ORIGINAL PAPER

Design, synthesis, and evaluation of the anticancer properties of a novel series of carboxamides, sulfonamides, ureas, and thioureas derived from 1,2,4-oxadiazol-3-ylmethyl-piperazin-1-yl substituted with pyrazolo[1,5-*a*]pyrimidine derivatives

A. K. Ajeesh Kumar¹^(D) · Kanya B. Nair¹ · Yadav D. Bodke² · Ganesh Sambasivam¹ · Kishore G. Bhat³

Received: 22 December 2015/Accepted: 28 February 2016/Published online: 21 March 2016 © Springer-Verlag Wien 2016

Abstract A series of novel carboxamides, sulfonamides, ureas, and thioureas derived from 1,2,4-oxadiazol-3-ylmethyl-piperazin-1-yl substituted with pyrazolo[1,5*a*]pyrimidine analog were designed and synthesized. The newly synthesized compounds were characterized by ¹H NMR, ¹³C NMR, ESI–MS, and IR and were tested for their in vitro antiproliferative activity by MTT assay. Out of these twenty derivatives, five compounds showed good anticancer activity against HeLa cell line. These are superior with less than 10 µg/cm³ of *IC*₅₀ when compared to the marketed anticancer drug paclitaxel with 30 µg/cm³ of *IC*₅₀ against Hela cell line.

Electronic supplementary material The online version of this article (doi:10.1007/s00706-016-1723-9) contains supplementary material, which is available to authorized users.

A. K. Ajeesh Kumar ajuedat@gmail.com

- ¹ Anthem Biosciences Pvt. Ltd., # 49, Bommasandra Industrial Area, Bommasandra, Bangalore 560 099, Karnataka, India
- ² Department of PG Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shimoga 577 451, Karnataka, India
- ³ Department of Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum 590 010, Karnataka, India

Graphical abstract

Keywords Carboxamide · Sulfonamide · Urea · Thiourea · Pyrazolo[1,5-*a*]pyrimidine · 1,2,4-Oxadiazole · Piperazine · Anticancer activity

Introduction

Pyrazole represents one of the most active classes of heterocyclic compounds, since many of them possesses a wide range spectrum of biological activities like potential inhibitors of HIV-1 [1], analgesic drugs [2, 3], antihypertensive agents [4], anticancer activity [5, 6]. Also, compounds containing substituted pyrimidine derivatives are of significant biological importance and used as antibacterial [7], antifungal [8], antitumor [9], antiviral [10], anti-inflammatory [11], and antihypertensive [12] agents.

In general, pyrazole derivatives are utilized for the synthesis of other fused heterocyclic systems. Among these, pyrazolopyrimidines which mimic structurally with biogenic purines [13, 14] have considerable chemical and pharmacological importance and are bioisosters to triazolothienopyrimidines [15], imidazoquinazolines [16], and pyrimidoquinazolines [17]. Many analogs of pyrazolo[1,5-

a]pyrimidine are associated with diverse pharmacological activities [18–22] like tuberculostatic [23], antimicrobial activities [24], neuroleptic [25], CNS depressant [26], and antihypertensive [27]. Moreover, pyrazolopyrimidines have useful properties as antimetabolite in purine biochemical reactions.

Derivatives of 1,2,4-oxadiazole constitute an important family of heterocyclic compounds [28]. Since many of them exhibit a remarkable biological activity [29, 30] and find wide usage as dyes, photosensitive electrical materials, polymer precursors, and stabilizers, the synthesis and transformations have received great attention for a long time.

In particular, 2-aryl-5-substituted 1,2,4-oxadiazoles have been reported to show antibacterial [31], antifungal [32], analgesic, anti-inflammatory [33], and hypoglycemic activities. Also 1,2,4-oxadiazoles are well-known compounds with promising physiological activities [34, 35]. 1,2,4-Oxadiazole rings occur widely in biologically active synthetic compounds and are often used in drug discovery as good bioisosters of amides and esters [28, 36, 37]. Furthermore, they have been reported to have agonist for cortical muscarinic receptors [38–41], benzodiazepine [42, 43], 5-HT_{1D} (5-hydroxytryptamine) receptors [29], and as antagonists for 5-HT₃ [30] or histamine H₃ receptors [44]. They showed activity against several breast and colorectal cancer cell lines [45–47].

A number of piperazine derivatives have been shown to possess a variety of pharmacological properties like antihistamanic [48], analgesic [49], antiinflammatory [50], anti-HIV [51], antimalarial [52], antitubercular [53], and antimicrobial activity [54]. Hence, piperazine is found to be an important structural feature in some synthetic drugs such as prazosin, lidoflazine, and urapidil.

Prompted by these observations and as a continuation of our ongoing research program in the synthesis of biologically active molecules, we envisaged the synthesis of novel molecules based on the three lead pharmacophores realized viz., pyrazolo[1,5-*a*]pyrimidine, 1,2,4-oxadiazole, and piperazine. In this communication, we disclose the synthesis of a novel series of carboxamides, sulfonamides, ureas, and thioureas derived from 1,2,4-oxadiazol-3ylmethyl-piperazin-1-ylsubstituted with pyrazolo[1,5-*a*]pyrimidine analog with representative example, i.e., compound **12l** as shown in Fig. 1, showing good growth inhibition against HeLa cell line.

Synthesis of a series of novel carboxamides, sulfonamides,

ureas, and thioureas derived from 1,2,4-oxadiazol-3-

Results and discussion

Chemistry

Fig. 1 Chemical structure of compound 121 which showed good antiproliferative activity

ylmethyl-piperazin-1-yl substituted with pyrazolo[1,5-a]pyrimidine derivative involves four consecutive schemes. First part involves the synthesis of 5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-carboxylic acid as shown in Scheme 1. This involves the synthesis of ethyl 5-amino-1H-pyrazole-4-carboxylate (2) as the initial counterpart and in general, it was carried out by two steps protocol [55, 56]. But we have carried out the synthesis by a single pot reaction from the commercially available ethyl cyanoacetate (1), dimethylformamide dimethylacetal, and hydrazine hydrate in acetic acid medium under mild heating with dimethylformamide as solvent. The ethyl 5-amino-1*H*-pyrazole-4-carboxylate (2) was converted to the ethyl 5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-carboxylate (3) with acetyl acetone in acetic acid medium at 82 °C in good yield [57]. After having synthesized the known compound 3, the 5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-carboxylic acid (4) was synthesized by hydrolyzing the ester derivative 3 with sodium hydroxide in ethanol and water medium under reflux condition.

Second part involves the synthesis of *tert*-butyl 4-(N'hydroxycarbamimidoyl)piperazine-1-carboxylate (8) in three steps as shown in Scheme 2. The piperazine-1-carboxylic acid *tert*-butyl ester (6) was prepared by heating piperazine (5) with BOC-anhydride in methanol at 50 °C for 2 h [58]. The tert-butyl 4-(cyanomethyl)piperazine-1carboxylate (7) was synthesized by reaction with piperazine-1-carboxylic acid *tert*-butyl ester and chloroacetonitrile with potassium carbonate in acetonitrile at 60 °C for 5 h. After having synthesized the nitrile derivative, tert-butyl 4-(N'-hydroxycarbamimidoyl)piperazine-1-carboxylate (8) was prepared by reacting *tert*-butyl 4-(cyanomethyl)piperazine-1-carboxylate (7) with hydroxylamine hydrochloride in the presence of sodium carbonate at reflux temperature with methanol for 5 h.

The third part involves the synthesis of scaffold, 5,7-dimethyl-3-(3-piperazin-1-ylmethyl-1,2,4-oxadiazol-5-yl)pyrazolo[1,5-*a*]pyrimidine (**11**) as shown in Scheme 3. This involves the synthesis of 4-[2-(5,7-dimethylpyrazolo[1,5-*a*]pyrimidine-3-carboxamido)-2-(hydroxyimino)-ethyl]piperazine-1-carboxylic acid *tert*-butyl ester (**9**)

derived from 5.7-dimethylpyrazolo[1,5-a]pyrimidine-3carboxylic acid (4) and *tert*-butyl 4-(N'-hydr oxycarbamimidoyl)piperazine-1-carboxylate (8) using EDCI•HCl and HOBt with N-methylmorpholine in dimethylformamide solvent at room temperature for 6 h. Cyclization of this amide derivative was initially tried by heating with N,N'-dicyclohexylcarbodiimide (DCC) in ethanol at 80 °C. But the isolation involved the purification by column chromatography due to the formation of dicyclohexylurea (DCU) from the coupling agent owing to lower yields. We then employed 1,8-diazabicycloundec-7-ene (DBU) as the dehydrating agent. So, the amide intermediate was further cyclised to the corresponding 1,2,4-oxadiazole, 4-[5-(5,7dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4-oxadiazol-3yl)methyl]piperazine-1-carboxylic acid *tert*-butyl ester (10) by heating at 90 °C with DBU in N,N-dimethylformamide (DMF) solvent for 2 h. In order to synthesize novel compounds from above intermediate, we have prepared the

corresponding free amine, 5,7-dimethyl-3-(3-piperazin-1ylmethyl-1,2,4-oxadiazol-5-yl)pyrazolo[1,5-a]pyrimidine (11) by deprotecting BOC group of piperazine ring from the cvclized 1,2,4-oxadiazole moiety. This step was carried out using trifluoroacetic acid as the reagent in dichloromethane solvent at room temperature. The trifluoroacetate salt obtained was made basic with saturated potassium carbonate solution and extracted with dichloromethane:methanol (100:5). The crude product obtained after evaporation was recrystallised from ethyl acetate:hexane (1:8) medium at room temperature to get the scaffold as off white solid.

The fourth part involves the synthesis of target molecules **12a–12t** as shown in Scheme 4. The free amine obtained after BOC cleavage was derivatized into four series of final target molecules. First series involves the synthesis of urea derivatives **12a–12e** obtained by treating amine and the corresponding isocyanates in THF medium

at room temperature. The second series involves the synthesis of thiourea derivatives **12f–12j** obtained by reacting amine and the corresponding isothiocyanates in THF medium at room temperature. The third series involves the synthesis of carboxamide derivatives **12k–12o** obtained by the reacting amine and corresponding acid chlorides with *N*-methylmorpholine as base in dimethylacetamide as solvent at room temperature. The fourth series involves the synthesis of sulfonamide derivatives **12p–12t** obtained by reacting amine and the corresponding sulfonyl chlorides with *N*-methylmorpholine as base in dimethylacetamide as solvent at room temperature.

The structures for all the above compounds were confirmed by spectral studies. The structure of the amide compound, 4-[2-(5,7-dimethylpyrazolo[1,5-*a*]pyrimidine-3-carboxamido)-2-(hydroxyimino)ethyl]piperazine-1-carboxylic acid *tert*-butyl ester (9) was elucidated by its IR, ¹H and ¹³C NMR, and LC–MS analyses. The ¹H NMR spectrum of 9 showed singlet at $\delta = 10.69$ ppm, for one proton which corresponds to the amide NH proton. Compound **10** was elucidated by its IR, ¹H and ¹³C NMR, and LC–MS analyses. The ¹H NMR of compound **10** did not show the peak for –NH₂ group of carboximidamide, thereby confirming the oxadiazole ring formation. The ¹³C NMR showed a signal at 170.87 ppm confirming the presence of oxadiazole ring in the molecule. Compound **11** was elucidated by its IR, ¹H and ¹³C NMR, and LC–MS analyses. The ¹H NMR of free amine scaffold did not show the peak for BOC group of piperazine, thereby confirming the free piperazine ring in the molecule. The IR spectrum showed peak at 3327 cm⁻¹ which attributed to the –N–H stretch vibration of the amine from the piperazine ring.

The results of all the newly synthesized compounds **12a–12t** were confirmed by ¹H NMR, ¹³C NMR, LC–MS, and IR analyses and given in the "Experimental" section. The structures of urea derivatives **12a–12e** were confirmed by the following spectral studies. In general, the FT-IR spectrum of **12a** contained a broad band at 1631 cm⁻¹ which was attributed to the carbonyl stretching vibration of the corresponding urea derivative. The ¹H

NMR spectrum of 12a contained a broad singlet with a chemical shift of 6.37 ppm which was consistent with the proton of the -NH from the urea link. ¹³C NMR spectrum of 12a contained a signal at 158.98 ppm which was consistent with the carbonyl group from the urea link. The structure of compound 12a was further confirmed by mass spectrometry which gave a molecular ion peak with an m/zvalue of 433.4 for [M+H] which was consistent the molecular formula $C_{22}H_{24}N_8O_2$. The structures of thiourea derivatives 12f-12j were confirmed by the following spectral studies. In general, the FT-IR spectrum of 12i contained a broad band at 1629 cm⁻¹ which was attributed to the C=S stretching vibration of the corresponding thiourea derivative. The ¹H NMR spectrum of **12i** contained a broad singlet with a chemical shift of 6.72 ppm which was consistent with the proton of the -NH from the thiourea link. The ¹³C NMR spectrum of **12i** contained a signal at 181.63 ppm which was consistent with the thiocarbonyl group from the thiourea link. The structure of compound 12i was further confirmed by mass spectrometry which gave a molecular ion peak with an m/z value of 429.4 for [M+H] which was consistent the molecular formula C₂₀H₂₈N₈OS.

The structures of carboxamide derivatives 12k-12o were confirmed by the following spectral studies. In general, the FT-IR spectrum of 120 contained a broad band at 1654 cm⁻¹ which was attributed to the carbonyl stretching vibration of the corresponding carboxamide derivative. The ¹H NMR spectrum of **120** contained a sharp singlet with a chemical shift of 7.78 ppm which was consistent with the protons of the 2,4,6-trichlorobenzene ring from the carboxamide link. The ¹³C NMR spectrum of **120** contained a signal at 162.20 ppm which was consistent with the carbonyl group from the carboxamide group. The structure of compound 120 was further confirmed by mass spectrometry which gave a molecular ion peak with an m/z value of 522.1 for [M+H], which was consistent the molecular formula C₂₂H₂₀Cl₃N₇O₂. Finally, the structures of sulfonamide derivatives 12p-12t were confirmed by the following spectral studies. In general, the FT-IR spectrum of **12p** contained a broad band at 1346 cm^{-1} , which was attributed to the sulfonyl antisymmetric stretching vibration of the corresponding sulfonamide derivative. The ¹³C NMR spectrum of 12p contained two signals at 155.88 and 159.22 ppm with a coupling constant of J = 250.50 Hz which were consistent with the fluorine group from the sulfonamide derivative. The structure of compound 12p was further confirmed by mass spectrometry which gave a molecular ion peak with an m/z value of 506.4 for [M+H] which was consistent the molecular formula C₂₁H₂₁₋ CIFN₇O₃S. The spectral data generated in the current study were in good agreement with the assigned structures of all the novel molecules synthesized in this series.

Anticancer evaluation

All compounds were screened for their in vitro anti-cancer activity against representative human cervical cancer cell line called HeLa. Paclitaxel was used as a reference standard. The data generated from this study Table 1 showed that some of the target compounds exhibit good potency in inhibiting the growth of HeLa cell line. Compounds **12b**, **12e**, **12k**, **12l**, **12m**, and **12r** were showed good anti proliferative activity against HeLa cell line. Interestingly, among these compounds, the in vitro anticancer activity of compounds **12b**, **12e**, **12k**, **12l**, **12m**, and **12r** are superior to the marketed anti-cancer drug paclitaxel. However, some of the synthesized compounds are less potent when compared to paclitaxel.

The anticancer activity of these novel compounds **12a–12t** suggested that introduction of the urea derivatives, carboxamides, and sulfonamides were increased the antiproliferative activity when compared to the thiourea derivatives. In addition to these observations, we have concluded that the optimum anticancer activity observed for compounds containing one or more halogen derivatives.

Conclusion

A series of novel carboxamides, sulfonamides, ureas, and thioureas derived from pyrazolo[1,5-a]pyrimidine scaffold were designed and successfully synthesized. The synthesis involves the preparation of both 5,7-dimethylpyrazolo[1,5a)pyrimidine-3-carboxylic acid and 4-(N-hydroxycarbamimidoylmethyl)piperazine-1-carboxylic acid tert-butyl ester. The coupling reaction between both leads to get the corresponding amide 4-{2-[(5,7-dimethyl-1,3-dihydropyrazolo[1,5-a]pyrimidine-3-carbonyl)amino}-2-(hydroxyimino)ethyl]piperazine-1-carboxylic acid tert-butyl ester. This amide was further cyclized to the corresponding heterocyclic 4-[5-(5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4-oxadiazol-3-ylmethyl]piperazine-1-carboxylic acid tert-butyl ester with DBU in DMF heating condition. The BOC deprotection was carried out with trifluoroacetic acid in dichloromethane medium to get the scaffold 5,7dimethyl-3-(3-piperazin-1-ylmethyl-1,2,4-oxadiazol-5-yl)pyrazolo[1,5-a]pyrimidine. The synthesized compounds were characterized by ¹H NMR, ¹³C NMR, ESI-MS, and IR. The new compounds were tested for their in vitro antiproliferative activity by MTT assay. Out of these twenty derivatives, compounds 12b, 12e, 12k, 12l, and 12r showed good anticancer activity against HeLa cell line. These are superior with less than 10 μ g/cm³ of *IC*₅₀ when compared to the marketed anticancer drug paclitaxel with 30 μ g/cm³ of *IC*₅₀ against Hela cell line.

Table 1 Anticancer activity of compounds 12a-12t

reflectance module (24 scans).

		· · · ·							
Compound	Concentration/ µG	OD at 492 nm	% of cell lysis as observed	<i>IC</i> 50	Compound	Concentration/ µG	OD at 492 nm	% of cell lysis as observed	<i>IC</i> 50
11	10	0.632	No lysis	30 µg	12n	10	0.712	No lysis	>30 µg
	20	0.510	25			20	0.682	25	
	30	0.495	50			30	0.620	50	
12	10	0.680	No lysis	30 µg	120	10	0.745	No lysis	30 µg
	20	0.646	25			20	0.660	25	
	30	0.630	50			30	0.412	50	
12a	10	0.690	25	>30 µg	12p	10	0.490	50	20 µg
	20	0.682	25			20	0.432	50	
	30	0.640	50			30	0.420	>50	
12b	10	0.362	50	>10 µg	12q	10	0.632	No lysis	30 µg
	20	0.340	75			20	0.510	25	
	30	0.311	100			30	0.496	50	
12c	10	0.802	No lysis	No activity	12r	10	0.281	75	<10 µg
	20	0.790	No lysis			20	0.261	>75	
	30	0.786	No lysis			30	0.200	100	
12d	10	0.540	25	30 µg	12s	10	0.802	No lysis	No activity
	20	0.486	>25			20	0.790	No lysis	
	30	0.465	50			30	0.786	No lysis	
12e	10	0.281	100	<10 µg	12t	10	0.782	No lysis	30 µg
	20	0.262	100			20	0.626	25	10
	30	0.211	100			30	0.424	50	
12f	10	0.721	No lysis	>30 µg	Control	10	0.862	No lysis	
	20	0.740	25	10	Paclitaxel	10	0.512	No lysis	30 µg
	30	0.789	>25		i ucinu.toi	20	0.312	25	50 µg
12g	10	0.521	25	20 µg		30	0.401	20 50	
	20	0.428	50	-0 48		50	0.401	50	
	30	0.410	>50		г •	. 1			
12h	10	0.781	No lysis	No activity	Experim	iental			
	20	0.721	No lysis	ito activity	<i>a</i>		1.0		
	30	0.721	No lysis		Chemical	s were obtain	ed from S	Sigma-Aldrich	Co. Final
12;	10	0.516	25	20. ug	purificatio	ons were car	ried out	using Merck	silica gel
121	20	0.310	23 50	20 µg	60–120 m	nesh size. TL	C experim	ents were per	formed on
	20	0.413	50 >50		alumina-b	backed silica g	gel 40 F25	94 plates (Mer	ck, Darm-
	30	0.411	>30	20	stadt, Gei	rmany). The p	plates wer	e illuminated	under UV
12j	10	0.302	>23	20 µg	(254 nm)	and $KMnO_4$.	Melting	points were of	determined
	20	0.428	50		using Bud	chi B-540. Al	I H and	¹⁵ C NMR sp	ectra were
101	30	0.416	50	10	recorded of	on Bruker AM	-300 and I	Bruker AM-40	0(300 and 13)
12k	10	0.281	75	<10 µg	400 MHz	tor 'H NM	R and 75	and 100 MH	Iz for ¹³ C
	20	0.224	100		NMR), I	Bruker BioSp	oin Corp.	, Germany.	Molecular
101	30	0.211	100	10	weights o	f unknown co	mpounds v	were checked	by LC MS
121	10	0.320	15	<10 µg	6200 ser	ies Agilent	i echnolog	y. Chemical	shifts are
	20	0.316	>75		reported i	in ppm (∂) w	ith refere	nce to interna	u standard
	30	0.312	>75		TMS. The	e signals are c	lesignated	as follows: s,	singlet; d,
12m	10	0.408	50	10 µg	doublet; t,	, triplet; m, mi	utiplet; brs	s, broad single	IK for all
	20	0.388	75		the synthe	esized compo	unds was	recorded using	g a Bruker
	30	0.341	>75		Alpha FI	-IR spectrom	eter using	a diamond A	TR single

5-Amino-1H-pyrazole-4-carboxylic acid ethyl ester (2, C₆H₉N₃O₂)

To a solution of 25 g of ethyl cyanoacetate (1, 0.221 mol) in 25 cm³ dimethylformamide was added 37.5 cm³ glacial acetic acid (0.077 mol) followed by 47.40 g of N,Ndimethylformamide dimethylacetal (0.397 mol) drop wise at room temperature and stirred for 1 h. To the resultant pale yellow color solution was added 25 cm³ hydrazine hydrate (0.42 mol) drop wise at 0 °C and the reaction medium was stirred for 2 h 50 °C. After completion of the reaction, the reaction medium was diluted with 2.5 dm^3 of water and extracted with 2×700 cm³ of ethyl acetate. The combined organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure to obtain the crude product as pale brown liquid. The crude product was further purified by column chromatography over silica gel, eluted with chloroform/methanol (95:5, v/v) to afford the compound 2 as a white solid (29 g, 85 %). M.p.: 106.7-108.9 °C; TLC: $R_f = 0.22$ (CHCl₃–MeOH 8:2); IR (ATR): $\bar{v} = 3193$ (-NH), 2972 (=C-H), 1662 (ester -C=O), 1551 (-C-C), 1496 (ester -C-O), 1337 (C-N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.23$ (3H, t, J = 8 Hz, CH₃), 4.15 $(2H, q, J = 8 Hz, OCH_2CH_3), 5.98 (2H, bs, ArNH_2), 7.45$ (1H, bs, ArH), 12.04 (1H, bs, pyrazole NH) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 14.9, 59.1, 94.0, 139.9, 151.8,$ 164.2 ppm; LC-MS: $m/z = 156.7 \text{ [M+H]}^+$.

Ethyl 5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-carboxylate (**3**)

This compound was prepared as per the reported literature [59] and obtained as a pale yellow solid (34 g, 98 %). M.p.: 102.5–105.2 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.30$ (3H, t, J = 8 Hz, CH₃), 2.58 (3H, s, ArCH₃), 2.71 (3H, s, ArCH₃), 4.27 (2H, q, J = 8 Hz, OCH₂CH₃), 7.12 (1H, s, ArH), 8.53 (1H, s, ArH) ppm.

5,7-Dimethylpyrazolo[1,5-a]pyrimidine-3-carboxylic acid (4)

This compound was prepared as per the reported literature [57, 59] and obtained as off white solid (25 g, 96 %). M.p.: 176.8–179.9 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.56$ (3H, s, ArCH₃), 2.70 (3H, s, ArCH₃), 7.09 (1H, s, ArH), 8.49 (1H, s, ArH) ppm, 12.24(1H, bs, acid) which is consistent with literature values.

Piperazine-1-carboxylic acid tert-butyl ester (6, C₉H₁₈N₂O₂)

To a solution of 30 g of piperazine (5, 0.348 mol) in 120 cm³ of methanol was added a solution of 83.54 g di*tert*-butyl carbonate (0.382 mol) in 90 cm³ of methanol drop wise over a period of 45–60 min at 0 °C under nitrogen atmosphere. The reaction mixture was heated to 50 °C for 2 h. After completion of the reaction, the reaction mixture was concentrated completely under

reduced pressure to remove methanol. The crude material obtained was purified by column chromatography on silica gel eluted with chloroform/methanol (100:4, v/v) to afford compound **6** as off white solid (35.6 g, 55 %). M.p.: 45.5–46.8 °C; TLC: $R_{\rm f} = 0.35$ (CHCl₃–MeOH 9:1); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.38$ (9H, s, CH₃), 2.29–2.39 (1H, m, NH), 2.60 (4H, t, J = 4.95 Hz, N(CH₂)₂, 3.20 (t, 4H, J = 5.4 Hz) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 28.5$, 45.9 (two peaks), 78.9, 154.4 ppm; MS: m/z = 187.3 [M+H]⁺.

4-(Cyanomethyl)piperazine-2-carboxylic acid tert-butyl ester (7)

This compound was prepared following the protocol mentioned in the literature [60] and obtained as an off white solid (32 g, 88 %). M.p.: 91.5–93.7 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.40$ (9H, s, CH₃), 2.41 [4H, t, J = 5.1 Hz, N(CH₂)₂], 3.35 [t, 4H, J = 5.4 Hz, N(CH₂)₂], 3.76 (2H, s, CH₂) ppm; and values were in correlation with reported literature.

4-(*N*-Hydroxycarbamimidoylmethyl)piperazine-1-carboxylic acid tert-butyl ester (**8**)

This compound was prepared following the protocol mentioned in the literature [61] and obtained as off white solid (20 g, 70 %). M.p.: 236.6–238.6 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.39$ (9H, s, CH₃), 2.30 [4H, t, J = 4.8 Hz, N(CH₂)₂], 2.83 (2H, s, CH₂), 3.38 [4H, t, J = 8.1 Hz, N(CH₂)₂], 5.24 (2H, s, NH₂), 8.89 (1H, s, OH) ppm and values were in correlation with reported literature.

4-[2-(5,7-Dimethylpyrazolo[1,5-a]pyrimidine-3-carboxamido)-2-(hydroxyimino)ethyl]piperazine-1-carboxylic acid tert-butyl ester (**9**, C₂₀H₂₉N₇O₄)

To a solution of 13 g of compound 4 (0.067 mol) and 18.44 g of compound **8** (0.071 mol) in 65 cm^3 of dimethylformamide was added 17.98 g of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.094 mol) followed by 14.39 g of 1-hydroxybenzotriazole (0.094 mol) and 4 g of N-methylmorpholine (0.033 mol) at room temperature under nitrogen atmosphere. The resultant reaction mixture was stirred for 6 h at room temperature. After completion of the reaction, reaction mixture was quenched with drop-wise addition of 650 cm³ of ice-cold water and stirred for further 30 min at room temperature. The solid precipitated out was filtered, washed with 100 cm³ of cold water and dried under vacuum at 50 °C for 1 h to afford compound 9 as an off white solid (22 g, 75 %). M.p.: 164.3-167.1 °C; TLC: $R_{\rm f} = 0.28$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{v} = 3490$ (amide -NH), 2981 (=C-H), 2812 (-OH), 1712 (ester -C=O), 1685 (C=N), 1630 (amide -C=O), 1550 (-C-C), 1476 (ester -C-O), 1475 (amide -C-O) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.39$ (9H, s, CH₃), 2.38–2.40

[4H, m, N(CH₂)₂], 2.60 (3H, s, CH₃), 2.73 (3H, s, CH₃), 3.06 (2H, s, CH₂), 3.34–3.36 [4H, m, N(CH₂)₂], 6.52 (1H, s, NH), 6.91 (1H, s, OH), 7.15 (1H, s, pyrimidine H), 8.71 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 17.0, 25.0, 28.5$ (three peaks), 43.0, 52.7 (two peaks), 57.0, 79.2, 101.0, 111.0, 146.6, 147.4, 147.5, 154.2, 156.9, 159.6, 163.0 ppm; LC–MS: *m/z* = 432.0 [M+H]⁺.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carboxylic acid tert-butyl ester (**10**, C₂₀H₂₇N₇O₃)

To a solution of 20 g of compound 9 (0.046 mol) in 100 cm³ of dimethyl formamide, 8.3 cm³ of DBU (0.055 mol) was added drop wise at room temperature under nitrogen atmosphere. The resultant reaction mixture was stirred at 90 °C for 2 h. After completion of reaction, the reaction mixture was quenched with drop-wise addition of 1 dm³ of ice-cold water and stirred for further 30 min at room temperature. The solid precipitated out was filtered, washed with 200 cm³ of cold water and dried under vacuum at 50 °C for 1 h to afford compound 10 as off white solid (15.9 g, 83 %). M.p.: 166.0-168.3 °C; TLC: $R_{\rm f} = 0.35$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{v} = 2969$ (=C– H), 1678 (ester -C=O), 1556 (-C-C), 1427 (ester -C-O), 1323 (-C-N) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.39$ (9H, s, CH₃), 2.51–2.59 [4H, m, N(CH₂)₂], 2.64 (3H, s, CH₃), 2.74 (3H, s, CH₃), 3.07 (2H, s, CH₂), 3.34-3.36 [4H, m, N(CH₂)₂], 7.22 (1H, s, pyrimidine H), 8.84 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 24.9, 28.5$ (three peaks), 52.5 (two peaks), 52.6 (two peaks), 79.2, 95.2, 111.6, 145.2, 146.5, 167.4, 170.8 ppm; LC–MS: 147.5, 154.2, 163.5, $m/z = 414.4 \, [M+H]^+$.

5,7-*Dimethyl-3-(3-piperazin-1-ylmethyl-1,2,4-oxadiazol-5-yl)pyrazolo*[*1,5-a*]*pyrimidine* (**11**, C₁₅H₁₉N₇O)

To a solution of 15 g of compound 10 (0.036 mol) in 150 cm³ of dichloromethane was added 45 cm³ of trifluoroacetic acid drop wise at 0 °C under nitrogen atmosphere. The reaction mixture was slowly allowed to raise the temperature to 25 °C and stirred for 6 h. After completion of reaction, the reaction mixture was concentrated under reduced pressure and the residue was dissolved in water, basified with 75 cm³ of saturated potassium carbonate solution and extracted with $2 \times 150 \text{ cm}^3$ of dichloromethane/methanol (100:5, v/v). The combined organic extracts were dried over sodium sulfate, filtered, and concentrated completely to obtain the crude product as pale yellow solid. The crude material was further purified by recrystallization with ethyl acetate/hexane (1:8, v/v) at room temperature to afford compound 11 as an off white solid (8.5 g, 75 %). M.p.: 147.8–150.9 °C; TLC: $R_{\rm f} = 0.11$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{v} = 3327$ (–NH), 2958 (=C-H), 1556 (-C-C), 1323 (-C-N) cm⁻¹; ¹H NMR

(400 MHz, DMSO- d_6): $\delta = 2.42-2.49$ [4H, m, N(CH₂)₂], 2.63 (3H, s, CH₃), 2.67–2.69 [4H, m, N(CH₂)₂], 2.76 (3H, s, CH₃), 3.63 (2H, s, CH₂), 7.21 (1H, s, pyrimidine H), 8.84 (1H, s, pyrazole H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 16.9, 24.9, 45.8$ (two peaks), 53.2, 54.1 (two peaks), 95.2, 111.5, 145.1, 146.4, 147.4, 163.3, 167.4, 170.6 ppm; LC–MS: m/z = 314.3 [M+H]⁺.

Synthesis of substituted urea derivatives **12a–12e** (general procedure)

To a solution of compound **11** (1.00 mmol) in 4 cm³ of tetrahydrofuran, corresponding isocyanates (1.05 mmol) were added drop wise at 0 °C under nitrogen atmosphere. The reaction medium was stirred at the same temperature for 30 min and then allowed to stir at room temperature for 1 h under nitrogen atmosphere. After completion of reaction, the reaction mixtures were concentrated under reduced pressure and purified on silica gel column chromatography with chloroform/methanol (100:2, v/v) to afford corresponding urea derivatives **12a–12e**.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carboxylic acid phenylamide (**12a**, C₂₂H₂₄N₈O₂)

From 0.100 g of compound 11 (0.319 mmol) and 0.040 g of phenyl isocyanate (0.335 mmol), compound 12a was obtained as an off white solid (0.12 g, 85 %) after chromatography on a silica gel column with chloroform/ methanol (100:2, v/v). M.p.: 189.2-192.2 °C; TLC: $R_{\rm f} = 0.43$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{v} = 3301$ (-NH), 2920 (=CH), 1631 (amide -C=O), 1541 (-C-C), 1437 (amide -C-O), 1363 (Ar-C-N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.74$ (3H, s, ArCH₃), 2.76–2.83 [4H, m, N(CH₂)₂], 2.84 (3H, s, ArCH₃), 3.59–3.69 [4H, m, N(CH₂)₂], 3.90 (2H, s, -CH₂-), 6.37 (1H, bs, urea NH), 6.84 (1H, s, pyrimidine H), 7.04 (1H, t, J = 7.2 Hz, ArH), 7.26–7.34 (2H, m, ArH), 7.34 (2H, d, J = 8.4 Hz, ArH), 8.72 (1H, s, pyrazole H) ppm; ¹³C NMR (75 MHz, DMSO d_6): $\delta = 16.9, 24.9, 44.1, 52.4, 52.7, 95.2, 111.6, 121.0,$ 121.5, 140.3, 143.0, 145.1, 146.5, 147.4, 155.2, 163.4, 167.3, 170.8 ppm; LC–MS: $m/z = 433.4 \text{ [M+H]}^+$.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carboxylic acid [4-(trifluoromethoxy)phenyl]amide (**12b**, C₂₃H₂₃F₃N₈O₃)

From 0.100 g of compound **11** (0.319 mmol) and 0.068 g of 4-(trifluoromethoxy)phenyl isocyanate (0.335 mmol), compound **12b** was obtained as an off white solid (0.14 g, 87 %) after chromatography on a silica gel column with chloroform/methanol (100:2, v/v). M.p.: 179.6–182.4 °C; TLC: $R_{\rm f} = 0.38$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{\nu} = 3333$ (–NH), 2921 (=CH), 1634 (amide –C=O), 1535 (–C–C), 1463 (amide –C–O), 1359 (Ar–C–N), 1281 (C–O–C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.65$ –2.71 [4H,

m, N(CH₂)₂], 2.73 (3H, s, ArCH₃), 2.83 (3H, s, ArCH₃), 3.61–3.55 [4H, m, N(CH₂)₂], 3.86 (2H, s, -CH₂–), 6.43 (1H, bs, urea NH), 6.84 (1H, s, pyrimidine H), 7.13 (2H, d, J = 8.4 Hz, ArH), 7.35–7.39 (2H, m, ArH), 8.72 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 15.9$, 23.9, 43.0 (two peaks), 51.4, 51.6 (two peaks), 94.2, 110.5, 115.8, 118.3, 120.9,123.4 (q, ¹ $J_{C-F} = 253.6$ Hz), 118.4, 120.6, 139.3, 141.9, 144.1, 145.5, 146.4, 154.1, 162.4, 166.3, 169.8 ppm; LC–MS: m/z = 517.3 [M+H]⁺.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carboxylic acid cyclopentylamide (**12c**, C₂₈H₂₁N₈O₂)

From 0.100 g compound 11 (0.319 mmol) and 0.037 g of cyclopentyl isocyanate (0.335 mmol), compound 12c was obtained as an off white solid (0.12 g, 89 %) after chromatography on a silica gel column with chloroform/ methanol (100:2, v/v). M.p.: 115.5-118.2 °C; TLC: $R_{\rm f} = 0.40$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{\nu} = 3446$ (NH), 2967 (=CH), 1643 (amide -C=O), 1551 (-C-C), 1442 (amide -C-O), 1336 (Ar-C-N) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.31-1.46$ (4H, m, cyclopentane CH₂), 1.58–1.60 (2H, m, cyclopentane CH₂), 1.72-1.77 (2H, m, cyclopentane CH₂), 2.45-2.48 [4H, m, N(CH₂)₂], 2.64 (3H, s, ArCH3), 2.76 (3H, s, ArCH₃), 3.28-3.30 [4H, m, N(CH₂)₂], 3.71 (2H, s, -CH₂-), 3.85-3.89 (1H, m, cyclopentyl CH), 6.21 (1H, d, J = 6.8 Hz, urea NH), 7.22 (1H, s, pyrimidine H), 8.34 (1H, s, pyrazole H) ppm; 13 C NMR (100 MHz, DMSO- d_6): $\delta = 16.5, 25.2$ (two peaks), 28.7, 32.9 (two peaks), 43.7 (two peaks), 52.3, 52.5, 52.7 (two peaks), 95.2, 111.5, 145.1, 146.4, 147.4, 157.6, 163.4, 167.4, 170.8 ppm; LC-MS: $m/z = 425.4 [M+H]^+$.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carboxylic acid m-tolylamide (**12d**, C₂₃H₂₆N₈O₂)

From 0.100 g compound 11 (0.319 mmol) and 0.045 g of 3methylphenyl isocyanate (0.335 mmol), compound 12d was obtained as an off white solid (0.13 g, 90 %) after chromatography on a silica gel column with chloroform/methanol (100:2, v/v). M.p.: 164.9–167.4 °C; TLC: $R_f = 0.42$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{v} = 3301$ (-NH), 3064 (-CH), 2921 (=CH), 1632 (amide -C=O), 1546 (-C-C), 1428 (amide -C-O), 1318 (Ar-C-N) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.24$ (3H, s, ArCH₃), 2.56 [4H, t, J = 4.4 Hz, N(CH₂)₂], 2.64 (3H, s, ArCH₃), 2.77 (3H, s, ArCH₃), 3.46 [4H, t, J = 4.4 Hz, N(CH₂)₂], 3.76 (2H, s, -CH₂-), 6.74 (1H, d, J = 7.6 Hz, urea NH), 7.09 (1H, t, J = 7.6 Hz, ArH), 7.22–7.24 (2H, m, ArH), 7.27 (1H, s, ArH), 8.43 (1H, s, pyrimidine H), 8.85 (1H, s, pyrazole H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 16.8, 21.5, 22.4,$ 44.0, 52.3, 52.6, 95.1, 111.4, 117.0, 120.5, 122.7, 128.4, 137.6, 140.7, 145.0, 146.3, 147.3, 155.2, 163.2, 167.2, 170.7 ppm; LC–MS: *m/z* = 447.3 [M+H]⁺.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carboxylic acid (3,4-dichlorophenyl)amide (**12e**, C₂₂H₂₂Cl₂N₈O₂)

From 0.100 g compound **11** (0.319 mmol) and 0.063 g of 3,4-dichlorophenyl isocyanate (0.335 mmol), compound 12e was obtained as off white solid (0.15 g, 92 %) after chromatography on a silica gel column with chloroform/ methanol (100:2, v/v). M.p.: 196.7-198.7 °C; TLC: $R_{\rm f} = 0.38$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{v} = 337$ (-NH), 3065 (=CH), 1624 (amide -C=O), 1550 (-C-C), 1477 (amide -C-O), 1378 (Ar-C-N), 818 (-C-Cl) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.56-2.60$ [4H, m, N(CH₂)₂], 2.63 (3H, s, ArCH₃), 2.77 (3H, s, ArCH₃), 3.41-3.51 [4H, m, N(CH₂)₂], 3.76 (2H, s, -CH₂-), 7.21 (1H, s, pyrimidine H), 7.45 (2H, d, J = 12 Hz, ArH), 7.82 (1H, s, ArH), 8.80 (1H, s, urea NH), 8.83 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 24.9,$ 41.4, 46.0, 52.1, 52.2, 52.81, 95.2, 111.6, 129.1, 131.8, 134.2, 135.1, 144.2, 145.0, 146.0, 146.6, 147.4, 159.1, 163.4, 167.2, 170.8 ppm; LC-MS: $m/z = 502.9 [M+H]^+$.

Synthesis of substituted thiourea derivatives **12f–12j** (general procedure)

To a solution of compound **11** (1.00 mmol) in 4 cm³ of tetrahydrofuran, corresponding isothiocyanates (1.05 mmol) were added drop wise at 0 °C under nitrogen atmosphere. The reaction medium was stirred at the same temperature for 30 min and then allowed to stir at room temperature for 1 h under nitrogen atmosphere. After completion of reaction, the reaction mixture was concentrated under reduced pressure and purified on silica gel column chromatography with chloroform/methanol (100:3, v/v) to afford corresponding urea derivatives **12f–12j**.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carbothioic acid phenylamide (**12f**, C₂₂H₂₄N₈OS)

From 0.100 g compound **11** (0.319 mmol) and 0.045 g of phenyl isothiocyanate (0.335 mmol), compound **12f** was obtained as an off white solid (0.12 g, 82 %) after chromatography on a silica gel column with chloroform/ methanol (100:3, v/v). M.p.: 199.2–201.7 °C; TLC: $R_{\rm f} = 0.44$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{\nu} = 3296$ (– NH), 2921 (=CH), 1631 (thiourea –C=S), 1533 (–C–C), 1441 (thiourea –C–S), 1320 (Ar–C–N) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 2.52–2.52$ [4H, m, N(CH₂)₂], 2.64 (3H, s, ArCH₃), 2.77 (3H, s, ArCH₃), 3.79 (2H, s, – CH₂–), 3.89–3.99 [4H, m, N(CH₂)₂], 7.09–7.11 (1H, m, ArH), 6.23 (1H, s, thiourea NH), 7.28 (4H, d, J = 3.6 Hz, ArH), 8.85 (1H, s, pyrimidine H), 9.32 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 16.9, 24.7$,

46.0, 53.4, 54.0, 95.3, 111.3, 123.8, 128.9, 129.7, 130.8, 132.0, 135.0, 145.1, 146.4, 147.4, 163.3, 167.4, 171.1, 179.8 ppm; LC–MS: *m/z* = 449.3 [M+H]⁺.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carbothioic acid isopropylamide (**12g**, C₁₉H₂₆N₈OS)

From 0.100 g compound 11 (0.319 mmol) and 0.034 g of isopropyl isothiocyanate (0.335 mmol), compound 12g was obtained as a white solid (0.11 g, 84 %) after chromatography on a silica gel column with chloroform/methanol (100:3, v/v). M.p.: 175.0–177.5 °C; TLC: $R_{\rm f} = 0.41$ (CHCl₃– MeOH 9:1); IR (ATR): $\bar{v} = 3335$ (–NH), 3010 (–CH), 2966 (-CH₃), 2866 (=CH), 1631 (thiourea -C=S), 1531 (-C-C), 1447 (thiourea -C-S), 1346 (Ar-C-N) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.12$ (6H, d, J = 6.3 Hz, RCH₃), 2.51–2.59 [4H, m, N(CH₂)₂], 2.64 (3H, s, ArCH₃), 2.77 (3H, s, ArCH₃), 3.75 (2H, s, -CH₂-), 3.79-3.88 [4H, m, N(CH₂)₂], 4.48–4.54 (1H, s, R₂CH), 7.22 (1H, s, pyrimidine H), 7.31 (1H, d, J = 7.8 Hz, thiourea NH), 8.84 (1H, s, pyrazole H) ppm; 13 C NMR (75 MHz, DMSO- d_6): $\delta = 16.8, 22.3$ (two peaks), 24.8, 47.3, 47.4, 52.1, 52.3, 95.1, 111.4, 145.0, 146.3, 147.3, 163.2, 167.1, 170.6, 180.6 ppm; LC–MS: $m/z = 415.4 [M+H]^+$.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carbothioic acid cyclohexylamide (**12h**, C₂₂H₃₀N₈OS)

From 0.100 g compound 11 (0.319 mmol) and 0.047 g of cyclohexyl isothiocyanate (0.335 mmol), compound 12h was obtained as an off white solid (0.13 g, 88 %) after chromatography on a silica gel column with chloroform/ methanol (100:3, v/v). M.p.: 186.1-188.5 °C; TLC: $R_{\rm f} = 0.39$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{v} = 3309$ (-NH), 3080 (-CH), 2924 (=CH), 1632 (thiourea -C=S), 1525 (-C-C), 1443 (thiourea -C-S), 1350 (Ar-C-N) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.00-1.12$ (2H, m, cyclohexane CH₂), 2.25-3.00 (4H, m, cyclohexane CH₂), 2.62-2.71 (2H, m, cyclohexane CH₂), 2.81-2.89 (2H, m, cyclohexane CH₂), 2.52–2.59 [4H, m, N(CH₂)₂], 2.64 (3H, s, ArCH₃), 2.73 (3H, s, ArCH₃), 3.71 (2H, s, -CH₂-), 3.75-3.83 [4H, m, N(CH₂)₂], 4.11–4.20 (1H, m, cyclohexyl CH), 7.19 (1H, s, pyrimidine H), 7.23 (1H, d, J = 7.2 Hz, thiourea NH), 8.80 (1H, s, pyrazole H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 16.9, 24.9, 25.5, 25.7, 32.5, 47.4, 52.1, 52.4,$ 54.9, 95.2, 111.5, 145.1, 146.5, 147.4, 163.4, 167.1, 170.8, 180.7 ppm; LC–MS: $m/z = 455.4 [M+H]^+$.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carbothioic acid tert-butylamide (**12i**, C₂₀H₂₈N₈OS)

From 0.100 g compound **11** (0.319 mmol) and 0.039 g of *tert*-butyl isothiocyanate (0.335 mmol), compound **12i** was obtained as an off white solid (0.12 g, 86 %) after

chromatography on a silica gel column with chloroform/ methanol (100:3, v/v). M.p.: 144.3–145.9 °C; TLC: $R_f = 0.45$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{v} = 3393$ (– NH), 3069 (–CH), 2920 (–CH₃), 2852 (=CH), 1629 (thiourea –C=S), 1534 (–C–C), 1463 (thiourea –C–S), 1334 (Ar–C–N) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.44$ [9H, s, – C(CH₃)₃], 2.51–2.59 [4H, m, N(CH₂)₂], 2.63 (3H, s, ArCH₃), 2.76 (3H, s, ArCH₃), 3.69–3.85 [6H, m, –CH₂–, N(CH₂)₂], 6.72 (1H, s, thiourea NH), 7.21 (1H, s, pyrimidine H), 8.82 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 14.4$, 24.9, 29.4 (three peaks), 47.6, 52.1, 52.6 (two peaks), 53.6, 95.2, 111.5, 145.1, 146.4, 147.4, 163.4, 167.2, 170.8, 181.6 ppm; LC–MS: m/z = 429.4 [M+H]⁺.

4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazine-1-carbothioic acid propylamide (**12j**, C₁₉H₂₆N₈OS)

From 0.100 g compound **11** (0.319 mmol) and 0.034 g of *n*propyl isothiocyanate (0.335 mmol), compound 12j was obtained as an off white solid (0.12 g, 87 %) after chromatography on a silica gel column with chloroform/methanol (100:3, v/v). M.p.: 154.5–156.4 °C; TLC: $R_f = 0.46$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{v} = 3348$ (–NH), 3002 (– C-H), 2926 (=CH), 1605 (thiourea -C=S), 1533 (-C-C), 1440 (thiourea -C-S), 1326 (Ar-C-N) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 0.84$ (3H, t, J = 8 Hz, $-CH_3$), 1.49-1.58 (2H, m, -CH₂-), 2.50-2.52 [4H, m, N(CH₂)₂], 2.63 (3H, s, ArCH₃), 2.76 (3H, s, ArCH₃), 3.40 (2H, t, J = 10 Hz, -CH₂-), 3.74 (2H, s, -CH₂-), 3.78-3.82 [4H, m, $N(CH_2)_2$, 7.21 (1H, s, pyrimidine H), 7.69 (1H, t, J = 3 Hz, thiourea NH), 8.82 (1H, s, pyrazole H) ppm; ¹³C NMR $(75 \text{ MHz}, \text{DMSO-}d_6): \delta = 11.6, 16.8, 22.2, 24.8, 47.3, 47.4,$ 52.1, 52.3, 95.1, 111.4, 145.0, 146.3, 147.3, 163.3, 167.1, 170.7, 181.6 ppm; LC–MS: $m/z = 416.2 [M+H]^+$.

Synthesis of substituted carboxamides **12k–12o** (general procedure)

To a solution of the compound **11** (1.00 mmol) in 3 cm³ of dimethylacetamide was added *N*-methylmorpholine (5.00 mmol) followed by drop wise addition of corresponding acid chlorides (1.30 mmol) at 0 °C under nitrogen atmosphere. The reaction medium was stirred at the same temperature for 10 min and then allowed to stir at room temperature for 1 h under nitrogen atmosphere. After completion of reaction, water was added to the reaction mixture and stirred for 10 min. The solid precipitated out was filtered, washed with water and dried under vacuum to afford the corresponding carboxamides **12k–12o**.

(3,4-Dichlorophenyl){4-[5-(5,7-dimethylpyrazolo[1,5a]pyrimidin-3-yl)-1,2,4-oxadiazol-3-ylmethyl]piperazin-1-

yl}methanone (12k, $C_{22}H_{21}Cl_2N_7O_2$)

From 0.100 g compound **11** (0.319 mmol) and 0.087 g of 3,4-dichlorobenzoyl chloride (0.414 mmol), compound

 $_{\rm F} = 270.75$ Hz), 124.0 (q, ${}^{3}J_{\rm C-F} = 7.5$ Hz), 126.6 (q, ${}^{3}J_{\rm C-F} = 6.8$ Hz), 129.5 (q, ${}^{2}J_{\rm C-F} = 75.8$ Hz), 129.9, 131.3,

LC-MS: $m/z = 486.3 [M+H]^+$.

(3,5-Dimethylphenyl){4-[5-(5,7-dimethylpyrazolo[1,5-

a]pyrimidin-3-yl)-1,2,4-oxadiazol-3-ylmethyl]piperazin-1-yl}methanone (**12n**, C₂₄H₂₇N₇O₂)

137.3, 145.1, 146.5, 147.4, 163.4, 167.2, 167.8, 170.8 ppm;

From 0.100 g compound 11 (0.319 mmol) and 0.070 g of 3.5-dimethylbenzoyl chloride (0.414 mmol), compound 12n was obtained as off white solid (0.12 g, 85 %) after recrystallization with water. M.p.: 176.6-179.4 °C; TLC: $R_{\rm f} = 0.39$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{\nu} = 3077$ (-CH), 2915 (=CH), 1627 (-C=O), 1537 (-C-C), 1463 (-C-O), 1377 (Ar-C-N) cm⁻¹; ¹H NMR (300 MHz, DMSO d_6): $\delta = 2.28$ (6H, s, ArCH₃), 2.59–2.48 [4H, m, N(CH₂)₂], 2.63 (3H, s, ArCH₃), 2.76 (3H, s, ArCH₃), 3.51-3.65 [4H, m, N(CH₂)₂], 3.75 (2H, s, -CH₂-), 6.96 (2H, s, ArH), 7.06 (1H, s, ArH), 7.21 (1H, s, pyrimidine H), 8.83 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 21.2$ (two peaks), 24.9, 47.5, 52.4, 52.6, 95.2, 111.6, 124.9, 131.1, 136.3, 138.0, 145.1, 146.5, 147.4, 163.4, 167.3, 169.6, 170.8 ppm; LC–MS: *m/z* = 446.4 $[M+H]^{+}$.

[4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4oxadiazol-3-ylmethyl]piperazin-1-yl](2,4,6-tri-

chlorophenyl)methanone (120, C₂₂H₂₀Cl₃N₇O₂)

From 0.100 g compound 11 (0.319 mmol) and 0.101 g of 2,4,6-trichlorobenzoyl chloride (0.414 mmol), compound 120 was obtained as a white solid (0.15 g, 90 %) after recrystallization with water. M.p.: 187.2-189.3 °C; TLC: $R_{\rm f} = 0.44$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{v} = 2956$ (=CH), 1654 (-C=O), 1545 (-C-C), 1441 (-C-O), 1326 (Ar-C-N), 857 (-C-Cl) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.53-2.54$ (2H, m, NCH₂-), 2.60-2.62 (2H, m, NCH₂-), 2.63 (3H, s, ArCH₃), 2.76 (3H, s, ArCH₃), 3.19 (2H, t, J = 5 Hz, NCH₂-), 3.67 (2H, t, J = 5 Hz, NCH₂-), 3.77 (2H, s, -CH₂-), 7.21 (1H, s, pyrimidine H), 7.78 (2H, s, ArH), 8.83 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 24.9,$ 41.5, 46.1, 52.2, 52.2, 52.8, 95.2, 111.6, 128.7 (two peaks), 131.9 (two peaks), 134.1, 135.0, 145.1, 146.5, 147.5, 162.2, 163.5, 167.2, 170.8 ppm; LC-MS: $m/z = 522.1 \text{ [M+H]}^+$.

Synthesis of substituted sulfonamides **12p–12t** (general procedure)

To a solution of compound **11** (1.00 mmol) in 3 cm³ of dimethylacetamide was added *N*-methylmorpholine (5.00 mmol) followed by drop wise addition of corresponding sulfonyl chlorides (1.30 mmol) at 0 °C under nitrogen atmosphere. The reaction medium was stirred at the same temperature for 10 min and then allowed to stir at room temperature for 1 h under nitrogen atmosphere. After

12k was obtained as off white solid (0.14 g, 89 %) after recrystallization with water. M.p.: 224.4–226.9 °C; TLC: $R_{\rm f} = 0.38$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{\nu} = 2911$ (=CH), 1628 (–C=O), 1547 (–C–C), 1440 (–C–O), 1379 (Ar–C–N), 827 (–C–Cl) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.55-2.65$ [4H, m, N(CH₂)₂], 2.62 (3H, s, ArCH₃), 2.77 (3H, s, ArCH₃), 3.59–3.69 [4H, m, N(CH₂)₂], 3.75 (2H, s, –CH₂–), 7.21 (1H, s, pyrimidine H), 7.38 (1H, dd, J = 4 Hz, 8 Hz, ArH), 7.76–7.70 (2H, m, ArH), 8.83 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0$, 24.8, 41.8, 46.1, 52.5, 52.7, 95.0, 111.4, 128.6, 129.0, 131.7, 134.0, 144.8, 145.0, 146.5, 146.9, 147.4, 158.6, 162.8, 166.7, 171.0 ppm; LC–MS: m/z = 486.4 [M+H]⁺.

(3,5-Difluorophenyl){4-[5-(5,7-dimethylpyrazolo[1,5a]pyrimidin-3-yl)-1,2,4-oxadiazol-3-ylmethyl]piperazin-1yl}methanone (**121**, C₂₂H₂₁F₂N₇O₂)

From 0.100 g compound 11 (0.319 mmol) and 0.073 g of 3,5-difluorobenzoyl chloride (0.414 mmol), compound 121 was obtained as a white solid (0.13 g, 87 %) after recrystallization with water. M.p.: 198.9-201.2 °C; TLC: $R_{\rm f} = 0.37$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{v} = 2927$ (=CH), 1627 (-C=O), 1542 (-C-C), 1434 (-C-O), 1378 (Ar-C-N), 1124 (-C-F) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 2.48-2.53$ [4H, m, N(CH₂)₂], 2.63 (3H, s, ArCH₃), 2.76 (3H, s, ArCH₃), 3.51-3.65 [4H, m, $N(CH_2)_2$], 3.76 (2H, s, -CH₂-), 7.15 (2H, d, J = 4.8 Hz, ArH), 7.21 (1H, s, pyrimidine H), 7.34 (1H, t, J = 9 Hz, ArH), 8.82 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 24.9, 41.9, 47.3, 52.3, 52.7, 95.2,$ 105.4 (d, ${}^{2}J_{C-F} = 26$ Hz), 105.6 (d, ${}^{2}J_{C-F} = 26$ Hz), 110.8 (d, ${}^{2}J_{C-F} = 26$ Hz), 111.6, 139.8 (d, ${}^{3}J_{C-F} = 8$ Hz), 145.2, 146.5, 147.5, 162. 6 (d, ${}^{1}J_{C-F} = 249$ Hz), 163.5, 164.1 (d, ${}^{1}J_{C-F} = 249$ Hz), 166.7, 167.3, 170.8 ppm; LC-MS: $m/z = 454.4 \, [M+H]^+$.

$\{4-[5-(5,7-Dimethylpyrazolo[1,5-a]pyrimidin-3-yl)-1,2,4-oxadiazol-3-ylmethyl]piperazin-1-yl\}[3-(trifluoro-methyl)phenyl]methanone~(12m, C_{23}H_{22}F_3N_7O_2)$

From 0.100 g compound **11** (0.319 mmol) and 0.086 g of 3-(trifluoromethyl)benzoyl chloride (0.414 mmol), compound **12m** was obtained as off white solid (0.14 g, 88 %) after recrystallization with water. M.p.: 185.4–187.6 °C; TLC: $R_{\rm f} = 0.40$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{\nu} = 3085$ (–ArH), 1627 (–C=O), 1542 (–C–C), 1441 (–C–O), 1335 (Ar–C–N), 1023 (–C–F) cm⁻¹; ¹H NMR (300 MHz, DMSO– d_6): $\delta = 2.52–2.48$ [4H, m, N(CH₂)₂], 2.62 (3H, s, ArCH₃), 2.76 (3H, s, ArCH₃), 3.55–3.69 [4H, m, N(CH₂)₂], 3.76 (2H, s, –CH₂–), 7.21 (1H, s, pyrimidine H), 7.68 (2H, d, J = 6.3 Hz, ArH), 7.73 (1H, s, ArH), 7.87 (1H, t, J = 5.7 Hz, ArH), 8.82 (1H, s, pyrazole H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 16.9$, 24.8, 41.9 (two peaks), 47.3 (two peaks), 52.2, 95.2, 111.5, 124.3 (q, ¹ $J_{\rm C}$

completion of reaction, water was added to the reaction mixture and stirred for 30 min at room temperature. The solid precipitated out was filtered, washed with water and dried under vacuum at 50 °C for 1 h to afford the corresponding sulfonamides 12p-12t.

3-{3-[4-(4-Chloro-3-fluorobenzenesulfonyl)piperazin-1-ylmethyl]-1,2,4-oxadiazol-5-yl}-5,7-dimethylpyrazolo[1,5a]pyrimidine (**12p**, C₂₁H₂₁ClFN₇O₃S)

From 0.100 g compound 11 (0.319 mmol) and 0.095 g of 4-chloro-3-fluorobenzenesulfonyl chloride (0.414 mmol), compound 12p was obtained as an off white solid (0.13 g, 85 %) after recrystallization with water. M.p.: 202.0-204.1 °C; TLC: $R_f = 0.46$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{v} = 3087$ (=CH), 1548 (-C-C), 1346 (sulforyl -S=O), 1328 (Ar-C-N), 1055 (-C-F), 817 (-C-Cl) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.52-2.60$ [4H, m, N(CH₂)₂], 2.61 (3H, s, ArCH₃), 2.74 (3H, s, ArCH₃), 2.92-3.01 [4H, m, N(CH₂)₂], 3.71 (2H, s, -H₂-), 7.20 (1H, s, pyrimidine H), 7.58 (1H, d, J = 8 Hz, ArH), 7.78 (1H, d, J = 8 Hz, ArH), 7.87 (1H, t, J = 16 Hz, ArH), 8.78 (1H, s, pyrazole H) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 16.9, 24.8, 46.1$ (two peaks), 51.5 (two peaks), 51.8, 95.1, 111.5, 116.5 (d, ${}^{2}J_{C-F} = 23.25$ Hz), 125.1 (d, ${}^{3}J_{C-F} = 23.25$ Hz), 125.1 (d, {}^{3}J_{C-F} = 23.25 Hz), 125.1 (d, {}^{3 $_{\rm F} = 3.75$ Hz), 125.5 (d, $^2J_{\rm C-F} = 18$ Hz), 132.3, 136.2 (d, ${}^{3}J_{C-F} = 6$ Hz), 145.1, 146.4, 147.4, 157.5 (d, ${}^{1}J_{C-F}$ $_{\rm F} = 250.50$ Hz), 163.4, 167.2, 170.8 ppm; LC–MS: $m/z = 506.4 \, [M+H]^+$.

3-{3-[4-(Cyclopropanesulfonyl)piperazin-1-ylmethyl]-1,2,4-oxadiazol-5-yl}-5,7-dimethylpyrazolo[1,5-a]pyrimidine (**12q**, C₁₈H₂₃N₇O₃S)

From 0.100 g compound 11 (0.319 mmol) and 0.058 g of cyclopropylsulfonyl chloride (0.414 mmol), compound 12q was obtained as a white solid (0.11 g, 83 %) after recrystallization with water. M.p.: 236.5-238.2 °C; TLC: $R_{\rm f} = 0.48$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{v} = 3094$ (-CH), 2975 (=CH), 1629 (sulfonyl -S=O), 1540 (-C-C), 1443 (sulfonyl –C–O), 1374 (Ar–C–N), 1329 (–SO₂) cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.91-0.99$ (4H, m, cyclopropane CH2), 2.57-2.62 [4H, m, N(CH2)2], 2.63 (3H, s, ArCH₃), 2.68–2.71 (1H, m, cyclopropyl CH), 2.76 (3H, s, ArCH₃), 3.15-3.22 [4H, m, N(CH₂)₂], 3.77 (2H, s, -CH₂-), 7.22 (1H, s, pyrimidine H), 8.83 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 12.4$, 16.9, 24.7, 45.7, 48.8, 52.2, 53.8, 95.5, 111.4, 144.9, 146.2, 147.29, 158.9, 163.0, 167.2, 170.6 ppm; LC-MS: $m/z = 418.3 \, [M+H]^+$.

$3-\{3-[4-(2-Fluorobenzenesulfonyl)piperazin-1-ylmethyl]-1,2,4-oxadiazol-5-yl\}-5,7-dimethylpyrazolo[1,5-a]pyrimidine (12r, C₂₁H₂₂FN₇O₃S)$

From 0.100 g compound **11** (0.319 mmol) and 0.081 g of 2-fluorobenzenesulfonyl chloride (0.414 mmol), compound

12r was obtained as an off white solid (0.13 g, 86 %) after recrystallization with water. M.p.: 199.4-201.3 °C; TLC: $R_{\rm f} = 0.44$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{v} = 2832$ (=CH), 1631 (sulfonyl -S=O), 1541 (-C-C), 1439 (sulfonyl -C-O), 1352 (Ar-C-N), 1323 (-SO₂), 937 (-C-F) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.52-2.60$ [4H, m, N(CH₂)₂], 2.61 (3H, s, ArCH₃), 2.74 (3H, s, ArCH₃), 3.02–3.12 [4H, m, N(CH₂)₂], 3.72 (2H, s, -CH₂-), 7.20 (1H, s, pyrimidine H), 7.40-7.50 (2H, m, ArH),7.72-7.78 (2H, m, ArH), 8.79 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 24.9,$ 45.9, 51.8, 52.0, 95.1, 111.6, 118.0 (d, ${}^{2}J_{C-F} = 22$ Hz), 124.2 (d, ${}^{2}J_{C-F} = 14$ Hz), 125.6 (d, ${}^{4}J_{C-F} = 3$ Hz), 131.2 (d, ${}^{3}J_{C-F} = 8$ Hz), 131.3, 136.5 (d, ${}^{3}J_{C-F} = 8$ Hz), 145.1, 146.5, 147.5, 158. 7 (d, ${}^{1}J_{C-F} = 253$ Hz), 163.4, 167.2, 170.8 ppm; LC–MS: $m/z = 472.3 [M+H]^+$.

$\label{eq:spinor} \begin{array}{l} 5,7\text{-}Dimethyl\text{-}3\text{-}\{3\text{-}[4\text{-}(naphthalene\text{-}1\text{-}sulfonyl)piperazin\text{-}1\text{-}ylmethyl]\text{-}1,2,4\text{-}oxadiazol\text{-}5\text{-}yl\}pyrazolo[1,5\text{-}a]pyrimidine \\ \textbf{(12s, }C_{25}H_{25}N_7O_3S\textbf{)} \end{array}$

From 0.100 g compound 11 (0.319 mmol) and 0.094 g of 1naphthylsulfonyl chloride (0.414 mmol), compound 12s was obtained as an off white solid (0.13 g, 81 %) after recrystallization with water. M.p.: 210.6-212.9 °C; TLC: $R_{\rm f} = 0.45$ (CHCl₃-MeOH 9:1); IR (ATR): $\bar{\nu} = 3081$ (-CH), 2922 (=CH), 1631 (sulfonyl-S=O), 1540 (-C-C), 1437 (sulfonyl -C-O), 1381 (Ar-C-N), 1322 (-SO₂) cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.54-2.60$ [4H, m, N(CH₂)₂], 2.66 (3H, s, ArCH₃), 2.74 (3H, s, ArCH₃), 3.05-3.15 [4H, m, N(CH₂)₂], 3.67 (2H, s, -CH₂-), 7.19 (1H, s, pyrimidine H), 7.62-7.73 (3H, m, ArH), 8.08 (1H, d, J = 8 Hz, ArH), 8.13 (1H, d, J = 4 Hz, ArH), 8.27 (1H, d, J = 8 Hz, ArH), 8.65 (1H, d, J = 12 Hz, ArH), 8.75 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 24.9, 45.8, 51.9, 52.0, 95.2, 111.6, 125.1, 127.4,$ 128.6, 129.5, 130.7, 132.4, 134.4, 135.1, 145.2, 146.5, 147.5, 163.5, 167.2, 170.8 ppm; LC–MS: $m/z = 504.2 [M+H]^+$.

$3-\{3-[4-(4-Chlorobenzenesulfonyl)piperazin-1-ylmethyl]-1,2,4-oxadiazol-5-yl\}-5,7-dimethylpyrazolo[1,5-a]pyrimidine (12t, C₂₁H₂₂ClN₇O₃S)$

From 0.100 g compound **11** (0.319 mmol) and 0.087 g of 4-chlorobenzenesulfonyl chloride (0.414 mmol), compound **12t** was obtained as a white solid (0.14 g, 87 %) after recrystallization with water. M.p.: 207.6–210.6 °C; TLC: $R_f = 0.46$ (CHCl₃–MeOH 9:1); IR (ATR): $\bar{\nu} = 3083$ (ArH), 1548 (–C–C), 1443 (sulfonyl –S–O), 1348 (sulfonyl –S=O), 835 (–C–Cl) cm⁻¹; ¹H NMR (400 MHz, DMSO d_6): $\delta = 2.56-2.60$ [4H, m, N(CH₂)₂], 2.61 (3H, s, ArCH₃), 2.74 (3H, s, ArCH₃), 2.90–3.03 [4H, m, N(CH₂)₂], 3.71 (2H, s, –CH₂–), 7.19 (1H, s, pyrimidine H), 7.70 (2H, d, J = 8.8 Hz, ArH), 7.73 (2H, d, J = 8.4 Hz, ArH), 8.79 (1H, s, pyrazole H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.0, 24.9, 46.2, 51.6, 51.9, 95.2, 111.6, 129.9, 130.0,$ 134.2, 138.7, 145.2, 146.5, 147.5, 163.5, 167.2, 170.8 ppm; LC–MS: *m*/*z* = 489.1 [M+H]⁺.

Anticancer activity

All compounds were screened for their in vitro anti-cancer activity against representative human cancer cell line (HeLa cell line) by MTT assay. This is a colorimetric assay that measures the reduction of yellow 3-(4,5-dimethythia-zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by mitochondrial succinate dehydrogenase. The MTT enters the cells and passes into the mitochondria where it is reduced to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with an organic solvent (e.g., dimethylsulfoxide, isopropanol) and then released solubilized formazan reagent is measured spectrophotometrically. Since reduction of MTT can only occur in metabolically active cells, the level of activity is a measure of the viability of these cells.

The 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was made a solution in such a way that 10 mg was dissolved in 10 cm³ of Hank's balanced solution. The cell lines were maintained in 96 wells microtiter plate containing MEM media supplemented with 10 % heat inactivated fetal calf serum (FCS), containing 5 % of mixture of gentamycin, penicillin (100 Units/cm³) and streptomycin (100 μ g/cm³) in presence of 5 % CO₂ at 37 °C for 3–4 days. Then after, remove the supernatant and replace MEM media with Hank's balanced solution and the cells were incubated overnight. The in vitro growth inhibitions of test compounds were assessed by calorimetric or spectrophotometric method. This helps to determine the conversion of MTT into formazan blue by living cells. Remove the supernatant from the plate, add fresh Hank's balanced salt solution and treated with different concentration of compound (approx diluted with DMSO). The marketed anticancer drug paclitaxel was tested as a reference compound in the assay. The control group contains only DMSO. After 24 h of incubation at 37 °C in a humidified atmosphere of 5 % CO2, the medium was replaced with MTT solution (100 mm³, 5 mg/cm³ in MEM medium) for further 4 h. The supernatant was carefully aspirated and the precipitated crystals of Formazan blue were solubilized by adding DMSO (200 mm³) and optical density was measured at wavelength of 570 nm using LISA microplate reader. The results were represented out in triplicates for each concentration. Concentration at which the optical density (OD) of treated cells was reduced by 50 % with respect to the untreated control. Calculation of the percentage of lyses of cells was done by comparing the OD of sample to that of the control and also by microscopic analysis.

Acknowledgments We would like to thank the Management Team at Anthem Biosciences Pvt. Ltd., Bangalore, India, for their valuable support and allocation of proper resources for the completion of this work. We would also like to thank the Analytical Chemistry Team at the Department of Analytical chemistry, Anthem Biosciences, Bangalore, India, for carrying out all the analytical work described in this study. Also, we would like to thank the Molecular Biology Team at the Maratha Mandal Institute of Technology, Belagavi, Karnataka, India, for conducting the anti-proliferative studies by MTT assay.

References

- 1. El-Dean AMK, Elkhawaga AM, Radwan SM, Ahmed MM (2009) Phosphorus Sulfur Silicon Relat Elem 184:2034
- Nitulescu GM, Paunescu H, Draghici C, Missir AV, Coman OA, Fulga I (2010) Farmacia 58:190
- 3. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK (2013) Eur J Med Chem 62:410
- 4. Aly AA (2006) Phosphorus Sulfur Silicon Relat Elem 181:2395
- Gouhar RS, Fathalla OA, Abd El-Karim SS (2013) Pharm Chem 5:225
- Rashad AE, Hegab MI, Abdel-Megeid RE, Fathalla N, Abdel-Megeid FME (2009) Eur J Med Chem 44:3285
- Prakash O, Bhardwaj V, Kumar R, Tyagi P, Aneja KR (2004) Eur J Med Chem 39:1073
- Agarwal N, Raghuwanshi SK, Upadhyay DN, Shukla PK, Ram VJ (2000) Bioorg Med Chem Lett 10:703
- 9. Cocco MT, Congiu C, Lilliu V, Onnis V (2006) Bioorg Med Chem 14:366
- Botta M, Occhionero F, Nicoletti R, Mastromarino P, Conti C, Magrini M, Saladino R (1999) Bioorg Med Chem 7:1925
- Skulnick HI, Ludens JH, Wendling MG, Glenn EM, Rohloff NA, Smith RJ, Wierenga W (1986) J Med Chem 29:1499
- Atwal KS, Swanson BN, Unger SE, Floyed DM, Moreland S, Hedberg A, O'Reilly BC (1991) J Med Chem 34:806
- Yoo J, Thai KM, Kim DK, Lee JY, Park HJ (2007) Bioorg Med Chem Lett 17:4271
- Gonclaves MST, Oliveira-Campos AMF, Rodrigues LM, Proenca MFRP (2009) Synth Commun 39:1186
- 15. Shetty NS (2014) Int J Adv Chem Eng Biol Sci 1:80
- 16. Ley SV, Thomas AW (2003) Angew Chem Int Ed 42:5400
- 17. Nag S, Mishra A, Batra S (2008) Tetrahedron 64:10162
- Bruni F, Selleri S, Costanzo A, Guerrini G, Casilli ML, Giusti L (1995) J Heterocycl Chem 32:291
- Maeba I, Nishiyama Y, Kanazawa S, Sato A (1995) Heterocycles 41:507
- 20. Bellec C, Lhommet G (1995) J Heterocycl Chem 32:1793
- Howard AS (1995) Comprehensive heterocyclic chemistry II, vol 8. Pergamon Press, Oxford, p 249
- 22. Barret D (1997) Heterocycles 45:1839
- Bakavoli M, Bagherzadeh G, Vaseghifar M, Shiri A, Pordel M, Mashreghi M, Pordeli P, Araghi M (2010) Eur J Med Chem 45:647
- Curran KJ, Verheijen JC, Kaplan J, Richard DJ, Toral-Barza L, Hollander I, Lucas J, Ayral-Kaloustian S, Yu K, Zask A (2010) Bioorg Med Chem Lett 20:1440
- 25. Kim I, Song JH, Park CM, Jeong JW, Kim HR, Ha JR, No Z, Hyun YL, Cho YS, Kang NS, Jeon DJ (2010) Bioorg Med Chem Lett 20:922
- Soliman AMM, El-Aleem MA, El-Remaily AA, Sultan AA, Abdel-Ghany H (2014) J Heterocycl Chem 51:1476

- Maeda H, Akaike T, Miyamoto Y, Yoshida M (1997) Pyrazolopyrimidine derivatives as antihypertensive agents. EP 0759298A2
- Saunders J, Cassidy M, Freedman SB, Harley EA, Iversen LL, Kneen C, MacLeod AM, Merchant KJ, Snow RJ, Baker R (1990) J Med Chem 33:1128
- 29. Chen CY, Senanayake CH, Bill TJ, Larsen RD, Verhoeven TR, Reider PJ (1994) J Org Chem 59:3738
- Swain CJ, Baker R, Kneen C, Moseley J, Saunders J, Seward EM, Stevenson G, Beer M, Stanton J, Watling K (1991) J Med Chem 34:140
- 31. Hosam S (1996) Indian J Chem 35B:980
- 32. Ladva K, Patel P, Upadhyay P, Parekh H (1996) Indian J Chem 35B:1062
- Sahin G, Palaska E, Ekizoglu M, Ozalp M (2002) Il Farmaco 57:539
- 34. Ricardo AW, Neves F, Rajendra MS (2006) Molecules 11:318
- 35. Hemming K (2001) J Chem Res 216:209
- 36. Andersen KE, Jorgensen AS, Braestrup C (1994) Eur J Med Chem 29:393
- Diana GD, Volkots DL, Nitz TJ, Bailey TR, Long MA, Vescio N, Aldous S, Pevear DC, Dutko FJ (1994) J Med Chem 37:2421
- Showell GA, Gibbons TL, Kneen CO, MacLeod AM, Merchant KJ, Saunders J, Freedman SB, Patel S, Baker R (1991) J Med Chem 34:1086
- Messer WS, Abuh YF, Liu Y, Periyaswamy S, Ngur DO, Edgar MAN, El-Assadi AA, Sbeih Dunbar PG, Roknich S, Rho T, Fang Z, Ojo B, Zhang H, Huzl JJ, Nagy PI (1997) J Med Chem 40:1230
- Orlek BS, Blaney FE, Brown F, Clark MSG, Hadley MS, Hatcher J, Riley GJ, Rosenberg HE, Wadsworth HJ, Wyman P (1991) J Med Chem 34:2726
- Macor JE, Ordway T, Smith RL, Verhoest PR, Mack RA (1996) J Org Chem 61:3228
- Watjen F, Baker R, Engelstoff M, Herbert R, MacLeod A, Knight A, Merchant K, Moseley J, Saunders J (1989) J Med Chem 32:2282
- 43. Tully WR, Gardner CR, Gillespie RJ, Westwood R (1991) J Med Chem 34:2060
- 44. Clitherow JW, Beswick P, Irving WJ, Scopes DIC, Barnes JC, Clapham J, Brown JD, Evans DJ, Hayes AG (1996) Bioorg Med Chem Lett 6:833
- 45. Zhang HZ, Kasibhatla S, Kuemmerle J, Kemnitzer W, Ollis-Mason K, Qiu L, Crogan-Grundy C, Tseng B, Drewe J, Cai SX (2005) J Med Chem 48:5215

- 46. Jessan KA, English NM, Wang JY, Maliartchouk S, Archer SP, Qiu L, Brand R, Kuemmerle J, Zhang HZ, Gehlsen K, Drewe J, Tseng B, Xiong-Cai S, Kasibhatla S (2005) Mol Cancer Ther 4:761
- Kumar D, Patel G, Johnson EO, Shah K (2009) Bioorg Med Chem Lett 19:2739
- Hamlin KE, Weston AW, Fischer FE, Michaels RJ (1949) J Am Chem Soc 71:2731
- Regnier G, Canevari R, Douarec JL, Holstorp S, Daussy J (1972) J Med Chem 15:295
- Regnier G, Canevari RJ, Laubie MJ, Le Douarec JC (1968) J Med Chem 11:1151
- 51. Wang T, Zhang Z, Wallace OB, Deshpande M, Fang H, Yang Z, Zadjura LM, Tweedie DL, Huang S, Zhao F, Ranadive S, Robinson BS, Gong YF, Ricarrdi K, Spicer TP, Deminie C, Rose R, Wang HGH, Blair WS, Shi PY, Lin PF, Colonno RJ, Meanwell NA (2003) J Med Chem 46:4236
- 52. Lutz RE, Shearer NH (1947) J Org Chem 12:771
- Tangallapally RP, Yendapally R, Lee RE, Lenaerts AJM, Lee RE (2005) J Med Chem 48:8261
- 54. Kiritsy JA, Yung DK, Mahony DE (1978) J Med Chem 21:1301
- 55. Rajadhyaksha MN, Kolekar SL, Baviskar AY, Panandikar AM (2011) Process for the preparation of a pyrazole derivative. WO2011064798 A1
- McCall JM, Kelly RC, Romero DL (2012) Pyrazolopyrimidinone compounds for the inhibition of PASK and their preparation. WO2012149157
- Patnaik S, Zheng W, Choi JH, Motabar O, Southall N, Westbroek W, Lea WA, Velayati A, Goldin E, Sidransky E, Leister W, Marugan JJ (2012) J Med Chem 55:5734
- Moussa IA, Banister SD, Beinat C, Giboureau N, Reynolds AJ, Kassiou M (2010) J Med Chem 53:6228
- 59. Wu YC, Li HJ, Liu L, Wang D, Yang HZ, Chen YJ (2008) J Fluoresc 18:357
- Setti EL, Venkatraman S, Palmer JT, Xie X, Cheung H, Yu W, Wesolowski G, Robichaud J (2006) Bioorg Med Chem Lett 16:4296
- 61. Ball M, Boyd A, Churchill G, Cuthbert M, Drew M, Fielding M, Ford G, Frodsham L, Golden M, Leslie K, Lyons S, McKeever-Abbas B, Stark A, Tomlin P, Gottschling S, Hajar A, Jiang J, Lo J, Suchozak B (2012) Org Process Res Dev 16:741