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Abstract An eco-friendly and efficient synthesis of

substituted 1,3,4-thiadiazole derivatives has been devel-

oped. This aqueous heterogeneous approach proceeds

smoothly and quickly under combined microwave and

ultrasound irradiation in the presence of FeCl3.

Keywords Microwave-assisted synthesis � Ultrasound �
Heterogeneous � Water � Oxidations

Introduction

The concept of ‘‘ideal chemistry’’ has been widely adopted

to meet the fundamental scientific principles of protecting

human health and the environment while simultaneously

achieving commercial value [1]. In this regard, the

replacement of organic solvents is one of the most

important goals. Although an ideal and universal green

solvent for all problems does not exist, water is a widely

explored green solvent [2–4]. Clearly, the development of a

sustainable approach for synthesizing biologically active

molecules is very important. In this field, combined

microwave and ultrasound irradiation has proven to be a

powerful tool for both speeding up chemical optimizations

and for efficiently preparing new compounds [5–10].

Over the years, heterocycles have become important

synthetic intermediates that have found a variety of

applications in medicinal, agricultural, and materials

chemistry [11–13]. Although many important types of

heterocyclic compounds have been synthesized in aqueous

media [14–20], the synthesis of new and important types of

heterocyclic compounds in water still attracts wide atten-

tion. 1,3,4-Thiadiazoles are very important heterocycles

with great applicability in medicinal chemistry, agro-

chemistry, and so on. This core structure can be found in

compounds with wide-ranging biological applications

[21–27]. The literature reveals that most traditional syn-

thetic methods for the synthesis of 1,3,4-thiadiazole

derivatives suffer from one or more drawbacks, such as

laborious work-up, strongly acidic conditions, low yields,

and the use of organic solvents [28–32]. As part of

our continued interest in the application of combined

microwave and ultrasound irradiation (CMUI)-assisted

heterogeneous reactions [33–35], we here report a mild,

efficient, and environmentally benign approach for the

synthesis of substituted 1,3,4-thiadiazoles via intramolec-

ular cyclization or the three-component reaction of an

aldehyde, a phenylisothiocyanate, and hydrazine hydrate

under CMUI in a heterogeneous aqueous medium.

Results and discussion

In our initial study, we employed 1-benzylidenethiosemi-

carbazide (1a) as a model substrate in combination with 3

equiv. of FeCl3 to evaluate the efficiency of microwave and

ultrasound irradiation (Table 1, entries 1–3). The results

showed that a combination of microwave irradiation

at 200 W and ultrasound irradiation at 50 W gave the

highest yield after 3 min (Table 1, entry 1). Several control
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experiments were carried out in order to demonstrate the

superiority of CMUI over other methods (Table 1, entries 1,

4–6). The results clearly show that CMUI achieved the best

results in terms of both reaction time and yield. This drastic

acceleration effect may be attributed to a combination of

enforced heat transfer due to microwave irradiation and

intensive mass transfer at phase interfaces caused by soni-

cation. Regarding the concentrations of FeCl3, we found that

lower yields were obtained when using less than 3 equiv. of

FeCl3 (Table 1, entries 7, 8). As a compromise between eco-

efficiency and yield, 2 equiv. of FeCl3 were adopted for

further elaboration. The desired 5-phenyl-1,3,4-thiadiazol-

2-amine (2a) was obtained in 82 % yield after an increased

irradiation time of 4 min (Table 1, entry 9), while reducing

the irradiation time to 2 min resulted in a decreased yield of

56 % (Table 1, entry 10).

Having identified the optimal conditions (Table 1, entry 7),

we next investigated the scope and limitation of the process

with variously substituted 1-benzylidenethiosemicarbazides 1

(Table 2). Both electron-withdrawing (Table 2, entries 2–5)

and electron-donating (Table 2, entries 6–8) groups were well

tolerated, although a slightly lower yield was obtained with a

para-methyl substituent (Table 2, entry 6).

Considering that Schiff bases with heterocycles express

biological activities [36, 37], we next evaluated the scope of

the CMUI technology for the synthesis of 5-aryl-N-arylidene-

1,3,4-thiadiazol-2-amines 4 employing a variety of 5-substi-

tuted 1,3,4-thiadiazol-2-amines 2 in combination with

4-hydroxybenzaldehyde (3, Table 3). The result showed that

the 1,3,4-thiadiazol-2-amines 2 with electron-donating groups

reacted rapidly and gave a high yield of 4 (Table 3, entries

6–8), while those with electron-withdrawing groups required

longer reaction times and gave lower yields (Table 3, entries

2–5). Interestingly, when the 1,3,4-thiadiazol-2-amines 2c

and 2e were used, increased yields of the desired compounds

4c and 4e were obtained when 2 mol % of concentrated

hydrochloric acid was added as a catalyst.

Table 1 Optimizing the conditions

N

H
N NH2

S H2O, reflux
S

NN

NH2

a2a1

FeCl3

Entry FeCl3/equiv. Method Time/min Yielda/%

1 3 MW (200 W) ? US (50 W) 3 86

2 3 MW (150 W) ? US (50 W) 3 77

3 3 MW (200 W) ? US (40 W) 3 63

4 3 US (50 W) ? oil bath heating 90 47

5 3 MW (200 W) 20 28

6 3 Conventional reflux 240 45

7 2 MW (200 W) ? US (50 W) 3 85

8 1.5 MW (200 W) ? US (50 W) 3 69

9 3 MW (200 W) ? US (50 W) 4 82

10 3 MW (200 W) ? US (50 W) 2 56

Reactions were performed under reflux using 1-benzylidenethiosemicarbazide (1.0 mmol), FeCl3, and 6 cm3 water
a Isolated yield

Table 2 Scope and limitations of the protocol

N

H
N NH2

S CMUI, reflux

FeCl3, H2O
S

NN

NH2

1 2

R R

Entry R Product 2 Reported yield/% Yielda/%

1 H 2a 65 [26] 85

2 4-F 2b 80 [21] 90

3 3-NO2 2c 58 [23] 89

4 4-Cl 2d 70 [26] 85

5 2,4-di-Cl 2e 84 [22] 84

6 4-CH3 2f 62 [26] 73

7 4-OCH3 2g 60 [26] 88

8 3,4-OCH2O– 2h Not mentioned [30] 86

Reactions were performed under reflux using 1 (1.0 mmol), FeCl3
(2.0 mmol), and 6 cm3 water for 3 min under CMUI (microwave:

200 W; ultrasound: 50 W)
a Isolated yields
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Encouraged by these results, we tried to explore the

CMUI approach for synthesizing other substituted 1,3,4-

thiadiazoles. Based on the literature [38–41], we found that

1,3,4-thiadiazoles could be obtained via a one-pot three-

component reaction of an aldehyde, a phenylisothiocya-

nate, and hydrazine hydrate in water under CMUI

(Table 4). Therefore, we next investigated the application

of our previous protocol applying a variety of aldehydes 5

containing electron-withdrawing (Table 4, entries 2–5) or

electron-donating (Table 4, entries 6–13) substituents. To

our satisfaction, all reactions worked well and provided the

desired products 8a–8m in good yields.

In conclusion, we have developed an efficient, simple,

and green procedure for the synthesis of 5-aryl-N-arylid-

ene-1,3,4-thiadiazol-2-amines and 5-aryl-N-phenyl-1,3,4-

thiadiazol-2-amines employing a FeCl3-promoted process

under combined microwave and ultrasound irradiation

(CMUI) in water. The CMUI provides extremely efficient

dielectric heating along with intensive mass transport in

these heterogeneous systems, making it an excellent

approach for achieving environmentally friendly and effi-

cient organic synthesis.

Experimental

All solvents and reagents were purchased from commercial

sources and were used without prior purification. All com-

bined microwave and ultrasound irradiation experiments

were carried out in a professional TCMC-102 microwave

apparatus (Nanjing Lingjiang Technological Development

Company, Nanjing, China) operating at a frequency of

2.45 GHz with continuous irradiation power from 0.0 to

500 W, and a FS-250 professional ultrasound apparatus

(Shanghai S.X. Ultrasonics, Shanghai, China) operating at a

frequency of 20 kHz with controllable irradiation power

from 10 to 100 W. The reactions were carried out in a 15 cm3

two-necked Pyrex flask placed in the microwave cavity with

the tip of the detachable horn immersed just under the liquid

surface. TLC analysis was performed on aluminum-backed

plates SIL G/UV254. The products were purified by filtration

and were identified by 1H NMR (DMSO-d6, 400 MHz) and

MS (EI). All new products were identified by 1H and 13C

NMR (DMSO-d6, 400 MHz) and high-resolution mass

spectra (EI). Melting points were measured with a digital

melting-point apparatus (WRR, Shanghai Precision and

Scientific Instruments, Shanghai, China).

General experimental procedure for the synthesis

of 5-aryl-1,3,4-thiadiazol-2-amines 2

A mixture of 1-arylidenethiosemicarbazide 1 (1 mmol),

FeCl3 (2 mmol), and 6 cm3 water was subjected to

microwave–ultrasound activation conditions. The ultra-

sound and microwave sources were switched on

successively (power levels: ultrasound 50 W, microwave

200 W). The mixture was irradiated simultaneously with

microwaves and ultrasound for 3 min. The suspension was

Table 3 Synthesis of 5-aryl-N-arylidene-1,3,4-thiadiazol-2-amines

S

NN

NH2

2

R +

HO

CHO H2O

CMUI, reflux
S

NN

N

4

R

OH
3

Entry R Product 4 Time/min Reported yield/% Yielda/%

1 H 4a 3 70 [28] 89

2 4-F 4b 8 – 87

3 3-NO2 4c 10 Not mentioned [33] 32 (88b)

4 4-Cl 4d 10 – 77

5 2,4-di-Cl 4e 10 – 24 (77c)

6 4-CH3 4f 30 – 98

7 4-OCH3 4g 3 65 [31] 90

8 3,4-OCH2O– 4h 3 – 92

A mixture of 2 (1.0 mmol), 3 (1.0 mmol), and 6 cm3 water was brought to reflux upon CMUI (microwave: 200 W; ultrasound: 50 W) for the

indicated time (monitored by TLC)
a Isolated yields
b Added HCl and reacted for 5 min
c Added HCl and reacted for 10 min
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filtered and the residue was washed with water and ethanol,

after which the residue was recrystallized from ethanol and

dried under vacuum to obtain the products 2.

General experimental procedure for the synthesis

of 5-aryl-N-arylidene-1,3,4-thiadiazol-2-amines 4

A mixture of 5-aryl-1,3,4-thiadiazol-2-amines 2 (1 mmol),

4-hydroxy-benzaldehyde 3 (1 mmol), and 6 cm3 water was

subjected to microwave-ultrasound activation conditions.

The ultrasound and microwave sources were switched on

successively (power level: ultrasound 50 W, microwave

200 W). The mixture was irradiated simultaneously with

microwaves and ultrasound for 3 min. The suspension was

filtered and the residue was washed with water and ethanol,

after which the residue was recrystallized from ethanol and

dried under vacuum to obtain the products 4.

4-[[5-(4-Fluorophenyl)-1,3,4-thiadiazol-2-ylimino]-

methyl]phenol (4b, C15H10FN3OS)

Yellow solid; m.p.: 261.2–262.0 �C; 1H NMR (400 MHz,

DMSO-d6): d = 6.94 (d, J = 8.4 Hz, 2H), 7.41 (t,

J = 8.4 Hz, 2H), 7.93 (d, J = 8.8 Hz, 2H), 8.00–8.03

(m, 2H), 8.88 (s, 1H), 10.63 (s, 1H) ppm; 13C NMR

(100 MHz, DMSO-d6): d = 116.7, 117.2, 126.2, 127.3,

130.2, 133.2, 163.5, 164.5, 165.4, 169.1, 174.8 ppm;

HRMS (EI): m/z calc’d for C15H10FN3OS (M ? H)

299.0529, found 299.0529.

4-[[5-(4-Chlorophenyl)-1,3,4-thiadiazol-2-ylimino]-

methyl]phenol (4d, C15H10ClN3OS)

Yellow solid; m.p.: 251.3–252.4 �C; 1H NMR (400 MHz,

DMSO-d6): d = 6.94 (d, J = 8.4 Hz, 2H), 7.63 (d,

J = 8.4 Hz, 2H), 7.93 (d, J = 8.8 Hz, 2H), 7.98 (d,

J = 8.4 Hz, 2H), 8.89 (s, 1H), 10.65 (s, 1H) ppm; 13C

NMR (100 MHz, DMSO-d6): d = 116.3, 126.2, 128.4,

130.0, 133.3, 134.4, 136.3, 163.8, 164.5, 169.2, 175.0 ppm;

HRMS (EI): m/z calc’d for C15H10ClN3OS (M ? H)

315.0233, found 315.0236.

4-[[5-(2,4-Dichlorophenyl)-1,3,4-thiadiazol-2-ylimino]-

methyl]phenol (4e, C15H9Cl2N3OS)

Yellow solid; m.p.: 255.1–256.6 �C; 1H NMR (400 MHz,

DMSO-d6): d = 6.95 (d, J = 8.8 Hz, 2H), 7.65 (m, 1H),

7.92–7.95 (m, 3H), 8.21 (d, J = 8.4 Hz, 1H), 8.96 (s, 1H),

10.64 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6):

d = 116.7, 126.3, 128.8, 130.7, 132.7, 132.3, 133.3, 135.0,

136.6, 156.0, 163.6, 169.4, 176.3 ppm; HRMS (EI):

m/z calc’d for C15H9Cl2N3OS (M ? H) 348.9842, found

348.9848.

Table 4 Synthesis of 5-aryl-N-phenyl-1,3,4-thiadiazol-2-amines

CHO

+ NH2NH2 +
NCS H2O

S

NN

N
H

FeCl3,

R
R

5 6 7 8

H2O
CMUI, reflux

Entry R Product 8 Time/min Reported yield/% Yielda/%

1 H 8a 4 85 [40] 79

2 4-CN 8b 3 – 75

3 3-NO2 8c 3.5 Not mentioned [42] 76

4 2,4-di-Cl 8d 4 72 [43] 74

5 3-F 8e 4 – 74

6 3-OCF3 8f 2.5 – 83

7 4-OCH3 8g 3.5 85 [44] 71

8 3,5-di-OCH3 8h 4 – 76

9 3,4,5-tri-OCH3 8i 3.5 78 [30] 75

10 4-CH3 8j 3.5 64 [44] 73

11 4-CH(CH3)2 8k 3.5 – 85

12 4-OH 8l 4 87 [45] 85

13 2-OH 8m 4 75 [46] 84

A mixture of 5 (1.0 mmol), 6 (1.0 mmol), 7 (1.0 mmol), FeCl3 (2.0 mmol), and 6 cm3 water was brought to reflux upon CMUI (microwave:

200 W; ultrasound: 50 W) for the indicated time (monitored by TLC)
a Isolated yields
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4-[[5-(4-Methylphenyl)-1,3,4-thiadiazol-2-ylimino]-

methyl]phenol (4f, C16H13N3OS)

Yellow solid; m.p.: 249.7–250.8 �C; 1H NMR (400 MHz,

DMSO-d6): d = 2.38 (s, 3H), 6.94 (d, J = 8.4 Hz, 2H),

7.37 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 7.92

(d, J = 8.4 Hz, 2H), 8.87 (s, 1H), 10.62 (s, 1H) ppm; 13C

NMR (100 MHz, DMSO-d6): d = 21.8, 116.7, 126.3,

127.6, 127.9, 130.5, 133.1, 141.8, 163.4, 165.7, 168.9,

174.3 ppm; HRMS (EI): m/z calc’d for C16H13N3OS

(M ? H) 295.0779, found 295.0760.

4-[[5-(Benzo[d][1,3]dioxol-5-yl)-1,3,4-thiadiazol-2-ylimino]-

methyl]phenol (4h, C16H11N3O3S)

Yellow solid; m.p.: 250.2–251.1 �C; 1H NMR (400 MHz,

DMSO-d6): d = 6.15 (s, 2H), 6.94 (d, J = 8.8 Hz, 2H),

7.09 (d, J = 8.0 Hz, 1H), 7.46 (m, 1H), 7.51 (d,

J = 8.2 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 8.85 (s, 1H),

10.60 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6):

d = 102.5, 107.1, 109.5, 116.7, 123.0, 124.6, 126.3, 133.1,

148.7, 150.3, 163.4, 165.3, 168.7, 174.1 ppm; HRMS (EI):

m/z calc’d for C16H11N3O3S (M ? H) 325.0521, found

325.0513.

General experimental procedure for the synthesis of 5-aryl-

N-phenyl-1,3,4-thiadiazol-2-amines 8

A mixture of aldehyde 5 (1 mmol), hydrazine hydrate 6

(1 mmol), phenylisothiocyanate 7 (1 mmol), FeCl3
(2 mmol), and 6 cm3 water was subjected to microwave–

ultrasound activation conditions. The ultrasound and micro-

wave sources were switched on successively (power levels:

ultrasound 50 W, microwave 200 W). The mixture was

irradiated simultaneously by microwaves and ultrasound for

3 min. The suspension was filtered and the residue was

washed with water and ethanol, after which the residue was

recrystallized from ethanol and dried under vacuum to obtain

the products 8.

4-[5-(Phenylamino)-1,3,4-thiadiazol-2-yl]benzonitrile

(8b, C15H10N4S)

Light yellow solid; m.p.: 242.3– 243.5 �C; 1H NMR

(400 MHz, DMSO-d6): d = 7.06 (t, J = 7.2 Hz, 1H), 7.39

(t, J = 7.6 Hz, 2H), 7.67 (d, J = 7.9 Hz, 2H), 7.98 (d,

J = 8.7 Hz, 2H), 8.05 (d, J = 8.3 Hz, 2H), 10.71 (br s,

1H) ppm; 13C NMR (100 MHz, DMSO-d6): d = 112.6,

118.1, 122.8, 127.8, 129.6, 133.6, 140.6, 156.4, 165.5 ppm;

HRMS (EI): m/z calc’d for C15H10N4S (M ? H) 278.0626,

found 278.0623.

5-(3-Fluorophenyl)-N-phenyl-1,3,4-thiadiazol-2-amine

(8e, C14H10FN3S)

White solid; m.p.: 212.2–213.8 �C; 1H NMR (400 MHz,

DMSO-d6): d = 7.03 (t, J = 7.0 Hz, 1H), 7.34–7.37 (m,

4H), 7.65 (d, J = 8.1 Hz, 2H), 7.93 (t, J = 6.4 Hz, 2H),

10.54 (br s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6):

d = 117.0, 117.9, 122.6, 127.4, 129.6, 140.8, 156.9, 162.2,

164.5 ppm; HRMS (EI): m/z calc’d for C14H10FN3S

(M ? H) 271.0579, found 271.0577.

N-Phenyl-5-[3-(trifluoromethoxy)phenyl]-1,3,4-thiadiazol-

2-amine (8f, C15H10F3N3OS)

White solid; m.p.: 193.8–195.6 �C; 1H NMR (400 MHz,

DMSO-d6): d = 7.04 (t, J = 7.0 Hz, 1H), 7.38 (t,

J = 7.6 Hz, 2H), 7.51 (d, J = 9.3 Hz, 2H), 7.66 (d,

J = 8.1 Hz, 2H), 8.01 (d, J = 9.3 Hz, 2H), 10.58 (br s,

1H) ppm; 13C NMR (100 MHz, DMSO-d6): d = 118.1,

122.2, 122.7, 129.2, 129.6, 130.0, 140.8, 149.7, 156.5,

164.9 ppm; HRMS (EI): m/z calc’d for C15H10F3N3OS

(M ? H) 337.0497, found 337.0490.

5-(3,5-Dimethoxyphenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (8h, C16H15N3O2S)

White solid; m.p.: 192.3–194.2 �C; 1H NMR (400 MHz,

DMSO-d6): d = 3.82 (s, 6H), 6.64 (s, 1H), 6.98–7.05 (m,

3H), 7.37 (t, J = 7.0 Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H)

ppm; 13C NMR (100 MHz, DMSO-d6): d = 56.0, 102.6,

105.2, 117.9, 122.6, 129.6, 132.5, 140.8, 157.9, 161.3,

164.5 ppm; HRMS (EI): m/z calc’d for C16H15N3O2S

(M ? H) 313.0885, found 313.0880.

5-(4-Isopropylphenyl)-N-phenyl-1,3,4-thiadiazol-2-amine

(8k, C17H17N3S)

White solid; m.p.: 178.2–180.0 �C; 1H NMR (400 MHz,

DMSO-d6): d = 1.23 (d, J = 6.8 Hz, 6H), 2.91–2.98 (m,

1H), 7.02 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 8.6 Hz, 4H),

7.66 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 10.50

(br s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6):

d = 24.1, 33.6, 117.9, 122.4, 127.3, 127.6, 128.5, 129.6,

140.8, 151.2, 158.1, 164.1 ppm; HRMS (EI): m/z calc’d for

C17H17N3S (M ? H) 295.1143, found 295.1140.
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