
ORIGINAL PAPER

Non-catalytic multicomponent rapid and efficient approach
to 10-(2,4,6-trioxohexahydropyrimidin-5-yl)-3,3-dimethyl-2,3,4,9-
tetrahydro-1H-xanthen-1-ones from salicylaldehydes, dimedone,
and barbituric acids

Michail N. Elinson1 • Ruslan F. Nasybullin1 • Olga O. Sokolova2 • Tatiana A. Zaimovskaya3 • Mikhail P. Egorov1

Received: 12 March 2015 / Accepted: 7 June 2015 / Published online: 24 June 2015

� Springer-Verlag Wien 2015

Abstract Non-catalytic multicomponent reaction of sal-

icylaldehydes, dimedone, and barbituric acids initiated by

reflux in ethanol results in the fast (5 min) and efficient

formation of substituted tetrahydro-1H-xanthen-1-ones in

90–95 % yields. The developed fast multicomponent

approach to the substituted tetrahydro-1H-xanthen-1-ones,

which are known as medicinally relevant substances such

as antibiotics, enzyme inhibitors, and anticancer drugs, is

beneficial from the viewpoint of diversity-oriented multi-

gram-scale processes and represents fast, efficient, and

environmentally benign synthetic concept for multicom-

ponent reaction strategy.
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Introduction

Multicomponent reactions are valuable tools for the

preparation of structurally diverse drug-like heterocyclic

compounds [1]. MCR designed to produce biologically

active compounds has become an important area of

research in organic, combinatorial, and medicinal chem-

istry [2].

Xanthenes (tricyclic dibenzopyrans) are one of the

most widely distributed classes of natural compounds

and possess diverse pharmacological properties, such as

antiviral [3], anti-inflammatory [4], and anti-cancer [5,

6] activity. They are also used as antagonists for par-

alyzing the action of zoxazolamine [7], in

photodynamic therapy (PDT) [8], and as antagonists for

drug resistant leukemia lines [9]. 9-(2-Hydroxy-4,4-

dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-2,3,4,9-

tetrahydro-1H-xanthen-1-ones are well-known as orally

active and selective Y5 antagonists [10]. Correlations

between the in vitro function and the binding activity of

different peptide agonists and their potent stimulation of

food intake have found the Y5 receptor as a major

feeding receptor [11].

2,4,6-Trioxohexahydropyrimidine or barbituric acid is a

type of privileged medicinal scaffold also called barbitu-

rates. Barbiturates are the famous class of drugs that act as

central nervous system depressants, and by virtue of this

produce a wide spectrum of effects, from mild sedation to

anesthesia [12]. They are also effective as anxiolytics and

as anticonvulsants [13]. The current interest in barbiturates

arises from their pharmacological potential as analeptics,

immunomodulating and anti-AIDS agents, and also as

anticancer remedies [14].

Thus, the 10-(2,4,6-trioxohexahydropyrimidin-5-yl)-

3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one system
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appears to be of the interest because it incorporates a

tetrahydro-1H-xanthen-1-one and a 2,4,6-trioxohexahy-

dropyrimidine heterocyclic ring, which are both promising

with respect to biological responses. Recently two catalytic

methods were suggested for 10-(2,4,6-trioxohexahydropy-

rimidin-5-yl)-2,3,4,9-tetrahydro-1H-xanthen-1-one synthe-

sis from salicylaldehydes, dimedone, and barbituric acid

under different catalytic conditions. Among these catalysts

are known L-prolin (10 mol%) [15] and TH amino acid

catalyst [16] (20 %byweight of salicylaldehyde), whichwas

specially obtained by tedious hydrolysis of bovine tendon

[16]. In the case of L-prolin as catalyst only one example of

this multicomponent reaction is known. From salicylalde-

hyde, dimedone, and barbituric acid (80 �C, 6 h) 2,4,6-

trioxohexahydropyrimidine substituted tetrahydro-1H-xan-

then-1-one 1 was obtained in 87 % yield [15]. The similar

reaction with TH amino acid catalyst resulted in only 56 %

yield of 1 after 24 h heating at 80 �C [16] (Scheme 1).

Both these catalytic methods are characterized by

heating at 80 �C during long reaction time (6–24 h), and

resulted in moderate yields of tetrahydro-1H-xanthen-1-

one 1 [15, 16]. Moreover, from the position of ‘green

chemistry’ one could formulate that ‘the best catalyst is no

catalyst’ [17, 18]. Thus, the two known procedures for the

synthesis of tetrahydro-1H-xanthen-1-ones 1 have its

merits, but the fast, simple, and efficient non-catalytic

method for this tandem Knoevenagel–Michael process with

further cyclization has yet to be developed.

Recently, we have found non-catalytic fast and efficient

multicomponent transformation of isatin, cyclic C–H acids,

and malononitrile into spirooxoindoles [19], general non-

catalytic approach to spiroacenaphthylene heterocycles

from acenaphthenequinone, cyclic CH-acids, and

malononitrile [20], and also non-catalytic efficient

approach to substituted 2,3,4,9-tetrahydro-1H-xanthen-1-

ones from salicylaldehydes and dimedone [21].

Considering our results on the non-catalytic multicom-

ponent and cascade transformation of C–H acids and

salicylaldehydes [19–21] as well as the certain biomedical

application of 10-(2,4,6-trioxo-hexahydropyrimidin-5-yl)-

2,3,4,9-tetrahydro-1H-xanthen-1-ones mentioned above,

we were prompted to design a convenient fast and facile

non-catalytic methodology for the efficient synthesis of

substituted tetrahydro-1H-xanthen-1-ones based on multi-

component reaction of salicylaldehydes, dimedone, and

barbituric acids.

Results and discussion

As it follows from introduction, we were interested in

designing a fast, convenient, and facile non-catalytic

methodology for the efficient synthesis of functionalized

tetrahydro-1H-xanthen-1-one system based on multicom-

ponent reaction of salicylaldehydes 2a–2g, dimedone, and

barbituric acids 3a–3c (Scheme 2; Tables 1, 2).

On the first step of this investigation the transformation

of salicylaldehyde (2a), dimedone, and N0,N0-dimethyl-

barbituric acid (2a) into tetrahydro-1H-xanthen-1-one 4a

was studied (Table 1). In ethanol as a solvent under reflux

(78 �C) in the presence of NaOAc or KF as catalyst in only

5 min reaction time tetrahydro-1H-xanthen-1-one 4a was

obtained in 85–92 % yield (Table 1, entries 1–4). The

more interesting was the fact that just the same result

(93 % yield) was achieved in ethanol without any catalyst

(Table 1, entry 5). Somewhat lower yields of 75–91 %

were found when multicomponent reaction was carried out

in water, methanol, n-propanol, or even under solvent-free

conditions without catalyst under heating (Table 1, entries

5–9). The best yield 95 % of tetrahydro-1H-xanthen-1-one

4a was obtained in ethanol with the minimal quantity of

solvent (Table 1, entry 10).

Under the optimal conditions thus found, salicylalde-

hydes 2a–2f, dimedone, and barbituric acids 3a–3c were

transformed into corresponding substituted tetrahydro-1H-

xanthen-1-ones 4a–4h in 90–95 % yields (Table 2).

With the above results taken into consideration and the

mechanistic data on non-catalytic multicomponent

Scheme 1
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Scheme 2

Table 1 Multicomponent

transformation of

salicylaldehyde (2a), dimedone,

and N,N0-dimethylbarbituric

acid (3a) into tetrahydro-1H-

xanthen-1-one 4a

Entry Catalyst Solvent Quantity of

solvent/cm3
Temp./�C Time/min Yield/%a

1 NaOAc EtOH 5 78 5 85

2 KF EtOH 5 78 5 88

3 NaOAc EtOH 2 78 5 89

4 KF EtOH 2 78 5 92

5 – EtOH 2 78 5 93

6 – H2O 2 80 5 76

7 – MeOH 2 65 5 85

8 – PrOH 2 80 5 91

9 – – – 80 5 75

10 – EtOH 1 78 5 95

11 – EtOH 1 78 3 87

5 mmol of aldehyde 2a, 5 mmol of dimedone, 5 mmol of N,N0-dimethyl-barbituric acid (3a), heating
3–5 min
a Isolated yield

Table 2 Non-catalytic

multicomponent transformation

of salicylaldehydes 2a–2f,
dimedone, and barbituric acids

3a–3c into substituted

tetrahydro-1H-xanthen-1-ones

4a–4h

Entry Aldehyde R1 R2 Barbituric acid R3 Tetrahydro-1H-

xanthen-1-one

Yield/%a

1 2a H H 3a Me 4a 95

2 2b H Me 3a Me 4b 91

3 2c OEt H 3a Me 4c 96

4 2d OMe Br 3a Me 4d 92

5 2e H Cl 3a Me 4e 90

6 2f H Br 3a Me 4f 93

7 2a H H 3b Et 4g 90

8 2a H H 3c H 4h 92

5 mmol of aldehyde 2a–2f, 5 mmol of dimedone, 5 mmol of barbituric acid 3a–3c, 1 mL of EtOH, 5 min

heating at 78 �C
a Isolated yield
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processes [19–21], the following mechanism for the non-

catalytic multicomponent transformation of salicylaldehy-

des 2, dimedone, and barbituric acids 3 into substituted

tetrahydro-1H-xanthen-1-ones 4 is proposed. The initiation

step of the catalytic cycle begins with the thermal depro-

tonation of a molecule of dimedone, which leads to the

dimedone anion A formation (Scheme 3). The following

process represents a typical multicomponent reaction.

Knoevenagel condensation of the anion A with salicyl-

aldehyde 2 takes place with the elimination of a hydroxide

anion and formation of Knoevenagel adduct 5 [22]. The

subsequent hydroxide-promoted Michael addition of bar-

bituric acids 3 to electron-deficient Knoevenagel adduct 5

results in anions B and C formation. Protonation of anion

C with the next molecule of dimedone leads to the corre-

sponding tetrahydro-1H-xanthen-1-one 4 formation with

the regeneration of anion A at the last step of the catalytic

cycle (Scheme 3).

Thus, the simple non-catalytic procedure can produce a fast

(5 min), efficient, and selective multicomponent transforma-

tion of salicylaldehydes, dimedone, and barbituric acids into

substituted tetrahydro-1H-xanthen-1-ones in excellent

90–95 % yields. This new process opens an efficient and

convenient multicomponent way to create substituted

tetrahydro-1H-xanthen-1-ones, the pharmacologically active

substances with known antiviral, anti-inflammatory, anti-

cancer activity and promising compounds for different

biomedical applications. This non-catalytic multicomponent

procedure utilizes simple equipment; it is easily carried out

and is valuable from the viewpoint of environmentally benign

diversity-oriented large-scale processes.

Experimental

All melting points were measured with a Gallenkamp

melting-point apparatus. 1H and 13C NMR spectra were

recorded in CDCl3 with a Bruker Avance II 300 spec-

trometer at ambient temperature. Chemical shift values are

relative to Me4Si. IR spectra were recorded with a Bruker

ALPHA-T FT-IR spectrometer in KBr pellets. Mass-

spectra (EI, 70 eV) were obtained directly with a Kratos

MS-30 spectrometer. High-resolution mass spectrometry

(HRMS) (electrospray ionization, ESI) was measured on a

Bruker microTOF II instrument; external or internal cali-

bration was done with an electrospray calibrant solution

Scheme 3

1692 M. N. Elinson et al.

123



(Fluka). All chemicals used in this study were commer-

cially available.

General procedure

A solution of salicylaldehyde (5 mmol), barbituric acid

(5 mmol), and 0.7 g dimedone (5 mmol) in 1 cm3 ethanol

was stirred under reflux for 5 min. Then the precipitated

product was filtered off, rinsed with 2 cm3 ice-cold etha-

nol–water solution (1:1), and dried under reduced pressure.

5-(3,3-Dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-

yl)-1,3-dimethyl-pyrimidine-2,4,6(1H,3H,5H)-trione

(4a, C21H22N2O5)

Yield 95 %; m.p.: 212–213 �C; 1H NMR (300 MHz,

CDCl3): d = 1.13 (s, 3H, CH3), 1.19 (s, 3H, CH3), 2.24

(s, 2H, CH2), 2.47 (d, J = 17.7 Hz, 1H, CH2), 2.57 (d,

J = 17.7 Hz, 1H, CH2), 3.07 (s, 3H, N–CH3), 3.22 (s, 3H,

N–CH3), 3.86 (d, J = 2.7 Hz, 1H, CH), 4.87 (d,

J = 2.7 Hz, 1H, CH), 7.03 (d, J = 8.1 Hz, 1H, Ar),

7.07–7.12 (m, 2H, Ar), 7.19–7.29 (m, 1H, Ar) ppm; 13C

NMR (75 MHz, CDCl3): d = 27.3, 28.3, 28.4, 29.4, 32.1,

36.4, 41.6, 50.7, 55.1, 109.0, 116.8, 120.6, 125.1, 128.0,

129.1, 150.5, 151.3, 167.1, 167.3, 168.1, 197.3 ppm; IR

(KBr): �v = 3428, 3412, 2962, 2951, 1690, 1676, 1643,

1391, 1376, 1229 cm-1; MS (EI, 70 eV): m/z (%) = 382

([M]?, 6), 298 (5), 227 (100), 171 (96), 143 (19), 115 (84),

69 (30), 58 (32), 42 (56), 28 (61); HRMS (ESI): m/z calcd

for C21H24N2NaO5 [M?Na]? 405.1421, found 405.1412.

1,3-Dimethyl-5-(3,3,7-trimethyl-1-oxo-2,3,4,9-tetrahydro-

1H-xanthen-9-yl)-pyrimidine-2,4,6(1H,3H,5H)-trione

(4b, C22H24N2O5)

Yield 91 %; m.p.: 179–180 �C; 1H NMR (300 MHz,

CDCl3): d = 1.12 (s, 3H, CH3), 1.18 (s, 3H, CH3), 2.28

(s, 3H, CH3), 2.33 (s, 2H, CH2), 2.45 (d, J = 17.7 Hz, 1H,

CH2), 2.55 (d, J = 17.7 Hz, 1H, CH2), 3.08 (s, 3H, N–

CH3), 3.22 (s, 3H, N–CH3), 3.84 (d, J = 2.7 Hz, 1H, CH),

4.81 (d, J = 2.7 Hz, 1H, CH), 6.91 (d, J = 8.3 Hz, 2H,

Ar), 7.04 (dd, J1 = 8.3 Hz, J2 = 2.0 Hz, 1H, Ar) ppm; 13C

NMR (75 MHz, CDCl3): d = 20.8, 27.4, 28.3 (2C), 29.4,

32.1, 36.8, 41.7, 50.7, 55.1, 108.7, 116.4, 120.2, 128.3,

129.8, 134.9, 148.5, 151.4, 167.2, 167.5, 168.3, 197.3 ppm;

IR (KBr): �v = 2959, 2877, 2888, 1695, 1678, 1631, 1458,

1388, 1229, 1111 cm-1; MS (EI, 70 eV): m/z (%) = 396

([M]?, 1), 241 (100), 225 (7), 185 (35), 157 (14), 128 (29),

115 (14), 69 (24), 58 (36), 42 (55); HRMS (ESI): m/z calcd

for C22H24N2NaO5 [M?Na]? 419.1577, found 419.1564.

5-(5-Ethoxy-3,3-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-

xanthen-9-yl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-

trione (4c, C23H26N2O6)

Yield 96 %; m.p.: 164–165 �C; 1H NMR (300 MHz,

CDCl3): d = 1.13 (s, 3H, CH3), 1.19 (s, 3H, CH3), 1.45

(t, J = 7.0 Hz, 3H, CH3), 2.34 (s, 2H, CH2), 2.54 (d,

J = 17.7 Hz, 1H, CH2), 2.65 (d, J = 17.7 Hz, 1H, CH2),

3.08 (s, 3H, N–CH3), 3.21 (s, 3H, N–CH3), 3.86 (d,

J = 2.6 Hz, 1H, CH), 3.96–4.19 (m, 2H, CH2), 4.86 (d,

J = 2.6 Hz, 1H, CH), 6.64 (d, J = 7.7 Hz, 1H, Ar), 6.82

(d, J = 7.7 Hz, 1H), 7.00 (t, J = 8.0 Hz, 1H) ppm; 13C

NMR (75 MHz, CDCl3): d = 14.8, 27.4, 28.3, 28.4, 29.4,

32.2, 36.7, 41.6, 50.8, 55.0, 64.8, 108.8, 112.9, 119.3,

121.6, 124.8, 140.6, 147.3, 151.4, 167.1, 167.3, 168.1,

197.5 ppm; IR (KBr): �v = 2957, 1676, 1648, 1469, 1421,

1388, 1287, 1225, 1194, 1075 cm-1; MS (EI, 70 eV):

m/z (%) = 426 ([M]?, 8), 410 (4), 326 (8), 271 (100), 255

(9), 215 (11), 187 (12), 159 (5), 115 (8), 69 (8); HRMS

(ESI): m/z calcd for C23H26N2NaO6 [M?Na]? 449.1683,

found 449.1665.

5-(7-Bromo-5-methoxy-3,3-dimethyl-1-oxo-2,3,4,9-

tetrahydro-1H-xanthen-9-yl)-1,3-dimethylpyrimidine-

2,4,6(1H,3H,5H)-trione (4d, C22H23BrN2O6)

Yield 92 %; m.p.: 188–189 �C; 1H NMR (300 MHz,

CDCl3): d = 1.12 (s, 3H, CH3), 1.15 (s, 3H, CH3), 2.29

(d, J = 16.3 Hz, 1H, CH2), 2.35 (d, J = 16.3 Hz, 1H,

CH2), 2.52 (d, J = 17.7 Hz, 1H, CH2), 2.61 (d,

J = 17.7 Hz, 1H, CH2), 3.16 (s, 3H, N–CH3), 3.24 (s,

3H, N–CH3), 3.87 (s, 3H, CH3), 3.83 (d, J = 2.6 Hz, 1H,

CH), 4.82 (d, J = 2.6 Hz, 1H, CH), 6.89 (d, J = 1.8 Hz,

1H, Ar), 6.94 (d, J = 1.8 Hz, 1H, Ar) ppm; 13C NMR

(75 MHz, CDCl3): d = 27.3, 28.4, 28.5, 29.3, 32.2, 35.8,

41.5, 50.7, 55.1, 56.4, 108.6, 114.8, 117.2, 122.2, 123.6,

139.5, 148.6, 151.3, 166.9, 167.1, 167.7, 197.4 ppm; IR

(KBr): �v = 2964, 2955, 1676, 1646, 1575, 1483, 1422,

1382, 1225, 1191 cm-1; MS (EI, 70 eV): m/z (%) = 492

([M]?, 2), 490 ([M]?, 3), 337 (5), 335 (6), 279 (2), 172 (4),

156 (3), 115 (7), 69 (18), 28 (100); HRMS (ESI): m/z calcd

for C22H23BrN2NaO6 [M?Na]? 513.0632, found

513.0622.

5-(7-Chloro-3,3-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-

xanthen-9-yl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-

trione (4e, C21H21ClN2O5)

Yield 90 %; m.p.: 207–208 �C; 1H NMR (300 MHz,

CDCl3): d = 1.13 (s, 3H, CH3), 1.15 (s, 3H, CH3), 2.29

(d, J = 16.2 Hz, 1H, CH2), 2.35 (d, J = 16.2 Hz, 1H,

CH2), 2.47 (d, J = 17.8 Hz, 1H, CH2), 2.54 (d,

J = 17.8 Hz, 1H, CH2), 3.16 (s, 3H, N–CH3), 3.24 (s,

3H, N–CH3), 3.85 (d, J = 2.5 Hz, 1H, CH), 4.85 (d,

J = 2.5 Hz, 1H, CH), 6.98 (d, J = 8.7 Hz, 1H, Ar), 7.16

(d, J = 2.3 Hz, 1H, Ar), 7.21 (dd, J1 = 8.7 Hz,

J2 = 2.3 Hz, 1H, Ar) ppm; 13C NMR (75 MHz, CDCl3):

d = 27.2, 28.4, 28.5, 29.4, 32.1, 35.6, 41.5, 50.7, 55.2,

108.6, 118.1, 123.0, 128.0, 129.1, 130.2, 149.1, 151.2,

166.9, 167.1, 167.9, 197.4 ppm; IR (KBr): �v = 2961, 2883,

1678, 1633, 1684, 1678, 1633, 1456, 1386, 1235 cm-1; MS

(EI, 70 eV): m/z (%) = 418 ([M]?, 2), 416 ([M]?, 5), 332
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(4), 261 (99), 245 (12), 205 (97), 149 (78), 114 (30), 83

(33), 42 (100); HRMS (ESI): m/z calcd for C21H21ClN2-

NaO5 [M?Na]? 439.1031, found 439.1023.

5-(7-Bromo-3,3-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-

xanthen-9-yl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-

trione (4f, C21H21BrN2O5)

Yield 93 %; m.p.: 209–210 �C; 1H NMR (300 MHz,

CDCl3): d = 1.13 (s, 3H, CH3), 1.15 (s, 3H, CH3), 2.28

(d, J = 16.3 Hz, 1H, CH2), 2.35 (d, J = 16.3 Hz, 1H,

CH2), 2.47 (d, J = 18.0 Hz, 1H, CH2), 2.54 (d,

J = 18.0 Hz, 1H, CH2), 3.16 (s, 3H, N–CH3), 3.25 (s,

3H, N–CH3), 3.84 (d, J = 2.5 Hz, 1H, CH), 4.84 (d,

J = 2.5 Hz, 1H, CH), 6.92 (d, J = 8.6 Hz, 1H, Ar), 7.31

(d, J = 1.9 Hz, 1H, Ar), 7.35 (dd, J1 = 8.6 Hz,

J2 = 1.9 Hz, 1H) ppm; 13C NMR (75 MHz, CDCl3):

d = 27.2, 28.4, 28.5, 29.4, 32.2, 35.7, 41.6, 50.7, 55.2,

108.7, 117.5, 118.5, 123.4, 131.0, 132.0, 149.6, 151.2,

166.9, 167.1, 167.9, 197.4 ppm; IR (KBr): �v = 2960, 2877,

1679, 1634, 1455, 1416, 1386, 1234, 1187, 1111,

1037 cm-1; MS (EI, 70 eV): m/z (%) = 462 ([M]?, 7),

460 ([M]?, 8), 307 (100), 305 (93), 251 (4), 249 (4), 142

(9) 114 (12), 58 (28), 42 (45); HRMS (ESI): m/z calcd for

C21H21BrN2NaO5 [M?Na]? 483.0526, found 483.0516.

1,3-Diethyl-5-(3,3-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-

xanthen-9-yl)-pyrimidine-2,4,6(1H,3H,5H)-trione

(4g, C23H26N2O5)

Yield 90 %; m.p.: 115–116 �C; 1H NMR (300 MHz,

CDCl3): d = 0.90 (t, J = 7.0 Hz, 3H, CH3), 1.13 (s, 3H,

CH3), 1.21 (t, J = 7.0 Hz, 3H, CH3), 1.22 (s, 3H, CH3),

2.35 (s, 2H, CH2), 2.47 (d, J = 17.6 Hz, 1H, CH2), 2.59 (d,

J = 17.6 Hz, 1H, CH2), 3.56–3.78 (m, 2H, CH2), 3.82–

3.94 (m, 2H, CH2), 3.86 (d, J = 2.5 Hz, 1H, CH), 4.91 (d,

J = 2.5 Hz, 1H, CH), 7.01 (d, J = 8.3 Hz, 1H, Ar), 7.07 (t,

J = 6.3 Hz, 2H, Ar), 7.19–7.29 (m, 1H, Ar) ppm; 13C

NMR (75 MHz, CDCl3): d = 12.7, 13.1, 27.6, 29.2, 32.3,

36.4, 36.9, 37.3, 41.7, 50.8, 54.4, 109.3, 117.0, 120.4,

125.0, 128.2, 129.1, 150.5, 150.6, 166.7, 167.2, 168.0,

197.3 ppm; IR (KBr): �v = 2980, 2953, 1677, 1652, 1458,

1406, 1387, 1310, 1231, 1125 cm-1; MS (EI, 70 eV):

m/z (%) = 410 ([M]?, 5), 326 (2), 267 (4), 227 (100), 211

(8), 171 (35), 115 (28), 69 (14), 44 (14), 29 (34); HRMS

(ESI): m/z calcd for C23H26N2NaO5 [M?Na]? 433.1734,

found 433.1724.

5-(3,3-Dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-

yl)pyrimidine-2,4,6(1H,3H,5H)-trione (4h)

Yield 92 %; m.p.: 166–167 �C (Ref. [15] m.p.:

150–152 �C); 1H NMR (300 MHz, CDCl3): d = 1.13 (s,

3H, CH3), 1.15 (s, 3H, CH3), 2.35 (s, 2H, CH2), 2.48 (d,

J = 17.6 Hz, 1H, CH2), 2.56 (d, J = 17.6 Hz, 1H, CH2),

3.88 (d, J = 2.3 Hz, 1H, CH), 4.94 (d, J = 2.3 Hz, 1H,

CH), 7.02 (d, J = 8.0 Hz, 1H, Ar), 7.10 (t, J = 7.2 Hz, 1H,

Ar), 7.23 (d, J = 7.2 Hz, 1H, Ar), 8.76 (s, 1H, NH), 8.94

(s, 1H, NH) ppm.
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