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Abstract A new model that explains the Meyer–Neldel

rule of atomic diffusion processes in condensed matter is

presented. Phonon absorption and emission processes by

diffusing atoms are separately taken into account in the

atomic jumping processes whereas in the conventional

classical model of diffusion the phonon emission process is

not explicitly taken into account. Excitation and relaxation

of the accepted phonon modes in the system may cause

Meyer–Neldel rule in atomic diffusion processes. It is

emphasized that the numbers of atoms in the activated

states dominate the diffusion processes.
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Introduction

The Meyer–Neldel rule (MNR) or compensation law is

now a very well known phenomenon in wide class of

materials. When a phenomenon X is thermally activated, it

is written as [1]:

X ¼ X0 exp �DE=kT

� �

¼ X00 exp DE=EMNð Þ exp �DE=kT

� �
ð1Þ

where the pre-exponential factor X0 itself depends expo-

nentially on the activation energy DE. Here EMN is called

the Meyer–Neldel energy. The MNR is applied to both the

physical and chemical kinetics (in some types of reaction)

and to the thermodynamics (e.g. electron occupation rela-

ted to Fermi–Dirac or Boltzmann statistics).

The expression given in Eq. (1) has a universal form for

any thermally activated phenomenon. There is an argument

that the MNR should have universal origin. Yelon et al. [1]

emphasize that a multi-excitation process, for example

multiphonon excitation, is the origin of the MNR: a large

change in entropy associated with overcoming a potential

should be involved in a thermal process. The idea is that

this multi-excitation entropy (MEE) has a primary role in

kinetics. The main point is that entropy should not be

ignored in any reaction, or kinetic or thermodynamic pro-

cess. Yelon et al. [1] and Emin [2] claim that the MNR

should be found in materials in which small polarons

with multiphonon processes dominate electron transport.

Okamoto et al. [3] have discussed the universality of MNR

on the basis of a specific mathematical background, i.e., the

Laplace transform in the energy space E, and reached the

same conclusion as that by Yelon et al. [1].

It is however, still not easy to find the physical back-

ground of MEE as a common physical basis for any

material system. Therefore, we will discuss here a specific

phenomenon for each material system. Electron transport

in hydrogenated amorphous silicon (a-Si:H) [4] and

amorphous chalcogenides (a-Chs) [5] are good examples

for discussing the MNR. Whereas EMN takes a value of

approximately 40 meV for a-Si:H and 20–80 meV for

a-Chs, r00 & 1 S cm-1 reported for a-Si:H is very much

larger than that for a-Chs. (10-5–10-15 S cm-1). A model

of the statistical shift of the Fermi level, i.e., shift of the

Fermi level with temperature, is most commonly known as
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the origin of the MNR observed in electron transport in

a-Si:H. With appropriate assumption of the density-of-

states (DOS) in a forbidden gap, this model explains well

the experimental results [4]. In a-Chs, however, the

experimental results cannot be explained by the statistical

shift of the Fermi level [5].

Let us briefly discuss the polaron hopping with mul-

tiphonon processes, which is usually described as a

thermally assisted transition of a charge carrier between

two localized electronic states. A hop is completed when a

carrier absorbs phonon energy and dissipates it to sur-

rounding atoms, in which detailed balance conditions

should be established. In a generalized adiabatic polaron

hopping model [2], the MNR results from the carrier-

induced softening of vibrations, i.e., a reduction in the

stiffness of the associated atomic vibrations at the activated

inter-sites. Generally speaking, in hopping kinetics, the

downward hops in energy are slowed by the need to emit

multiple phonons. An example of this is the well-known

‘‘phonon bottleneck’’ in quantum dots, in which the excited

state cannot relax to the ground state because of energy

mismatch [1, 6].

Now, we focus on atomic transport, i.e., dynamics of

atomic diffusion or ion transport. Although the MNR is

mostly reported in disordered materials, it is also observed

in the temperature-dependent diffusion coefficient in

crystalline solids [1, 7]. In the following section, we will

look for the origin of the MNR in atomic diffusion pro-

cesses by discussing a new proposal of diffusion kinetics in

solid states.

Atomic diffusion kinetics

Let us first discuss the most accepted and usual model of

atomic diffusion. Figure 1 shows a schematic view for the

local energy profile; (a), (b), and (c) represent the sites

through which the moving atom passes and DU corre-

sponds to the internal energy change which is accompanied

by the atomic movement (jumping) between sites (a)

and (c).

The free energy change DG is given by:

DG ¼ DU � TDS ð2Þ

where DS is the entropy change and T is the temperature.

The jump frequency of a particle from site (a) to (b) is

given as:

m ¼ m0 exp �DG=kT

� �
¼ m0 exp DS=k

� �
exp �DU=kT

� �

ð3Þ

when DS/k is replaced by DU/EMN for some reason, Eq. (3)

shows the MNR for the jumping frequency. In the diffusion

of interstitial atoms, DS/k is estimated to be not large [8]

and hence this effect can be often ignored in the estimation

of jumping rate. Yelon et al. [1] have emphasized that the

entropy change should not be neglected when we discuss

MNR in different phenomena. Their basic idea for the

MNR is the multi-excitation of particles (electron or atom)

which is closely dependent on entropy change.

Although the term DS/k can be important, we temporally

treat the diffusion kinetics without this term. The config-

uration coordinate (CC) diagram shown in Fig. 2 may be

useful for describing the energy change accompanied by

atomic displacement.

The state (a) shown by solid curve represents the energy

E vs. coordination q. The dashed curve shows the new

configuration after atomic jumping to a neighboring site

(state (c)). To complete this event, the jumping atom

should cross the state (b) which is the crossing point

between the states (a) and (c). The site (b) is called the

activated state. To reach the activated state, a particle is

required to obtain energy DU from the phonons of the

media. DU can be given as [9, 10]:

DU ¼ q2
0P

i

a2
i

ð4Þ

where q0 is the critical value in the coordinate q which is

written as:

q ¼
X

i

aiQi ¼
X

i

aie
1=2
i cos xit ð5Þ

Here, the displacement of an atom from the equilibrium

lattice site q is given in terms of the superposition of lattice

modes Qi. ei is the energy of the mode Qi, and ai the weight

factor of the mode that has frequency xi.

(a)

(b)

(c)

UΔ

Fig. 1 Schematic view for the local energy profile. (a), (b), and

(c) represent the sites through which the moving atom passes and

DU corresponds to the internal energy change which is accompanied

by the atomic movement (jumping) between the sites (a) and (c)
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Atomic movement from (a) to (b) is a thermally acti-

vated process and hence the rate of occurrence of such an

event mab is given by:

mab ¼ m0 exp �DU=kTð Þ ð6Þ

where m0 is the vibration frequency (*1013 s-1). Note that

state (b) is a transient state (activated state) and the

transition to state (c) is still not complete. The process (b)

to (c) corresponds to the energy release of the diffusing

atoms; i.e. the kinetic energy of the diffused atoms

obtained from the host is returned back through distortion

and relaxation of the host. Thus the state (c) can be

established by multiphonon emissions. The rate for this

event mbc can be described as:

mbc ¼ m0 exp �cDU=dð Þ � m0 exp �DU=EMNð Þ ð7Þ

by analogy with a quantum mechanical expression for the

defect jump frequency at low temperature [11]. This

equation is also analogous with the energy gap law used for

description of the vibrational relaxation of a guest molecule

in a solid or liquid [12, 13]. In Eq. (7), c is the coupling

constant and d is the energy of the accepting mode of

vibrations which will be discussed in the next section,

together with the experimental data.

Under thermal equilibrium conditions, the detailed bal-

ance between the ground state (a) and the activated state

(b) should be established and hence:

Nmab ¼ nmbc ð8Þ

where N is the number of atoms in state (a) (ground state)

and n the number of atoms in state (b) (activated state). It is

emphasized here that n corresponds to the actual number of

diffusing atoms. Using Eqs. (6), (7), and (8), n is given as:

n ¼ N exp DU=EMNð Þ exp �DU=kTð Þ ð9Þ

It is noted that the ratio n/N is not simply given by the

Boltzmann factor, although Eq. (9) is derived under

thermal equilibrium.

The continuity law of flow should hold in the diffusion

process as:

nD00 ¼ ND ð10Þ

where D00 is the ‘‘diffusion coefficient in the activated state

(b)’’ as will be discussed later, and D the actual diffusion

coefficient which is experimentally observed. Using Eqs.

(9) and (10), D is written as:

D ¼ D00 exp DU=EMNð Þ exp �DU=kTð Þ
� D0 exp �DU=kTð Þ ð11Þ

We note that the MNR appears from the detailed balance

condition of phonon absorption and emission processes,

similar to the phonon bottleneck problem as stated in the

previous section. In particular, the multiphonon emission

rate to return to the ground state dominates the MNR in

atomic diffusion processes. Yelon et al. [1] have also

suggested the importance of the detailed balance condition

in the electronic process, when the intermediate third

state is involved in energy absorption and emission pro-

cesses. The population of the intermediate state in this case

depends on their kinetic behavior, i.e., depends on energy

absorption or emission rate constants. This means that the

thermodynamic behavior (population) is directly related to

their kinetic behavior. The model of this paper, concerning

ion or atom transport, is phenomenologically similar to this

idea, i.e. the activated state in the atomic diffusion process

corresponds to the intermediate state in the electronic

process.

Examples of MNR in atomic diffusion

Because one of the most widely studied MNR cases is bulk

diffusion in crystalline solids, examples of atomic diffusion

are shown below. As examples, the diffusion of elements in

crystalline Si, Ag, and KBr are considered. Open circles in

Fig. 3 show experimental data for D0 (Eq. 11) as a function

of DU for many elements (metallic, semiconducting, etc.)

in crystalline Si (data from Ref. [6]). The solid line shows a

least-squares fit to the experimental data, which gives

D00 = 8 9 10-7 cm2 s-1 and EMN = 220 meV, whereas

D0 at low energies is much more scattered. Analogously,

experimental data for different elements in crystalline Ag

[14] and KBr [7], and their least-squares fits are shown in

Figs. 4 and 5, respectively. The evaluated values for Ag

are obtained as D00 = 1 9 10-5 cm2 s-1 and EMN = 170

meV and for KBr they are found to be D00 = 8 9

10-6 cm2 s-1 and EMN = 93 meV.

Note that in the above experimental data, the diffusion

of different elements in the same material is given. On the

(a) (c)

(b)

UΔ

q0

q

E

Fig. 2 The configurational coordinate diagram. The state (a),

denoted by energy E vs. coordination q (solid curve), changes to a

new configuration (dashed curve) after atomic jumping to a neigh-

boring site (state (c)). Site (b) is called the activated state
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other hand, Fig. 6 shows experimental values of D0 for O

and H atoms in different metals [14]. D0 for both O and H

seems to follow the same trend, although the values of D0

for H are confined to lower DU only in comparison with

those for O atoms. It is therefore concluded that there is no

essential difference between the diffusion processes of O

and H atoms. A least-squares fit to the experimental data

given by a solid line gives D00 = 8 9 10-4 cm2 s-1 and

EMN = 250 meV for both H and O.

From the above examples we obtain D00 * 10-3–

10-7 cm2 s-1 and EMN & 100-250 meV. The values of

EMN for atomic diffusion are reported to be in the range of

25–200 meV, typically between 150–200 meV [1]. Note

that the values of EMN for atomic diffusion are larger than

those reported in a-Si:H and a-Chs [1–3]. This clearly

shows the difference between systems involving electron or

atom transport.

We should discuss why large EMN values compared with

electronic systems are observed in atomic diffusion. The

relaxation of the energy carried by the diffusing atom in the

excited state is described by Eq. (7). Successful atomic

migration occurs when the diffusing atom goes to state (c),

as illustrated in Fig. 2. Such a successful migration is

accompanied by the generation of a space necessary to

accommodate the diffusing atom. In other words, it is

accompanied by the generation of phonons whose atomic

displacements favor accommodation of the diffusing atom.

An example of such a phonon mode could be the zone
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Fig. 3 Experimental values (open circles) of D0 for many different

elements in crystalline Si (data from Ref. [6]) as a function of

DU. The solid line shows a least-squares fit to the experimental data
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Fig. 4 Experimental values (open circles) of D0 for different

elements in crystalline Ag (data from Ref. [14]). The solid line
shows a least-squares fit to the experimental data
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Fig. 5 Experimental values (open circles) of D0 for different

elements in KBr (data from Ref. [6]). The solid line shows a least-

squares fit to the experimental data
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Fig. 6 Experimental values of D0 for O (open circles) and H atoms

(stars) in different metals (data from Ref. [14]). A least-squares fit to

the experimental data is given by the solid line
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boundary phonons, where the opposite phase atomic dis-

placement creates a space for the diffusing atoms [10]. This

observation implies that there are specific channels for

relaxation of excited state energy. For instance, for the case

of relaxation of the CN-stretching vibration in silver

halides, it has been reported that the number of relaxed

modes, Nre, is approximately 5 [13]. When the matrices are

alkali metal halides, this quantity increases to the range

10–25. In these evaluations the value of c = 1.9 for the

coupling constant is used. On the basis of these observa-

tions, an approximate estimate of EMN (= d/c) is given

below.

As mentioned above, strong candidates involved in the

accommodation of diffusing atoms are phonons near the

zone boundary. The typical energies Eph of these phonons

are 10 meV for acoustic phonons and 25 meV for optical

phonons. Because d (in Eq. 7) can be given as the product

Eph 9 Nre, EMN is approximately estimated to be 150 meV,

when we take the values of Eph = 20 meV, Nre = 15, and

c = 2.

Finally, we want to discuss the physical meaning of the

prefactor D00 which appeared in Eq. (11). As already sta-

ted, D00 should be the diffusion coefficient in the activated

state (b) illustrated in Fig. 2. Therefore, in the activated

state, the diffusing atoms are regarded as freely moving

atoms. Then, D00 can be given by:

D00 ¼
1

6
m0l2 ð12Þ

where l is a length of the activated area, which should be

less than the interatomic distance of the system. By

assuming m0 = 1013 s-1 which should be close to Eph and

l = 1 9 10-8 cm, for example, D00 is estimated to be

approximately 1.6 9 10-4 cm2 s-1, which is in the

observed range of 10-3–10-7 cm2 s-1. Note that the dif-

fusion coefficient in the activated state may correspond to

the so-called ‘‘microscopic’’ diffusion coefficient of band

(free) electrons in electron transport [15].

Conclusions

A new model for atomic diffusion in solids has been pro-

posed. The diffusing atoms are excited by absorbing energies

from the various phonon modes of the hosted solid systems,

and these atoms then relax by emitting specific phonons. This

means that the dynamics of phonon absorption and emission

are different. Under thermal equilibrium conditions, a

detailed balance between the ground and activated states has

been taken into consideration in the diffusion processes. The

model proposed here thus predicts the MNR in atomic dif-

fusion processes and the estimated physical results give

reasonable support to the model.
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