad .F

� pmSnF grad FSð ÞT
F�T

S þ mS

.S

@.̂.S

@FS

þ m2
F

mS

1

.F

@.̂.F

@FS

� �
; ð104Þ

where p̂pðuÞ
S

and p̂pðuÞ
F are given by the general relations (89) and (90), assuming that the partial

derivative of W with respect to X vanishes, i.e., that the value of the stored energy density (88)

does not explicitly depend on X.

Furthermore, the r-like interactions result in the following expressions:

rðcÞ
F ¼ r̂rðuÞ

F � pmF 1 � mF

@.̂.F

@.F

� m2
S

mF

.F

.S

@.̂.S

@.F

� �
I; ð105Þ

rðcÞ
S ¼ r̂rðuÞ

S � pmS F�T
S þ mS

.S

@.̂.S

@FS

þ m2
F

mS

1

.F

@.̂.F

@FS

� �
FT

S ; ð106Þ

where r̂rðuÞ
S

and r̂rðuÞ
F are derived, respectively, by the relations (92) and (91).

As a general result, it may be pointed out that the saturation pressure is distributed among the

constituents proportionally to their volume fractions only if they are microscopically incom-

pressible [9], i.e., if the value of microscopic mass densities .̂.a x; tð Þ is independent of the value of
both the macroscopic fluid-mass density (.F x; tð Þ) and the gradient of the S-motion (FS X; tð Þ).

Finally, we get the expressions of partial Eshelby stress tensors,

b
ðcÞ
F ¼ b̂b

ðuÞ
F þ pmFJS 1 � mF

@.̂.F

@.F

� m2
S

mF

.F

.S

@.̂.S

@.F

� �
I; ð107Þ

b
ðcÞ
S ¼ b̂b

ðuÞ
S þ pmSJSFT

S F�T
S þ mS

.S

@.̂.S

@FS

þ m2
F

mS

1

.F

@.̂.F

@FS

� �
; ð108Þ

and s-like interactions,

sðcÞS ¼ ŝsðuÞS ¼ 0; ð109Þ
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sðcÞF ¼ ŝsðuÞF þ p
mF

.F

1 � mF

@.̂.F

@.F

� m2
S

mF

.F

.S

@.̂.S

@.F

� �
Grad JS.Fð Þ; ð110Þ

where b̂b
ðuÞ
a and ŝsðuÞa are derived, respectively, by the relations (94) and (95).

5 Conclusions

In order to put forward a proposal for an Eshelbian approach to a first-order gradient theory of

constrained solid-fluid mixtures, the Eulerian velocity fields associated with each of the con-

stituents have been pulled back to the reference shape of the solid one.

Using the principle of virtual power as a main tool, further dynamical descriptors have been

introduced, by duality, and the role that they play in the theory has been sketched out within

the framework of a variational approach to the dynamics of both unconstrained inhomoge-

neous and saturation-constrained homogeneous poroelastic solids, infused with compressible

inviscid fluids.
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