
ORIGINAL PAPER

Identification of 2,4-diarylaminopyrimidine analogues as ALK
inhibitors by using 3D-QSAR, molecular docking, and molecular
dynamics simulations

Dan-Dan Li1 • Fu-Long Wu1 • Zhong-Hua Wang1,2 • Lei-Lei Huang1 •

Yan Yin1 • Fan-Hong Wu1

Received: 9 August 2016 /Accepted: 14 May 2017 / Published online: 26 July 2017

� Springer-Verlag Wien 2017

Abstract Anaplastic lymphoma kinase (ALK) is a partic-

ularly promising target for the development of small

molecule anti-cancer drugs. In the present study, compar-

ative molecular field analysis (CoMFA) and comparative

molecular similarity indices analysis (CoMSIA) were per-

formed on 60 ALK inhibitors to build three-dimensional

quantitative structure–activity relationship models. Both

the ligand-based resultants of CoMFA (r2 0.970, q2 0.660)

and CoMSIA (r2 0.979, q2 0.623) models exhibited good

predictability. The resulting contour maps illustrated the

regions where interactive fields may affect the activity.

Molecular docking was then performed to explore the

interactions between these inhibitors and the ALK-4DCE

protein. A few key residues (His32, Gly31, Gly169,

Asp170, Val35, Ala100, Pro160, Lys50, and Leu30) at the

binding site of 4DCE were identified. Molecular dynamics

simulation further verified the reliability. The information

acquired in this work not only provides a better apprecia-

tion of interactions between these molecules and the ALK

receptor but could also be applied to design more effective

ALK inhibitors.

Graphical abstract

Keywords ALK inhibitor � 2,4-Diarylaminopyrimidines �
3D-QSAR � Molecular docking � Molecular dynamics

Introduction

As a member of receptor tyrosine kinase, ALK (anaplastic

lymphoma kinase) had attracted high clinical interest in the

personalized treatment targeting the anti-cancer field [1], in

particular, anaplastic large cell lymphoma (ALCL) [2],

inflammatory myofibroblastic tumor [3], diffuse large B

cell lymphoma (DLBCL) [4], renal cell carcinoma (RCC)

[5], and non-small-cell lung cancer (NSCLC) [6–9].

The first ALK rearrangement was discovered as

EML4-ALK fusion oncogene in NSCLC in 2007 [10].

Furthermore, ALK also fused with other proteins like

nucleophosphamin (NPM) [11], ALK lymphoma

oligomerization on chromosome 17 (ALO17) [12], TRK-

fused gene (TFG) [13], moesin (MSN) [14] to form cor-

responding ALK-fusion proteins which are responsible for

tumor growth [15]. Various ALK targeted drugs had been

or are being tested in clinical trials and the first-in-class

ALK inhibitor crizotinib was approved by FDA in 2011 for
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the ALK-positive NSCLC [16]. The second-generation

ALK inhibitor ceritinib was approved by FDA in 2014 not

only for its potent ALK inhibitory but also for its anti-drug-

resistance to crizotinib [17, 18].

Other novel ALK inhibitors, including CH5424802 [19],

AP26113 [20], NVP-TAE684 [21], LDK378, X-396 [22],

and ASP3026 are also in Phase 1 and Phase 2 clinical trials

displaying enhanced specificity [23] (Fig. 1). All these

Fig. 1 Structures of anaplastic lymphoma kinase inhibitors
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ALK inhibitors showed higher activity as well as enhanced

significance in crizotinib-resistant ALK-positive NSCLC.

In particular, the series of 2,4-diarylaminopyrimidine

(DAAP) analogues showed high inhibitory activity against

both c-Met and ALK kinases [24].

Quantitative structure–activity relationship (QSAR) is

one of the most widely used rational methods for drug

design. In this method, the interactions between molecules

and receptor depended on the difference of the molecular

field around the compound. On the basis of quantitative

molecular field parameters as variables, regression analysis

of drug activity can reflect the interaction model between

drugs and biological macromolecules, and then new drugs

could be designed accordingly [25]. For instance, Vivek as

well as the research group of Wang developed three-di-

mensional quantitative structure–activity relationship (3D-

QSAR) models for different sets of compounds including

2-acyliminobenzimidazoles derivatives and piperidine

carboxamides derivatives to understand chemical–biologi-

cal interactions [15, 26]. We have investigated

2-acyliminobenzimidazoles derivatives as potent ALK

inhibitors [27]. In the present work, 60 diarylaminopy-

rimidine (DAAP) derivatives reported [16, 24, 28] as

potent and selective ALK inhibitors were collected as a

dataset, which were studied using a combination of

CoMFA, CoMSIA, molecular docking, and molecular

dynamic simulation. The purpose of this study is to

establish a reliable 3D-QSAR model by CoMFA and

CoMSIA methods to elucidate the structural characteristics

of some DAAP derivatives such as ALK inhibitors, which

may provide valuable guidance in the rational synthesis of

more effective inhibitors.

Results and discussion

CoMFA and CoMSIA statistical result

It is very necessary to make an initial inspection of the

inhibitor molecules before establishing the 3D-QSAR

models. Compound 50 was considered as an outlier in the

CoMFA and CoMSIA models because the r2 prediction of

model was 0.400 on inclusion of this compound, while

excluding this compound the r2 prediction value increased

to 0.983. Statistically, an r2 value[0.3 of the predicted set

is usually considered significant, while an r2 value[0.5 is

statistically more significant in CoMFA and CoMSIA

studies [29]. The reason for this outlier may be the dif-

ference in structure or the different binding conformations,

and the larger deviation between the actual and predicted

pIC50 values. Compound 50 and compounds 53 and 54

were very similar in structure, and the only difference was

that the substituent at the nitrogen of azepane was a methyl,

which might account for its outlier status since this mole-

cule was the only compound with small volume group in

this position.

Based on the internal research of the training set (44

molecules) and the external confirmation of the test set (16

molecules) the CoMFA and CoMSIA models were built.

As shown in Table 1, the optimal CoMFA model resulted

in a cross-validated q2 of 0.660, a non-cross-validated

correlation coefficient r2 of 0.970, a standard error (SEE)

value of 0.144, and F statistic value (F) of 167.010. For the

CoMFA analysis, the q2 value of 0.623, r2 value of 0.979,

SEE value of 0.120, and F statistic value of 241.162 were

calculated, respectively.

Table 1 The best results of the CoMFA and CoMSIA PLS statistical results

q2 ONC rncv
2 SEE F Field contribution/%

S E D A H

CoMFA

S ? E 0.66 7 0.970 0.144 167.010 43.8 56.2

CoMSIA

H ? E 0.588 5 0.944 0.191 129.053 60.6 39.4

S ? E 0.523 5 0.918 0.231 85.347 27.3 72.7

S ? E ? D 0.519 5 0.938 0.202 114.891 18.9 52.8 28.2

S ? E ? H 0.554 5 0.934 0.208 108.029 17.4 50.1 32.5

H ? E ? D 0.555 6 0.963 0.158 160.956 48.1 22.7 29.2

S ? E ? A 0.63 5 0.944 0.191 128.224 18.2 53.4 47.1

S ? E ? D ? H 0.548 5 0.943 0.194 124.941 14.1 41.4 20.3 24.2

S ? E ? D ? A 0.616 7 0.976 0.128 211.675 13.8 37.1 21.6 27.5

S ? E ? D ? A ? H 0.623 7 0.979 0.120 241.162 10.6 30.0 16.7 23.5 19.2

q2 cross-validated correlation coefficient after the leave-one-out procedure, rncv
2 non-cross-validated correlation coefficient, SEE standard error of

estimate; F F statistic values, ONC optimal number of components
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For the CoMFA model, the contributions of the steric

and electrostatic fields were calculated to be 43.8 and

56.2%, respectively; thus, the electrostatic field has more

influence compared to the steric field. For the optimal

CoMSIA model, five descriptor fields were considered

including the steric, electrostatic, hydrophobic, hydrogen

bond–donor, and hydrogen bond–acceptor. Their contri-

butions were 10.6, 30.0, 19.2, 16.7, and 23.5%. Table 2

listed the actual and predicted pIC50 values of the training

and test set as well as the residues between them.

3D-QSAR contour maps

Through the superposition of the most active molecule 23

with the contour maps generated by CoMFA and CoMSIA,

we explored the field effects on the target compounds in 3D

space. These contour maps have great significance in

explaining the relationship between molecular structure

and biological activity because the regions displayed in 3D

maps showed the influence of different substituents on the

molecular activity.

CoMFA contour maps

The steric and electrostatic contour maps generated by the

CoMFA model are shown in Fig. 2. The green polyhedrons

represent bulk substituents which are beneficial to the

potency, while yellow polyhedrons represent steric bulk

groups that would decrease the activity (Fig. 2a).

Themediumyellow contour occurring at single side of the

aromatic R1 ring indicated the compounds with bulk sub-

stituents at this site would decrease biological activity. The

compound 38 (pIC50 = 8.149) with cyclopropyl group at

ortho-site of R1 aromatic ring possesses lower biological

Table 2 The actual and predicted pIC50 values of all compounds

Compd. Actual COMFA COMSIA

Predicted Residues Predicted Residues

1 6.553 6.529 0.024 6.717 -0.164

2 7.095 6.96 0.135 7.009 0.086

3 7.484 7.345 0.139 7.449 0.035

4 8.569 8.325 0.244 8.088 0.481

5 6.842 6.85 -0.008 6.912 -0.070

6 7.024 6.971 0.053 6.870 0.154

7 8.114 8.211 -0.097 8.230 -0.116

8 8.745 8.329 0.416 8.582 0.163

9 7.827 8.195 -0.368 8.571 -0.744

10 7.294 7.364 -0.070 7.403 -0.109

11 8.260 7.752 0.508 8.252 0.008

12 7.553 7.431 0.122 7.534 0.019

13 8.509 8.377 0.132 8.453 0.056

14 7.719 8.601 -0.882 8.740 -1.021

15 7.355 7.49 -0.135 7.298 0.057

16 7.684 7.866 -0.182 7.766 -0.082

17 9.097 9.003 0.094 9.039 0.058

18 7.75 8.067 -0.317 7.926 -0.176

19 7.593 8.258 -0.665 7.921 -0.328

20 8.602 8.545 0.057 8.639 -0.037

21 8.77 8.614 0.156 8.445 0.325

22 8.31 8.452 -0.142 8.399 -0.029

23 9.155 9.084 0.071 9.139 -0.016

24 8.046 8.774 -0.728 8.722 -0.676

25 8.638 8.644 -0.006 8.694 -0.056

26 7.29 7.131 0.159 7.195 0.095

27 8.523 8.437 0.086 8.625 -0.102

28 8.638 8.883 -0.245 8.638 0.000

29 8.260 8.613 -0.353 8.388 -0.128

30 7.496 7.662 -0.166 7.636 -0.140

31 7.021 7.670 -0.649 7.542 -0.521

32 8.046 8.028 0.018 7.860 0.186

33 8.102 7.639 0.463 7.708 0.394

34 7.42 7.498 -0.078 7.415 0.005

35 7.301 7.349 -0.048 7.306 -0.005

36 7.276 7.305 -0.029 7.352 -0.076

37 8.456 8.397 0.059 8.407 0.049

38 8.149 8.319 -0.170 8.384 -0.235

39 8.886 8.288 0.598 7.944 0.942

40 7.854 7.878 -0.024 7.892 -0.038

41 8.114 8.144 -0.03 8.084 0.030

42 7.721 7.690 0.031 7.678 0.043

43 7.222 7.733 -0.511 7.743 -0.521

44 7.770 7.695 0.075 7.829 -0.059

45 7.886 7.696 0.190 7.829 0.057

46 7.770 7.661 0.109 7.737 0.033

47 7.444 7.479 -0.035 7.391 0.053

Table 2 continued

Compd. Actual COMFA COMSIA

Predicted Residues Predicted Residues

48 7.209 6.484 0.725 6.476 0.733

49 7.004 6.963 0.041 6.840 0.164

50 6.112 7.023 -0.911 7.049 -0.937

51 6.767 6.820 -0.053 6.915 -0.148

52 6.750 6.959 -0.209 6.931 -0.181

53 7.726 7.188 0.538 7.144 0.582

54 7.907 7.939 -0.032 7.92 -0.013

55 7.169 7.324 -0.155 7.286 -0.117

56 6.917 6.776 0.141 6.884 0.033

57 6.327 6.237 0.090 6.339 -0.012

58 6.111 6.199 -0.088 6.066 0.045

59 6.873 6.891 -0.018 6.774 0.099

60 6.614 6.641 -0.027 6.567 0.047
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activity than the corresponding methyl and isopropyl group

substituted compounds 37 (pIC50 = 8.456) and 39

(pIC50 = 8.886). In contrast, a big negative steric (yellow)

and a big positive steric (green) emerged at the meta-site of

the aromatic ring connected to R2. In addition, medium

yellow contours appeared above of R2 position, which sug-

gested that a bulky substituent in this region would decrease

the biological activities of the molecule, such as 8

(pIC50 = 8.745), (pIC50 = 7.827), and 10 (pIC50 = 7.294).

The electrostatic contour map of CoMFA is shown in

Fig. 2b. The electrostatic field is represented by blue-col-

ored and red-colored contours, in which the blue contours

denote that the electropositive groups are favorable to the

activity and the red regions indicate that the electronega-

tive groups are positive to the activity. Three red contours

at the site of R1 indicate that electronegative groups in this

area are positive to the activity. More electronegative sul-

fonyl at R1 of compound 4 (pIC50 = 8.569) leads to its

high activity, while the less electronegative amide group at

the same position of compound 3 (pIC50 = 7.484),

respectively, showed inactivity. As shown in the electro-

static contour maps, a big blue color contour encompassed

the piperazine ring, which indicates that electropositive

groups in this region would be beneficial to the activity.

Small red color contours that appear near the methylene

connecting the piperazine ring and benzene indicate that

negatively charged substituents at this position also have a

little influence on the activity.

CoMSIA contour maps

The CoMSIA-generated maps indicate that the presence of

a group with a special physicochemical property in the

designated area would be beneficial or detrimental to good

inhibitory activity. The CoMSIA not only calculated both

steric and electrostatic fields the same way as the CoMFA,

but also covered hydrophobic, H-bond donor (HBD), and

H-bond acceptor (HBA) fields. Favorable and unfavorable

contributions were fixed at 80 and 20%, respectively. Once

again, we choose the most active compound 23 to analyze

the effects of the five force fields.

Figure 3a displays the steric plot represented by yellow

and green color contours. The whole area of R2 is covered

by the yellow color contour, which shows that compounds

with bulk substituents in this area would decrease biolog-

ical activity. The difference between the activities of 1

(pIC50 = 6.553) and 3 (pIC50 = 7.484) is due to the

presence of small volume of imide in 3, whereas 1 has a

sterically more demanding substitution at this position. The

second adverse steric contour was discovered near the R1

ring indicating the adverse effect of steric bulk, while there

are also two green contours at the opposite sites of the

yellow polyhedral suggesting that bulky groups were

acceptable at this position.

Figure 3b shows the influence of the electrostatic field in

the CoMSIA model. The red contour overlapping the

amide at the meta-site of the R2 aromatic means that the

electronegative groups in this region could improve the

inhibition. The large blue contour encompassing the

piperazine ring denotes that the electropositive substituents

in this area have a positive effect on the molecular activity.

For example, the activity of 50 (pIC50 = 6.112) with

methyl was less potent than compound 52 (pIC50 = 6.750),

which possesses an ester at this position.

In Fig. 3c, yellow and gray color contours represent the

effect of hydrophobicity on the molecular activity. One

yellow color contour can be seen covering the methylene

and ketone located in the meta-site of the R2 ring, which

suggests that hydrophobic groups in this region contribute

to the enhancement of the inhibition. But an equal volume

of gray color contour also can be seen near the piperazine

ring. In general, both of the hydrophobic favored and

hydrophilic contours emerge at the same area indicating

that the two groups are in equilibrium in this region. For

Fig. 2 CoMFA contour maps. Compound 23 is shown inside. a Steric field: favored (green) and disfavored (yellow). b Electrostatic field:

electropositive (blue) and electronegative (red) (color figure online)
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example, both values of 51 (pIC50 = 6.767) and 52

(pIC50 = 6.750) are basically the same.

Hydrogen bond donor (HBD) groups represented by

cyan (favorable) and purple (unfavorable) contour maps

are shown in Fig. 3d. From the contour map of the HBD, a

large cyan color contour can be seen in the vicinity of the

piperazine ring. For example, in the most active molecule

23, there is an imine between R1 and piperazine which

could form H-bonds with residues of the protein, indicating

that a hydrogen atom in this position is favorable to the

activity of molecule. The alignment of the blue polyhedron

has a small purple contour, which indicates that hydrogen

bond acceptor groups have little effect on the molecular

activity in this position.

Figure 3e illustrates the effects of a hydrogen bond

acceptor (HBA) in the CoMSIA model. Magenta color

(80% contribution) and red color (20% contribution) con-

tours, respectively, representing the HBA are favorable or

Fig. 3 CoMSIA contour maps. Compound 23 is shown inside. a Steric
field: favored (green) and disfavored (yellow). b Electrostatic field:

electropositive (blue) and electronegative (red). c Hydrophobic field:

favored (yellow) and disfavored (gray). d Hydrogen bond donor field:

favored (cyan) and disfavored (purple). e Hydrogen bond acceptor

field: favored (magenta) and disfavored (red) (color figure online)
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unfavorable to the biological activity. One large volume of

magenta color contour is discovered near the R1 ring

indicating that the presence of sulfonic groups in this area

could act as HBA attacking protons, which further showed

that HBA in this position was conductive to improving

inhibitory activity. Another magenta color contour emerges

below the piperazine ring, while there are two red contours

at the opposite position, which suggests a balance between

H-bond donor and H-bond acceptor in the same region.

In summary, the structural characteristics for better

inhibitory activities from the above-mentioned contour

analysis of CoMFA and CoMSIA models are:

1. R1: medium-sized and electronegative substituents at R1

site, and hydrogen bond acceptor (favorable).

2. R2: bulk substituents, electropositive and hydrophobic

substitutes at meta-site of R2 aromatic ring, and

hydrogen bond donor near the piperazine ring

(favorable).

Docking analysis

Through molecular docking, we found that the activity of

molecules is related to the free energy changes in the

process of binding with the protein. The most active inhi-

bitor 23 was selected to dock with the ALK-4DCE protein

and the results explain the interaction mechanism between

the ligand and the receptor, which is shown in Fig. 6. The

benzene ring among the common skeleton formed a p–
alkyl interaction with Pro160 (2.45 Å). On the other hand,

the benzene ring at R2 forms a p–r interaction with Gly31

(2.42 Å). Alkyl hydrophobic interactions form between the

piperazine ring and Val35 (5.23 Å) and Lys50 (4.73 Å),

which coincides with the hydrophobic contour map

depicted in Fig. 3e. There is a large yellow contour around

the benzene ring indicating that the introduction of

hydrophobic groups in this region is beneficial for the

inhibitory activity. According to the docking results, the

large pocket composed of Asp170, Gly169, Lys50 as dis-

played in Fig. 4 is sufficient for medium bulky substituents.

The green contour generated by the COMFA model at this

position also verified this conclusion. However, large bulky

substituents in this position would lead to steric hindrance

with the surrounding amino acids, which would lead to a

reduction in activity. Therefore, the introduction of too

large groups in this position is detrimental, which is con-

sistent with the steric contour map in the COMSIA model

of Fig. 2b. The results of molecular docking show that

most of the inhibitors have a similar binding pattern at the

active site of ALK.

Molecular dynamics simulation

In order to further verify the models of 3D-QSAR and

molecular docking, we applied MD simulations to establish

a more reliable mechanism to illustrate interactions between

ligand and receptor. The basic theory of MD simulations is

given by the molecular system initial motion state and the

natural motion of the molecules in the phase space. A 15 ns

simulation was run to obtain a stable conformation of

ligand–receptor complex in this study was shown in Fig. 5a.

The RMSDs of the trajectory with respect to the initial

structure ranged from 2.5 to 3.0 Å. After 2 ns, the RMSDs

of the complex reached about 5.3 Å and maintained a

similar value in the following simulation, which indicated

that the docked complex could reach metastable conforma-

tion after 2 ns of simulation. A superposition of the lowest-

energy structure extracted from the MD simulation (blue)

Fig. 4 Docking result of the

representative ligand 23 into the

binding site of the ALK protein.

Ligands and the important

residues for binding interaction

are depicted by stick and line

models
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and the initial structure (green) for the 23–4DCE complex

are shown in Fig. 5b. Through the analysis of the interac-

tions between 23 and the receptor after MD simulation, we

explored the similarities and differences between molecular

docking and MD simulation. Figure 6 shows the lowest-

energy structure extracted from the MD simulation, from

which we can see that it mainly forms three hydrogen bonds

between the ligand and the receptor. The amide oxygen at

the meta position of the benzene ring forms a hydrogen

bond with NH of His32 (–C=O���HN–, 2.45 Å). The oxygen

atom of the sulfonic group acts as a hydrogen bond acceptor

to form a H-bond with NH of Gly31 (–C=O���HN–, 1.77 Å),

which is consistent with the H-bond acceptor contour

depicted in Fig. 3e. There is a large magenta contour near

the R1 position, which indicates that H-bond acceptor

groups in this area are favorable for the inhibitory activity.

Residues Gly31, Val35, and His32 form hydrophobic

contacts with the ligands, which are beneficial for the

inhibitory activity. On the other hand, the benzene ring at

the R2 forms a p-stacking bond with His32 which further

strengthens the correlation between the inhibitory and the

receptor.

Conclusion

QSAR and molecular dynamics were applied to analyze

and explore characteristics of DAAP analogues as ALK

inhibitors. The CoMFA and CoMSIA models nicely

explained the intermolecular interactions between the

inhibitors and the surrounding environment. Docking and

molecular dynamics studies demonstrated that hydrogen

bond formed between the inhibitors and ALK-4DCE pro-

tein play an important role in activity of the inhibitors. In

Fig. 5 a Plot of the root-mean-

square deviation (RMSD) of

docked complex versus the MD

simulation time in the MD-

simulated structures. b View of

superimposed backbone atoms

of the lowest-energy structure of

the MD simulation (blue) and

the initial structure (green) for

the 23/4DCE complex
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addition, the MD simulation results are consistent with the

results of QSAR models and molecular docking in terms of

the reliability and stability of the derived models. Some

key residues (His32, Gly31, Gly169, Asp170, Val35,

Ala100, Pro160, Lys50, and Leu30) and three hydrogen

bonds (His32, Gly31, and Leu30) were discovered in the

binding site, which indicated that the model could provide

guidance for further research in the development of new

ALK inhibitors.

Materials and methods

Dataset and biological activity

Sixty DAAP analogues involved in this work were reported

by Ao Zhang and co-workers [16, 24, 28]. The range of

IC50 values for these compounds was 0.7–775 nM. The

bioactivities of the derivatives were expressed as pIC50

(= -log IC50) values. The samples were divided into a

training set of 44 molecules for model generation and a test

set of 15 molecules for model validation at a ratio of 3:1.

The structures and activity values of each molecule used in

the study are shown in Table 3. The test molecules were

selected randomly such that the dataset showed high

structural diversity and a wide range of activities [30].

Molecular modeling and alignment procedure

CoMFA and CoMSIA models were all performed using the

SYBYL-X 2.0 software. All molecules were loaded with

Gasteiger–Hückel charges and optimized by using the

Tripos force field [31] with Powell energy gradient algo-

rithms at a convergence criterion of 0.02 kJ/mol Å and a

maximum of 1000 iterations [32]. Table 3 lists the com-

mon scaffold of the samples, various substituents, and the

IC50 value of each molecule. Molecular alignment was the

most critical step in the establishment of the CoMFA and

CoMSIA models, which needed to analyze the three-di-

mensional structure of the samples to find a

suitable conformational template for alignment [33]. Since

the molecules share a common structure, it was assumed

that each molecule binds into the active site of protein in a

similar way. In this context, we adopted the rigid body

alignment rule. Compound 23, which had the highest pIC50

(9.155), was selected as the template molecule of DAAP

derivatives. In the end, the program automatically super-

posed all the molecules and then the database was updated

to a new molecular library with new orientation [32].

Alignment of training and test set compounds is shown in

Fig. 7. The common substructure is depicted in bold.

CoMFA and CoMSIA

In order to build a reliable 3D-QSAR model, the partial

least squares (PLS) method was carried out based on the

above alignment of molecules [34]. To find the best

models, we calculated various parameters which were used

to evaluate and analyze the robustness and predictive

ability of these models, including the internal validations of

LOO cross-validated q2, non-cross-validated coefficient r2,

standard error of estimate (SEE), and F statistic values.

Fig. 6 Plot of the MD-simulated structure of the binding site with the ligand. Compound 23 in the complex is in the active site of the ALK

enzyme. Active site amino acid residues are represented as sticks; the inhibitor is shown as stick and ball model
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Table 3 Structures and activity values of the DAAP molecules [16, 24, 28]
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Table 3 continued
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Table 3 continued
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According to these statistical results, the final models were

established. The statistical results of the CoMFA and

CoMSIA models are summarized in Table 1. We used the

default settings in SYBYL in the optimization process of

the CoMFA and CoMSIA descriptors [35]. Figure 8

showed a linear relationship between the predicted and true

values calculated by the CoMFA and CoMSIA models.

Molecular docking

Molecular docking is an important computational chem-

istry tool with clear and intuitive definition. The structure

and binding energy of protein–ligand complexes can be

found in the case of known protein and ligand space

structures [36]. We applied the SYBYL-X 2.0, which is

based on a prototype to explore more information on the

binding mode of ligand and ALK protein. The crystal

structure of the ALK protein complex was obtained from

the RCSB Protein Data Bank (PDB entry code: 4DCE).

After the extraction of ligands, removal of water mole-

cules, and hydrogenation, a prototype was generated by

using the ligand extraction method for molecular docking.

The energy minimization of the protein structure was

performed by applying the Tripos force field, and partial

atomic charges were calculated by means of the Gasteiger–

Hückel method. The protein interaction of the ligand was

visualized by using Discovery Studio Visualizer 2.5 (Ac-

celrys Software Inc.), which provided a molecular

Fig. 7 Molecular alignments of

all compounds in the dataset.

Compound 23 was used as the

template for alignment

Fig. 8 Plots of predicted versus actual pIC50 values for all the molecules based on CoMFA (a) and CoMSIA models (b)
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modeling environment for both small molecule and

macromolecule.
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