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Abstract
A green, convenient, and efficient one-pot synthesis of a new class of spiro[indolinepyranopyrimidine] derivatives was 
achieved in good yields by the multi-component reaction of N-alkyl-1-(methylthio)-2-nitroethenamine derived from the 
addition of various amines to nitroketene dithioacetal with isatin and barbituric acid derivatives in water at reflux conditions. 
Notably, the present method offers desirable advantages including good yields, use of water as green solvent, absence of 
catalyst, simple workup procedure, and easy purification process with no chromatographic technique.
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Introduction

Indole derivatives have been a topic of substantial research 
interest and continue to be one of the most active areas of 
heterocyclic chemistry. They exhibit a wide range of bio-
logical activities [1–4] such as antibacterial, antimicrobial, 
antiviral, antifungal, antihypertensive, anti-inflammatory 
[5], antitumor [6], anticancer, anti-HIV, antioxidant [7], anti-
malarial, anticonvulsant [8], and anti-alzheimer [9] proper-
ties. In addition, it was reported that sharing of the indole 

3-carbon atom in the formation of spiroindole derivatives 
(Fig. 1) significantly improves biological properties [10]. 
Spiroindoles have generated considerable synthetic inter-
est due to their occurrence in diverse natural products and 
notable biological activities [11–21].

Pyranopyrimidine derivatives are very important and 
valuable compounds, due to their potential importance in 
the medicine and biological fields [22]. They have diverse 
pharmacological properties such as antimalarial, antibacte-
rial [23], antifungal, antiviral, antitumor [23, 24], antibron-
chitic [25, 26], anti-AIDS [27], antipyretic [28], anti-inflam-
matory [29], and antihypertensive [30] evaluation activities. 
Considering the above reports, the development of new and 
simple synthetic methods for the efficient preparation of the 
spiroindoles containing pyranopyrimidine fragment could 
potentially lead to a series of structurally and biologically 
interesting heterocycles.

During the past decades, specific strategies have 
been reported for the synthesis of spiroindole-annulated 
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heterocycles. In 2010, Bazgir et al. reported an efficient, 
one-pot synthesis of spiro[chromenopyrimidineindoline] 
from cyclohexane-1,3-diones, isatins, and barbituric acids in 
refluxing water in the presence of p-TSA for 10 h (Scheme 1, 
entry a) [10, 13]. In 2015, Esmaeili et al. developed a rapid 
and convenient protocol for the synthesis of novel spiro-
oxindole derivatives in excellent yields by the three-com-
ponent reaction of malononitrile, isatin, and 2,3-dihydro-
5H-[1,3]thiazolo[3,2-a]pyrimidine-5,7(6H)-dione in the 
presence of diisopropylethylamine (Scheme 1, entry b) [14]. 
In 2018, Deka et al. described a simple and cost-effective, 
micelle-catalyzed one-pot strategy for the synthesis of 

spiro[indolinepyranopyrazoles] by reacting isatins, malo-
nonitrile, and 3-methyl-1H-pyrazol-5(4H)-ones in water 
at room temperature (Scheme 1, entry c) [11]. Herein we 
report an environmentally benign synthesis of a new class 
of spiro[indolinepyranopyrimidine] derivatives via a cata-
lyst free, one-pot, multi-component condensation reaction of 
various amines, nitroketene dithioacetal, isatin derivatives, 
and barbituric acids in refluxing water (Scheme 1, entry d).

Results and discussion

In this paper, we would like to report an easy 
and eff icient procedure for synthesizing novel 
spiro[indolinepyranopyrimidine] derivatives. The products 
were obtained from the addition of various amines 1 to 
nitroketene dithioacetal 2 with isatin 3 and barbituric acid 
derivatives 4 in water as a green solvent at reflux conditions 
(Scheme 2).

Fig. 1  Spiroindole derivatives 
linked at position three of the 
indole

N
H

O

Scheme 1 

(a) Bazgir’s work 

O O

HN NH

O

O O N
H

O

O

O N
H

NH
O

O

H2O / reflux

p-TSA

O

HN
O

(b) Esmaeili’s work 

N

O

O
CN

CN

DIEAR1

R2

N

N SO

O
EtOH, reflux N

O

N

N S

O
NC

H2N

O
R1

R2

(c) Deka’s work 

N
H

O

O
CN

CN
N

N
H

H3C

O
O

N
N
H

HN
O

CN

NH2

H3C

H2O, r.t.

SDS

(d) This work 

N

N XOHN

O2N

N

N
O

O

R2
H

O2N HN

SCH3

H2O, reflux
N N

O O

X
R3 R3 O O

R2

R3

R3R1

R1



1081A simple and environmentally benign synthesis of novel…

1 3

Several solvents in the presence and absence of catalyst 
were examined to develop standard reaction conditions and 
the results are summarized in Table 1. Experimental results 
showed that the reaction proceeded very cleanly with good 
yield when the EtOH and water were used as solvent at 
reflux conditions without any catalyst (Table 1, entries 2 
and 6). The yield of product was low, when the water was 
used as solvent at 60 °C and room temperature (Table 1, 
entries 7 and 8). Also the yield of product was low, when the 
reaction was performed in the presence of piperidine or  Et3N 
as catalyst in EtOH (Table 1, entries 3 and 4). The reaction 
did not proceed well, when the  CH3CN and DMF were used 
as solvent (Table 1, entries 9 and 11). Also the reaction did 
not work in  CHCl3, so a lot of spots were observed on TLC 
(Table 1, entry 10).

As shown in Table 2, various primary amines, isatin 
derivatives, and barbituric acids were tolerated. The reac-
tion proceeds cleanly under the same reaction conditions to 
afford a series of spiro[indolinepyranopyrimidine] deriva-
tives 5a–5i in 64–81% yields.

Scheme 2 
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Table 1  Optimization of reaction conditions for 5c 

Bold numbers represent the best values
r.t. room temperature, n.r. no reaction

Entry Conditions Catalyst Time/h Yield/%

1 EtOH, r.t. – 24 65
2 EtOH, reflux – 7 75
3 EtOH, reflux Piperidine 3 59
4 EtOH, reflux Et3N 3 54
5 EtOH/H2O, reflux – 7 70
6 H2O, reflux – 7 72
7 H2O, 60 °C – 12 60
8 H2O, r.t. – 24 20
9 CH3CN, reflux – 24 Trace
10 CHCl3, reflux – 24 n.r.
11 DMF, reflux – 24 Trace

Table 2  Products 5a–5i (cf. 
Scheme 2)

a Various amines (1  mmol), nitroketene dithioacetal (1  mmol), isatin (1  mmol), and barbituric acid 
(1 mmol) were used. The reactions were run in refluxing water, without any catalyst

Entry R1 R2 R3 X Producta Time/h Yield/%

1 CH3 CH2Ph H O 5a 9 68
2 CH3 CH3 H O 5b 7 64
3 CH3 H H O 5c 7 72
4 CH(CH3)2 H H O 5d 8 75
5 CH2CH3 H H O 5e 8 70
6 CH3 H CH3 O 5f 9 81
7 CH2Ph H H O 5g 9 68
8 CH2Ph H CH3 O 5h 10 67
9 CH2Ph H H S 5i 10 70
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The structures of compounds 5a–5i were elucidated 
from their mass, IR, and 1H and 13C NMR spectra. The IR 
spectrum of 5a showed absorption bonds due to the NH 
groups at 3267 and 3194 cm−1, and C=O groups at 1721 and 
1615 cm−1. Stretching frequencies related to the Ar and  NO2 
groups appeared at 1528, 1463, and 1384 cm−1, respectively. 
The 1H NMR spectrum of 5a exhibited a doublet recognized 
as arising from the  CH3 group (δ = 3.14 ppm, 3JHH = 5.1 Hz), 
one AB quartet due to  CH2 group (4.85 ppm), one mul-
tiplet for  NHCH3 group (10.55 ppm) and two singlets for 
NH groups (11.19 and 12.58 ppm), together with charac-
teristic signals for the aromatic moiety (6.55–7.51 ppm). 
1H-decoupled 13C NMR spectrum showed 20 distinct signals 
in agreement with the proposed structure. Resonances due 
to  CH3,  CH2, spiro carbon and three C=O groups appeared 
at δ = 29.3, 44.6, 48.2, 156.9, 161.3, and 175.7  ppm, 
respectively.

A plausible mechanistic pathway for the formation of 
5 is outlined in Scheme 3. Initially, the Knoevenagel con-
densation between isatin 3 and barbituric acid 4 derivatives 
affords 7 which undergoes Michael addition with N-alkyl-
1-(methylthio)-2-nitroethenamine 6 (derived from the addi-
tion of various amines 1 to nitroketene dithioacetal 2) to 

give 8. Thus the intermediate 8 undergoes imine-enamine 
tautomerisation to form 9 followed by O-cyclization to form 
5 via the elimination of MeSH (Scheme 3). 

Conclusion

In conclusion, we have developed a simple, green 
and novel one-pot, multi-component synthesis of 
spiro[indolinepyranopyrimidine] derivatives, through 
sequential Knoevenagel condensation, Michael addition, 
and O-cyclization sequences in refluxing water, without 
any catalyst. This procedure offers several advantages, such 
as use of water as a green solvent, good yields of products, 
easy accessibility of reactants, easy workup procedure, and 
high atom economy.

Experimental

The various amines, nitroketene dithioacetal, isatin, 
barbituric acid, and other chemicals and solvents were 
obtained from Merck and Aldrich and were used without 
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further purification. NMR spectra were recorded with a 
Bruker DRX-300 Avance instrument (300 MHz for 1H and 
75.4 MHz for 13C) with DMSO-d6 and  CDCl3 as solvent. 
Chemical shifts are given in ppm (δ), and coupling constant 
(J) are reported in hertz (Hz). Melting points were measured 
with an electrothermal 9100 apparatus. Mass spectra were 
recorded with an Agilent 5975C VL MSD with Triple-Axis 
Detector operating at an ionization potential of 70 eV. IR 
spectra were measured with Bruker Tensor 27 spectrometer. 
Elemental analyses for C, H, and N were performed using a 
PerkinElmer 2004 series [II] CHN elemental analyzer.

General procedure for the synthesis of product 5

A mixture of various amines (1 mmol), 0.165 gnitroketene 
dithioacetal (1 mmol) and 10 cm3  H2O in a 50 cm3 flask was 
refluxed for 6 h. After completion of the reaction (moni-
tored by TLC, ethyl acetate/n-hexane, 6:4), isatin derivatives 
(1 mmol) and barbituric acids (1 mmol) were added to the 
reaction mixture, and it was stirred under reflux for 7–10 h. 
Then, the reaction mixture was cooled to room temperature 
and filtered to give the crude product. The solid was washed 
with water to give pure product 5 in good yield.

1‑Benzyl‑7′‑(methylamino)‑6′‑nitrospiro[indoline‑3
,5′‑pyrano[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑trione 
(5a, C22H17N5O6) White solid; m.p.: 308–310 °C (dec.); 
yield: 0.304 g (68%); IR (KBr): �̄� = 3267 and 3194 (NH), 
1721 (C=O), 1615 (C=O), 1528 (Ar), 1463 and 1384  (NO2) 
 cm−1; MS (EI, 70 eV): m/z (%) = 447  (M+, 11), 390 (9), 347 
(5), 299 (30), 247 (10), 169 (8), 91 (100), 51 (2); 1H NMR 
(300 MHz, DMSO-d6): δ = 3.14 (d, 3JHH = 5.1 Hz, 3H), 4.85 
(AB q, 2H), 6.55 (d, 3JHH = 7.5 Hz, 1H), 6.86 (t, 1H), 7.07 (t, 
1H), 7.21–7.30 (m, 4H), 7.51 (d, 3JHH = 7.2 Hz, 2H), 10.55 
(m, 2H), 11.19 (s, 1H), 12.58 (br s, 1H) ppm; 13C NMR 
(75.4 MHz, DMSO-d6): δ = 29.3  (NHCH3), 44.6  (CH2), 48.2 
(C-spiro), 89.3, 107.5, 108.4, 122.2, 123.3, 127.4, 127.6, 
128.6, 128.7, 130.3, 137.1, 145.6, 149.3, 151.9, 156.9 
(C=O), 161.3 (C=O), 175.7 (C=O) ppm.

1‑Methyl‑7′‑(methylamino)‑6′‑nitrospiro[indoline‑3
,5′‑pyrano[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑trione 
(5b, C16H13N5O6) White solid; m.p.: 320–322 °C (dec.); 
yield: 0.237 g (64%); IR (KBr): �̄� = 3246 (NH), 1711 (C=O), 
1656 (C=O), 1533 (Ar), 1467 and 1388  (NO2)  cm−1; MS 
(EI, 70 eV): m/z (%) = 371  (M+, 60), 310 (44), 284 (25), 
240 (11), 211 (100), 171 (83), 143 (18), 114 (24), 91 (30), 
57 (17); 1H NMR (300 MHz, DMSO-d6): δ = 3.11 (s, 6H), 
6.87–7.19 (m, 4H), 10.48 (m, 1H), 11.11 (s, 1H), 12.55 (br s, 
1H) ppm; 13C NMR (75.4 MHz, DMSO-d6): δ = 26.9  (CH3), 
29.2  (CH3), 48.0 (C-spiro), 89.3, 107.4, 107.7, 122.0, 123.1, 
128.7, 130.3, 146.2, 149.3, 151.8, 156.9 (C=O), 161.0 
(C=O), 175.4 (C=O) ppm.

7′‑(Methylamino)‑6′‑nitrospiro[indoline‑3,5′‑pyrano
[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑trione (5c, C15H11
N5O6) White solid; m.p.: 354–356 °C (dec.); yield: 0.257 g 
(72%); IR (KBr): �̄� = 3382 and 3235 (NH), 1725 (C=O), 1693 
(C=O), 1531 (Ar), 1472 and 1325  (NO2)  cm−1; MS (EI, 70 eV): 
m/z (%) = 357  (M+, 39), 313 (9), 283 (63), 240 (100), 197 (94), 
168 (85), 140 (55), 103 (35), 57 (69); 1H NMR (300 MHz, 
DMSO-d6): δ = 3.09 (s, 3H), 6.67–7.12 (m, 4H), 10.45 (s, 2H), 
11.10 (s, 1H), 12.45 (br s, 1H) ppm; 13C NMR (75.4 MHz, 
DMSO-d6): δ = 29.2  (NHCH3), 48.4 (C-spiro), 89.4, 107.8, 
108.9, 121.3, 123.3, 128,5, 131.0, 144.8, 149.4, 151.8, 156.9 
(C=O), 161.1 (C=O), 176.7 (C=O) ppm.

7′‑(Isopropylamino)‑6′‑nitrospiro[indoline‑3,5′‑pyran
o[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑trione (5d, C17H15
N5O6) White solid; m.p.: 255–260 °C (dec.); yield: 0.288 g 
(75%); 1H NMR (300 MHz, DMSO-d6): δ = 1.13 (d, 3H), 1.30 
(d, 3H), 4.15–4.30 (m, 1H), 6.60–7.05 (m, 4H), 7.60 (br s, 
1H), 9.30 (s, 1H), 10.15 (s, 1H), 10.65 (d, 1H) ppm; 13C NMR 
(75.4 MHz, DMSO-d6): δ = 20.8  (CH3), 22.8  (CH3), 44.6 (CH), 
49.5 (C-spiro), 85.0, 108.4, 108.6, 120.7, 122.4, 127.5, 132.8, 
144.9, 157.8, 158.4, 161.3 (C=O), 163.8 (C=O), 178.1 (C=O) 
ppm.

7′‑(Ethylamino)‑6′‑nitrospiro[indoline‑3,5′‑pyran
o[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑trione (5e, C16
H13N5O6) White solid; m.p.: 306–312  °C (dec.); yield: 
0.259 g (70%); 1H NMR (300 MHz, DMSO-d6): δ = 1.24 (t, 
3JHH = 6.9 Hz, 3H), 3.51–3.59 (m, 2H), 6.68–7.12 (m, 4H), 
10.47 (s, 1H), 10.59 (t, 3JHH = 5.7 Hz, 1H), 11.12 (s, 1H) ppm; 
13C NMR (75.4 MHz, DMSO-d6): δ = 15.6  (CH3), 37.5  (CH2), 
48.4 (C-spiro), 89.4, 107.6, 108.9, 121.3, 123.3, 128.5, 131.0, 
144.8, 149.3, 151.7, 156.4 (C=O), 161.1 (C=O), 176.7 (C=O) 
ppm.

1′,3′‑Dimethyl‑7′‑(methylamino)‑6′‑nitrospiro[indoli
ne‑3,5′‑pyrano[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑tri
one (5f, C17H15N5O6) White solid; m.p.: 287–289 °C (dec.); 
yield: 0.312 g (81%); IR (KBr): �̄� = 3431 and 3192 (NH), 
1726 (C=O), 1687 (C=O), 1455 and 1355  (NO2)  cm−1; MS 
(EI, 70 eV): m/z (%) = 385  (M+, 53), 339 (55), 324 (100), 
280 (37), 228 (24), 197 (41), 157 (31), 114 (22), 58 (35); 
1H NMR (300 MHz, DMSO-d6): δ = 3.00 (s, 3H), 3.16 (d, 
3JHH = 4.8 Hz, 3H), 3.45 (s, 3H), 6.69–7.11 (m, 4H), 10.48 
(s, 1H) ppm; 13C NMR (75.4 MHz, DMSO-d6): δ = 28.2 
 (NHCH3), 29.4  (NCH3), 30.0  (NCH3), 48.9 (C-spiro), 90.0, 
107.8, 108.9, 121.2, 123.4, 128.6, 130.9, 144.9, 149.7, 150.7, 
156.6 (C=O), 159.0 (C=O), 176.6 (C=O) ppm.

7′‑(Benzylamino)‑6′‑nitrospiro[indoline‑3,5′‑pyrano
[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑trione (5g, C21H15
N5O6) Orange solid; m.p.: 240–242 °C (dec.); yield: 0.294 g 
(68%); IR (KBr): �̄� = 3422 and 3217 (NH), 1702 (C=O), 1687 
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(C=O), 1641 (C=O), 1605 (Ar), 1515 and 1326  (NO2), 1461 
and 1388  (NO2)  cm−1; MS (EI, 70 eV): m/z (%) = 433  (M+, 
2), 417 (6), 283 (9), 240 (20), 197 (19), 168 (25), 133 (45), 91 
(100), 51 (19); 1H NMR (300 MHz, DMSO-d6): δ = 4.63 (ABX, 
JAB = 66 Hz, JAX = JBX = 5.7 Hz, δA = 4.52 and δB = 4.74 ppm, 
2H), 7.18–7.72 (m, 9H), 8.20 (t, 1H), 9.37 (t, 3JHH = 5.7 Hz, 
1H) ppm; 13C NMR (75.4 MHz, DMSO-d6): δ = 43.2  (CH2), 
44.4 (C-spiro), 118.5, 124.3, 126.6, 127.1, 127.6, 127.9, 128.1, 
128.6, 128.8, 129.8, 133.6, 138.8, 140.1, 141.7, 147.9, 149.0, 
163.5 (C=O) ppm.

7′‑(Benzylamino)‑1′,3′‑dimethyl‑6′‑nitrospiro[indo
line‑3,5′‑pyrano[2,3‑d]pyrimidine]‑2,2′,4′(1′H,3′H)‑
trione (5h, C19H19N5O6) White solid; m.p.: 306–312 °C 
(dec.); yield: 0.309 (67%); 1H NMR (300 MHz, DMSO-d6): 
δ = 2.96 (s, 3H), 3.23 (s, 3H), 4.82  (A2X, d, JAX = 6.0 Hz, 
δA = 4.82, 2H), 6.70–7.43 (m, 9H), 10.53 (s, 1H), 10.98 (t, 
3JHH = 6.0 Hz, 1H) ppm; 13C NMR (75.4 MHz, DMSO-d6): 
δ = 28.2  (NCH3), 29.9  (NCH3), 45.9  (CH2), 48.9 (C-spiro), 
90.0, 108.2, 109.0, 121.3, 123.4, 127.2, 128.0, 128.7129.2, 
130.8, 137.6, 144.9, 149.6, 150.6, 156.2 (C=O), 159.0 
(C=O), 176.6 (C=O) ppm.

7 ′ ‑ ( B e n z y l a m i n o ) ‑ 6 ′ ‑ n i t r o ‑ 2 ′ ‑ t h i o x o ‑ 2 ′ , 3 ′ ‑
d i h y d r o s p i r o  [ i n d o l i n e ‑ 3 , 5 ′ ‑ p y r a n o [ 2 , 3 ‑d ]
pyrimidine]‑2,4′(1′H)‑dione (5i, C21H15N5O5S5) Orange 
solid; m.p.: 240–242 °C (dec.); yield: 0.314 g (70%); 1H 
NMR (300 MHz, DMSO-d6): δ = 4.63 (ABX, JAB = 65 Hz, 
JAX = JBX = 5.4 Hz, δA = 4.52 and δB = 4.74, 2H), 7.18–7.67 
(m, 11H), 8.17 (br s, 1H), 9.35 (br s, 1H) ppm; 13C NMR 
(75.4 MHz, DMSO-d6): δ = 43.2  (CH2), 44.5 (C-spiro), 
118.5, 124.3, 126.6, 127.1, 127.6, 127.9, 128.1, 128.6, 
128.8, 129.8, 133.6, 138.8, 140.1, 141.7, 147.9, 149.0, 163.5 
(C=S) ppm.
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