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Abstract
The iodination of aromatic compounds using a simple and benign iodinating agent such as molecular iodine (I2) under 
oxidant free mild conditions is a difficult and highly important task in organic synthesis since aryl iodides are the highly 
reactive starting materials in a variety of organic transformations. We have developed a mild and effective method for the 
aromatic iodination using challenging iodinating agent, I2 under the catalytic performance of ammonium acetate (NH4OAc). 
A variety of aromatic compounds are converted efficiently into their corresponding aryl iodides under developed condition 
with high regioselectivity.
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Introduction

The marine organism is a significant source of organic iodides 
and many of these show their significance in biology [1–3]. 
These are used in medical imagining in the identification of 
diseases related to oncology and neurology [4, 5]. Moreover, 
the aryl halides are the most reactive starting materials in 
several organic reactions including cross-couplings, radical-
induced reactions, and nucleophilic reactions in the presence 
of metals [6–9]. Aryl iodides are highly reactive than other 
aryl halides due to the easy cleavage of the C-I band than other 
C-halogen bonds [10, 11]. Besides the high reactivity of aryl 
iodides, the less availability and high cost of aryl iodides are 
because of less available iodinating agents and the require-
ment of oxidants, additives, and high temperature [12, 13]. In 
addition, N-iodosuccinimide [14–18], I2 [19–30], KI [31–33], 
and mixed halides [34–37] are the frequently used reagents 
for the iodination of aromatic compounds. The substitution 
reactions of aryl diazonium/boronic acid compounds with 
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nucleophiles [38–42] are the other alternatives for the syn-
thesis of aryl iodides but these suffer from the requirement of 
harsh reaction conditions and metals. The applications of I2 
as an iodinating agent represents the natural process of syn-
thesizing organic iodides and iodine is also accepted as an 
environmentally benign reagent [43]. Further, I2 is a readily 
available and inexpensive substance. Despite these advantages, 
the low reactivity of I2 with aromatic substances is the limi-
tation and it requires an external oxidant. In this connection 
H5PV2Mo10O40-O2 [19], Fe(NO3)3·1.5N2O4-charcoal [20], 
graphene oxide-CH3NO2 [21], NO2 [12], [bis(trifluoroacetoxy)
iodo]benzene-pyridine [22], silver sulfate [23], silica supported 
ferric nitrate monohydrate [24], ammonium cerium(IV) nitrate 
(CAN) [25], tetra-n-butylammoniumperoxydisulfate [26], 
NaNO2-HCl-trifluoroethanol [27], lead(IV) acetate-AcOH-
(CH3CO)2O [28], and IBX-CH3CN-TFA [29] in the presence 
of I2 are reported as efficient catalytic systems for aryl iodina-
tion. Most of these systems suffer from drawbacks including 
the necessity of oxidant, high temperature, costly catalysts, or 
no control over monoiodination products. Hence, it is neces-
sary in developing a simple protocol for the synthesis of aryl/
heteroaryl iodides. Therefore, we directed to develop an eco-
nomical protocol for the easy synthesis of aryl iodides under 
added oxidant free conditions and found NH4OAc–I2 as an 
advantageous catalyst–reagent system in CH3CN (Scheme 1) 
in this search. Moreover, NH4OAc is a rich source of nitrogen 
and is a highly convenient alternative to ammonia in a wide 
range of organic transformations [44–47]. NH4OAc was also 
utilized as an effective catalyst in synthetic methodologies 
[44, 48–50]. This method can be an extra attractive addition 
towards the application of NH4OAc in organic synthesis.

Results and discussion

We have initiated the present iodination protocol using the 
reaction of o-toluidine (1a) (1.0 mmol) with I2 (1.05 mmol) 
employing 0.5 mmol of NH4OAc as a catalyst in 4 cm3 etha-
nol and observed the formation of 34% of mono iodinated 
product, 4-iodo-2-methylaniline (2a) and 15% of diiodo prod-
uct, 2,4-diiodo-6-methylaniline (2aa) in 1 h (Table 1, entry 
3). To our delight, the reaction was preceded without the aid 
of an external oxidant. The reaction was then screened using 
solvents methanol, tetrahydrofuran (THF), CH3Cl, CH2Cl2, 
CH3CN, n-hexane, (CH3)2SO, and water (Table 1, entries 
4–11) and identified that the CH3CN is appropriate for the 
mono iodination of 1a (Table 1, entry 7). The increase of the 

quantity of catalyst, NH4OAc to 0.75 mmol and 1.0 mmol, the 
reaction resulted from 2a with 89% yields in CH3CN (Table 1, 
entries 11, 12) was indicated the requirement of 0.75 mmol 
of NH4OAc for this selective iodination of 1a. Other ammo-
nium salts such as NH4OH, NH4Cl, NH4OCHO, CAN, and 
(NH4)6Mo7O24 are also screened for the selective iodination 
of 1a (Table 1, entries 13–17), and observed that the NH4OAc 
was suitable among these (Table 1, entry 7).

With the developed conditions, we have screened a 
variety of substrates for the selective monoiodination and 
the results were shown in Table 2. Aniline was observed 
as a good substrate under NH4OAc catalyzed iodination 
and provided 99% of monoiodination product in 0.25 h 
(Table 2, entry 2). The occurrence of diiodo products was 
reported with several reported procedures. The substituted 
anilines with the functional groups such as methyl, chloro 
and fluoro provided 83–89% of monoiodination prod-
ucts, 2a [52, 53], 2b-2f [54–58] in 0.25—1.0 h (Table 2, 
entries 1, 3–6). Phenol 2h [59] and substituted phenols 
2i [60], 2j [61], 2k [62, 63], and 2n [52, 64] with the 
functional groups such as methyl and carboxyl produced 

Scheme 1

Table 1   Screening for reaction conditions

Reaction conditions: 1a (1.0  mmol), I2 (1.05  mmol) and solvent (4 
cm3) at r.t

 

Entry Catalyst/mmol Solvent Time/min Isolated 
yield/%

2a 2aa

1 – DMSO 30 85 [51] –
2 NH4OAc (0.5) C2H5OH 60 34 15
3 NH4OAc (0.5) CH3OH 60 20 32
4 NH4OAc (0.5) THF 60 39 –
5 NH4OAc (0.5) CH3Cl 75 21 –
6 NH4OAc (0.5) CH2Cl2 75 41 –
7 NH4OAc (0.5) CH3CN 45 67 –
8 NH4OAc (0.5) n-Hexane 120 15 6
9 NH4OAc (0.5) (CH3)2SO 60 62 Trace
10 NH4OAc (0.5) H2O 60 55 Trace
11 NH4OAc (0.75) CH3CN 30 89 –
12 NH4OAc (1.0) CH3CN 30 89 –
13 NH4OH (0.75) CH3CN 240 15 7
14 NH4Cl (0.75) CH3CN 240 11 15
15 NH4OCHO (0.75) CH3CN 180 72 Trace
16 CAN (0.38) CH3CN 240 59 9
17 (NH4)6Mo7O24 (0.15) CH3CN 240 38 18



811An effective room temperature nuclear iodination of aromatic compounds using molecular iodine…

1 3

the corresponding monoiodination products with excel-
lent yields (Table 2, entries 8–11, 13). Anisole (1m) are 
also observed as good substrate under the present iodina-
tion procedure for 2m [65, 66] (Table 2, entry 12). The 
method has also been studied for its successful application 
to the iodination of heteroaryl substance such as 2-amino-
pyridine 2l [52, 67] and 2-amino-5-bromopyridine (2g) 
[68–70] (Table 2, entries 7, 14).

The possible mechanism of NH4OAc catalysed iodi-
nation of aryl or heteroaryl compounds has been shown 
in Scheme 2. The reaction of ammonium acetate with I2 
may form acetyl hypoiodite A and ammonium iodide. The 
electrophilic iodine species, A on reaction with aryl or 
heteroaryl compounds results in the aryl iodides or heter-
oaryl iodides and acetic acid through a usual electrophilic 
substitution mechanism of aromatic compounds.

Conclusion

In conclusion, an easy and simple procedure has been 
developed for the monoiodination of aromatic compounds 

Table 2   Substrate scope

Reaction conditions: 1 (1.0 mmol), I2 (1.05 mmol) and CH3CN (4 cm3) at rt

 

Entry Reactant (1) Product Time/h Isolated yield/% Melting point/°C

Observed Reported

1 o-Toluidine (1a) 2a 0.5 89 83–85 86–87 [71]
2 Aniline (1b) 2b 0.25 98 52–54 53–55 [18]
3 p-Toluidine (1c) 2c 0.5 86 Oil Oil [18]
4 p-Chloroaniline (1d) 2d 1.0 85 39–41 38–40 [18]
5 o-Chloroaniline (1e) 2e 0.5 84 67–69 68–70 [18]
6 p-Fluoroaniline (1f) 2f 1.0 83 37–39 38–40 [72]
7 2-Amino-5-bromopyridine (1g) 2g 1.5 80 112–117 113–114 [73]
8 Phenol (1h) 2h 0.5 86 89–92 92–94 [18]
9 p-Cresol (1i) 2i 0.5 87 32–35 33–35 [74]
10 o-Cresol (1j) 2j 0.5 83 67–69 68.5–69 [75]
11 β-Naphthol (1k) 2k 0.5 87 88–91 91–92 [75]
12 2-Aminopyridine (1l) 2l 1.0 82 123–125 126–130 [76]
13 Anisole (1m) 2m 2.0 79 42–44 40–43 [18]
14 Salicylic acid (1n) 2n 3.0 78 185–189 189–191 [77]

Scheme 2
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using I2 in the presence of NH4OAc as an efficient cata-
lyst. A variety of arylamino, phenolic, and heteroaryl com-
pounds are regioselectively iodinated using the developed 
protocol at ambient conditions under external oxidant and 
additive-free conditions. The substrates with a wide range 
of functional groups such as methyl, amine, hydroxyl, 
methoxy, bromo, chloro, fluoro, and carboxyl are tolerated 
under present conditions. Quick reactions, high regiose-
lectivity, simple reaction conditions, ambient conditions, 
and oxidant, and additive-free conditions are the important 
attributes of this iodination protocol.

Experimental

All starting materials and solvents were obtained from 
Sigma-Aldrich (USA). All reagents were used as it is with-
out further purification. All reactions were conducted under 
standard operating conditions without the use of any strin-
gent conditions. The reaction progress was monitored on 
Merck TLC Silica gel 60 F254 plates, and the spots were 
visualized under ultraviolet (UV) light, followed by iodine 
or KMnO4 staining solution followed by heating. Chroma-
tographic purifications were carried out using flash-grade 
silica gel (SDS Chromatogel 60 ACC, 40–60 µm). NMR 
spectra were recorded at 23 ºC on Varian 400 Ultrashield 
apparatus. 1H and 13C NMR spectra were recorded on 
400 MHz NMR spectrometer using CDCl3 as solvent unless 
otherwise stated. Mass spectra were recorded on a Waters 
Acquity TQDLC/MS/MS system.

General experimental procedure

To a mixture of aromatic compound 1 (1.0  mmol), I2 
(1.05 mmol), and NH4OAc (0.75 mmol) was added 4 cm3 
CH3CN and stirred the resultant mixture at room tempera-
ture for an appropriate time. After the completion of the 
reaction, as indicated by TLC, the reaction mixture was 
added 5 cm3 of water. Extracted the mixture using EtOAc 
(3 × 5 cm3) and the combined portions of EtOAc were sub-
jected for evaporation to obtain crude aryl iodide. The crude 
aryl iodides were purified by using silica packed columns 
using varying ratios of EtOAc and hexanes as eluent. Pure 
aryl iodide was subjected to the confirmation of their struc-
tures using 1H NMR, 13C NMR, and mass spectral data. 
The spectral data of representative iodo (hetero)arenes is 
provided in supporting material and the spectral and physi-
cal properties have been found to coincide with the reported 
data.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00706-​023-​03084-1.
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