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Abstract
Heterocyclic 1,2,4-triazoles and their derivatives, such as triazolopyridines, have been used as leading components for the 
synthesis of numerous heterocyclic compounds; and because of their various biological activities, they have a distinct location 
in pharmaceutical and medicinal chemistry. In this article, we demonstrate a new way of synthesizing 1,2,4-triazolo[1,5-a]-
pyridine derivatives, as a one-pot pseudo-three-component reaction, via the reaction of pyridine-2-(1H)-one derivatives 
and 1,4-cyclohexadione in the adjacency of acetic acid both as solvent and an inexpensive and green catalyst at 50 °C. The 
desired products were synthesized in good yields, and the chemical structure of the synthesized compounds was recognized 
using 1H and 13C NMR spectra, FT-IR, melting point, mass spectroscopy, and elementary analysis.
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Introduction

Multi-component reactions (MCRs) have appeared as 
highly impressive instrumentation in modern synthetic 
organic chemistry due to properties such as atom economy, 
direct and straight reaction design, and the opportunity to 
manufacture target organic molecules by presenting vari-
ous elements. Typically, purification of products resulting 

from MCRs is also reasonably modest since all the occu-
pied reactants are used and are synthesized into the target 
compound [1–10]. MCRs leading to interesting heterocyclic 
compounds are individually crucial for the preparation of 
diverse chemical libraries of drug-like molecules [11].

Heterocyclic chemistry is a highly competing and amply 
rewarding field, and by far, heterocycles form the largest 
class in organic chemistry. The majority of biologically 
active agrochemicals, pharmaceuticals, modifiers, and addi-
tives used in industrial usages are heterocyclic by nature 
[12]. Synthetic organic chemists have made remarkable 
progress in detecting and developing a vast range of het-
erocyclic compounds human benefits. Among the hetero-
cyclic compounds, pyridines and triazoles are among the 
key heterocycles exhibiting significant pharmacological 
activity as they are fundamental constituents of all cells and 
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living matter [13, 14]. Triazole is a five-membered hetero-
cyclic ring, which contains three nitrogen atoms 1, 2, and 4 
locations. Several methods have previously been related to 
triazolo[1,5-a]pyridines production from pyridines [15–18], 
especially 1,6-diaminopyridines [19–23]. As heterocyclic 
components, triazolopyridines have been applied in the con-
struction of pharmaceutical ingredients with diverse biologi-
cal effects [24–27], including antiproliferative, anti-inflam-
matory, and antithrombotic agents. Triazolopyridines act as 
inhibitors at growth hormone secretagogs [28] or mitogen-
activated protein (MAP) kinases [29, 30]. They are also 
used to treat antithrombotic agents [31] and gastrointestinal 
disorders [32]. Therefore, various suitable methods are of 
remarkable interest for their synthesis. 1,2,4-Triazole-based 
compounds exhibit vastly potential usages in supramolecu-
lar, medicinal, chemical, agricultural, as well as material 
sciences [33, 34]. In medicinal chemistry, the unique struc-
ture of triazole ring made its derivatives easily fasten with 
a diversity of enzymes and receivers such as antioxidants, 
anticoagulants, anticancer, as well as antifungal, antiviral, 
antibacterial, and anti-inflammatory agents in biological 
activities [35–37].

Results and discussion

The enormous biological and pharmacological impor-
tance of triazolopyridine derivatives encouraged us to 
design a modern and effective protocol for their synthe-
sis. In this scope, being commercially available, economi-
cally cost-effective, and environmentally friendly, acetic 
acid could be used as an essential, efficient, and green 
catalyst in the synthesis of novel 1,2,4-triazolo[1,5-a]
pyridine derivatives. In our experiment for the integration 

of 1,2,4-triazolo[1,5-a]pyridines, we performed the 
reaction between 1,6-diaminopyridines 1 (2 mmol) and 
1,4-cyclohexadione (2, 1 mmol) in the adjacency of heated 
acetic acid at 50 °C (Scheme 1). The reaction was car-
ried out in different conditions and the best result was 
obtained for acetic acid as both solvent and an inexpen-
sive and green catalyst at 50 °C (Table 1, entry 7). The 
separated product 7,7,7″,7″-tetramethyl-5,5″-dioxo-
1,1″,5,5″,6,6″,7,7″-octahydro-3H,3″H-dispiro[[1,2,4]
triazolo[1,5-a]pyridine-2,1′-cyclohexane-4′,2″-[1,2,4]
triazolo[1,5-a]pyridine]-6,6″,8,8″-tetracarbonitrile (3a) 
was fully described based on FT-IR, 1H, 13C NMR, and MS 
spectroscopy and elemental analysis. In the 1H NMR spec-
tra, the four protons at NH of triazole rings display two 
singlets at 6.36, 6.39 and two singlets at 8.70, 8.73 ppm; 
moreover, two protons at CH of pyridine rings display two 
singlets at 4.59, 4.61 ppm, and the presence of this number 
of peaks in these areas indicates the reaction of two com-
ponents of 1,6-diaminopyridine with 1,4-cyclohexadione 
(see experimental section). To study the possibility of this 
work, diversity of pyridine-2(1H)-one derivatives synthe-
sis by a reported manner [38] reacted with 1,4-cyclohexa-
dione under reaction conditions and led to final products 
in acceptable yields (Table 2).

The proposed mechanism for the acid-catalyzed reac-
tion between 1,4-cyclohexadione and pyridine-2-(1H)-one 
derivatives is depicted in Scheme 2. Initially, the active 
group of amine that bonded to the N atom of the pyridine 
ring attacks the carbonyl group and immediately other 
amine group attacks the same carbon after aqueous distil-
lation by acetic acid as catalyst, leading to the production 
of 1,2,4-triazole biologically active heterocyclic helper 
headings, and then the same happens to the other carbonyl 
group in 1,4-cyclohexadione.

Scheme 1
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Conclusion

In conclusion, in a novel and efficient approach, we char-
acterized and synthesized 1,2,4-triazolo[1,5-a]pyridine 
derivatives as new spiro biologically active compounds 
with the reaction of pyridine-2(1H)-one derivatives with 
1,4-cyclohexadione compounds and by applying acetic acid 
both as solvent and a green catalyst. This method offers 
several benefits including green conditions, short reaction 
times, mild reaction conditions, excellent yields, and a sim-
ple workup procedure, but no need for column chromatog-
raphy. Via its Brϕnsted acid nature, acetic acid advances 
reactions by being involved in nucleophilic addition as well 
as dehydration steps.

Experimental

Melting points of all compounds were measured with an 
Electrothermal 9100 apparatus. All of the reagents were pur-
chased from Fluka, Merck, and Aldrich companies, and were 
used without further purification. In addition, the 1H NMR 
and 13C NMR spectra were recorded on a Bruker Avance 
DPX-300 instrument using DMSO-d6 as an internal standard 
at 300 and 75 MHz, respectively. FT-IR spectra of all com-
pounds were measured with a JASCO FT-IR-460 plus spec-
trometer. Elemental analyses for C, H, and N, and mass spec-
tra were recorded using a Heraeus CHN–O-Rapid analyzer 
and on an Agilent Technology (HP) 5973 mass spectrometer 
operating at an ionization potential of 70 eV, respectively.

General procedure for the synthesis of compound 3

Initially, pyridine-2-(1H)-one derivatives 1 were prepared 
by a reported process [38]. Then, a mixture of pyridine-
2-(1H)-one derivatives 1 (2.0 mmol) and 1,4-cyclohexa-
dione (2, 1.0 mmol) in 2.0 cm3 acetic acid was located 
in a 5.0 cm3 round-bottomed flask mounted over a mag-
netic stirrer. The contents in an oil bath maintained at 
50 °C for an adequate time were stirred magnetically as 
shown in Table 2. The reaction time was monitored by 
TLC; after the reaction was complete, the reaction mix-
ture was allowed to cool at room temperature. Then, the 
solid was obtained smooth, and the reliable product was 
separated. The separated product was washed twice with 
water (2 × 10 cm3) to afford pure products. The spectral 
and analytical data of all the compounds are given below.

7,7,7″,7″‑Tetramethyl‑5,5″‑dioxo‑1,1″,5,5″,6,6″,7,7″‑octahy
dro‑3H,3″H‑dispiro[[1,2,4]triazolo[1,5‑a]pyridine‑2,1′‑cyclo
h e x a n e ‑ 4 ′ , 2″ ‑ [ 1 , 2 , 4 ] t r i a z o l o [ 1 , 5 ‑a ] p y r i d i n e ] ‑ 6 , 
6″,8,8″‑tetra‑carbonitrile (3a, C24H26N10O2)  Green-blue 
solid; yield 90%; m.p.: 287–289 °C; 1H NMR (DMSO-d6, 
300 MHz): δ = 8.73 (s, NH, 1H), 8.70 (s, NH, 1H), 6.39 (s, 
NH, 1H), 6.36 (s, NH, 1H), 4.61 (s, CH, 1H), 4.59 (s, CH, 
1H), 1.93–1.66 (m, 4CH2, 8H), 1.31 (s, 2CH3, 6H), 1.17 (s, 
2CH3, 6H) ppm; 13C NMR (DMSO-d6, 75 MHz): δ = 21.53, 
24.70, 26.78, 30.80, 31.20, 31.41, 35.61, 48.23, 59.98, 60.05, 
77.57, 115.83, 118.78, 118.80, 151.10, 151.42, 157.94, 
158.10 ppm; FT-IR (KBr): v̄ = 3368, 3229, 2928, 2864, 2184, 

Table 1   Optimization of the reaction condition for the synthesis of highly substituted 1,2,4-triazole

Reaction conditions: pyridine-2-(1H)-one derivative 1a (2.0 mmol), 1,4-cyclohexadione (2, 1.0 mmol)

Entry Catalyst Solvent T/°C Time/min Isolated yields/%

1 – EtOH R.T. 120 –
2 PTSA (10 mol%) EtOH R.T. 120 Trace
3 HOAc (20 mol%) EtOH R.T. 120 20
4 – HOAc R.T. 120 65
5 HOAc (10 mol%) EtOH 50 60 43
6 HOAc (20 mol%) EtOH 50 60 56
7 – HOAc 50 60 90
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Table 2   Reaction of pyridine-
2-(1H)-one derivative and 
1,4-cyclohexadione in the 
present of acetic acid

Entry 1a-1g Product Time 
/min

Isolated 
yield /%

M.p.
/°C Color

1 60 90 287–
289

Green-
blue

2 120 85 285– 
288

Green-
blue

3 90 80 267–
268

Green-
blue

4 60 95 286–
288

Green-
blue

5 120 82 289–
290

Green-
blue

6 60 87 266–
267

Green-
blue

7 60 93 250–
252 Green

Reaction conditions: pyridine-2-(1H)-one derivative (2.0 mmol), 1,4-cyclohexadione (1.0 mmol), 2.0 cm3 
acetic acid, 50 °C
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1711, 1651, 1395, 1099 cm−1; MS (EI, 70 eV): m/z (%) = 485 
(M+, 31).

7,7″‑Dicyclopropyl‑7,7″‑dimethyl‑5,5″‑dioxo‑1,1″,5,5″,6,6″,7
,7″‑octahydro‑3H,3″H‑dispiro[[1,2,4]triazolo[1,5‑a]pyridine‑
2,1′‑cyclohexane‑4′,2″‑[1,2,4]triazolo[1,5‑a]pyridine]‑6,6″,
8,8″‑tetracarbonitrile (3b, C28H30N10O2)  Green-blue solid; 
yield 85%; m.p.: 285–288 °C; 1H NMR (300 MHz, DMSO-
d6): δ = 8.61 (s, 1H, NH), 8.56 (s, 1H, NH), 6.35 (s, 1H, 
NH), 6.32 (s, 1H, NH), 4.61 (s, 1H, CH), 4.59 (s, 1H, CH), 
1.78–1.46 (m, 8H, 4CH2), 1.21 (s, 6H, 2 CH3), 0.81–0.79 
(m, 2H, 2CH), 0.28–0.25 (m, 4H, 2CH2), 0.00 to − 0.06 (m, 
4H, 2CH2) ppm; 13C NMR (75 MHz, DMSO-d6): δ = − 1.51 
(CH2 cyclopropyl), − 0.50 (CH2 cyclopropyl), 15.31 (CH 
cyclopropyl), 15.36 (CH3), 23.44, 23.61, 28.37, 28.46, 
29.31, 29.38, 36.41, 36.43, 46.57, 51.44, 51.47, 75.49, 
75.52, 113.79, 117.60, 117.62, 150.08, 150.15, 156.17, 
156.19 ppm; IR (KBr): v̄ = 3362, 3238, 2935, 2862, 2191, 
1716, 1651, 1411 cm−1; MS (EI, 70 eV): m/z (%) = 537 ([M-
1]+, 100).

5′,5‴‑Dioxo‑5′,5‴ ,6′,6‴‑tetrahydro‑1′H,1‴H,3′H,3‴H‑
tetraspiro[cyclopentane‑1,7′‑[1,2,4]triazolo[1,5‑a]pyridine‑ 
2′,1″‑cyclohexane‑4″,2‴‑[1,2,4]triazolo[1,5‑a]pyridine‑
7‴,1′′′′‑cyclopentane]‑6′,6‴,8′,8‴‑tetracarbonitrile (3c, 
C28H30N10O2)  Green-blue solid; yield 80%; m.p.: 267–269 °C; 
1H NMR (300 MHz, DMSO-d6): δ = 8.76 (s, 1H, NH), 8.75 
(s, 1H, NH), 6.36 (s, 2H, 2NH), 4.66 (s, 1H, CH), 4.64 (s, 1H, 
CH), 2.10–1.62 (m, 24H, 12CH2) ppm; 13C NMR (75 MHz, 

DMSO-d6): δ = 24.44, 24.60, 30.92, 31.13, 31.25, 36.54, 
36.60, 37.17, 45.79, 46.30, 46.34, 60.02, 77.77, 116.33, 
119.41, 119.44, 151.52, 158.69, 158.73 ppm; IR (KBr): 
v̄ = 451, 3329, 2928, 2800, 2251, 2180, 1702, 1645, 1415, 
1104 cm−1; MS (EI, 70 eV): m/z = 538.

5′,5‴‑Dioxo‑5′,5‴,6′,6‴‑tetrahydro‑1′H,1‴H,3′H,3‴H‑
tetraspiro[cyclohexane‑1,7′‑[1,2,4]triazolo[1,5‑a]pyridine‑ 
2′,1″‑cyclohexane‑4″,2‴‑[1,2,4]triazolo[1,5‑a]pyridine‑
7‴,1′′′′‑cyclohexane]‑6′,6‴,8′,8‴‑tetracarbonitrile (3d, 
C30H34N10O2)  Green-blue solid; yield 95%; m.p.: 286–
288 °C; 1H NMR (300 MHz, DMSO-d6): δ = 8.79 (s, 1H, 
NH), 8.78 (s, 1H, NH), 6.36 (s, 1H, NH), 6.35 (s, 1H, NH), 
4.54 (s, 1H, CH), 4.52 (s, 1H, CH), 1.93–1.31 (m, 28H, 
14CH2) ppm; 13C NMR (75 MHz, DMSO-d6): δ = 21.52, 
21.68, 25.26, 31.00, 31.10, 33.37, 34.18, 38.24, 38.26, 
46.45, 46.86, 58.18, 58.31, 77.63, 116.06, 120.15, 120.25, 
152.22, 152.28, 158.06, 158.18 ppm; IR (KBr): v̄ = 3368, 
3208, 2931, 2858, 2175, 1703, 1639, 1413, 1106 cm−1; MS 
(EI, 70 eV): m/z = 565.

4,4′′′′‑Dimethyl‑5′,5‴‑dioxo‑5′,5‴,6′,6‴‑tetrahydro‑1′H,1‴H, 
3′H,3‴H‑tetraspiro[cyclohexane‑1,7′‑[1,2,4]triazolo[1,5‑a]pyr
idine‑2′,1″‑cyclohexane‑4″,2‴‑[1,2,4]triazolo[1,5‑a]pyridine‑ 
7‴,1′′′′‑cyclohexane]‑6′,6‴,8′,8‴‑tetracarbonitrile (3e, 
C32H38N10O2)  Green-blue solid; yield 82%; m.p.: 289–290 °C; 
1H NMR (300 MHz, DMSO-d6): δ = 8.82 (s, 1H, NH), 8.80 
(s, 1H, NH), 6.35 (s, 2H, 2NH), 4.58 (s, 1H, CH), 4.56 (s, 1H, 
CH), 1.83–1.66 (m, 26H, 2CH, 12CH2), 0.96 (d, J = 3 Hz, 6H, 

Scheme 2



98	 M. Shokoohian et al.

1 3

2CH3) ppm; 13C NMR (75 MHz, DMSO-d6): δ = 22.51, 30.51, 
30.80, 31.09, 31.19, 31.57, 32.94, 34.09, 37.74, 49.10, 49.13, 
56.98, 57.03, 77.70, 115.92, 120.84, 120.86, 152.70, 158.77, 
158.79 ppm; IR (KBr): v̄ = 3361, 3202, 2925, 2856, 2176, 
1702, 1641, 1415, 1109 cm−1; MS (EI, 70 eV): m/z = 593.

5′,5‴ ‑Dioxo‑5′,5‴ ,6′,6‴ ‑tetrahydro‑1′H,1‴H,3′H,3‴ 
H‑tetraspiro[cycloheptane‑1,7′‑[1,2,4]triazolo[1,5‑a]
pyridine‑2′,1″‑cyclohexane‑4″,2‴‑[1,2,4]triazolo[1,5‑a] 
pyridine‑7‴,1′′′′‑cycloheptane]‑6′,6‴,8′,8‴‑tetracarboni
trile (3f, C32H38N10O2)  Green–blue solid; yield 87%; m.p.: 
266–267  °C; 1H NMR (300 MHz, DMSO-d6): δ = 8.72 
(s, 2H, 2NH), 6.37 (s, 2H, 2NH), 4.49 (s, 1H, CH), 4.47 
(s, 1H, CH), 1.93–1.45 (m, 32H, 16CH2) ppm; 13C NMR 
(75 MHz, DMSO-d6): δ = 21.51, 22.68, 23.10, 30.10, 30.38, 
30.99, 35.87, 38.66, 41.39, 48.20, 60.59, 77.60, 116.45, 
120.09, 120.13, 151.66, 158.12, 158.17 ppm; IR (KBr): 
v̄ = 3451, 3329, 2928, 2800, 2251, 2180, 1702, 1645, 1415, 
1104 cm−1; MS (EI, 70 eV): m/z = 593.

5′,5‴‑Dioxo‑5′,5‴,6′,6‴‑tetrahydro‑1′H,1‴H,3′H,3‴H‑
tetraspiro[cyclododecane‑1,7′‑[1,2,4]triazolo[1,5‑a]pyridine‑ 
2′,1″‑cyclohexane‑4″,2‴‑[1,2,4]triazolo[1,5‑a]pyridine‑7‴, 
1′′′′‑cyclododecane]‑6′,6‴,8′,8‴‑tetracarbonitrile (3g, 
C42H58N10O2)  Green solid; yield 93%; m.p.: 250–252 °C; 
1H NMR (300 MHz, DMSO-d6): δ = 8.99 (s, 1H, NH), 8.74 
(s, 1H, NH), 6.62 (s, H, NH), 6.41(s, 1H, NH), 4.20 (s, 1H, 
CH), 4.14 (s, 1H, CH), 1.93–1.36 (m, 52H, 26CH2) ppm; 
13C NMR (75 MHz, DMSO-d6): δ = 19.94, 21.51, 21.94, 
22.11, 22.20, 22.46, 26.00, 26.28, 26.40, 30.73, 30.79, 
31.40, 31.56, 32.01, 44.48, 44.49, 57.80, 58.37, 77.45, 
116.04, 119.64, 119.69, 150.92, 151.20, 57.12, 157.41 ppm; 
IR (KBr): v̄ = 3362, 3238, 2935, 2862, 2191, 1716, 1651, 
1411 cm−1; MS (EI, 70 eV): m/z = 734.
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