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Abstract The term RNA folding is often used synon-

ymously with the prediction of equilibrium structures.

Yet many RNAs function thanks to their ability to

undergo structural changes. In this contribution we

present a systematic overview of existing approaches

to the prediction of RNA folding kinetics, and in par-

ticular discuss the strengths and limitations of each

method.
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Introduction

Most functional RNA molecules depend on their

structure to perform their respective function. RNA

secondary structures have established themselves

as the most convenient level of description, mostly

because of the availability of efficient algorithms to

predict the structure of minimum free energy [1–3].

In fact, on the level of secondary structures, any

equilibrium property of an RNA molecule can be

computed either directly via the partition function

over all structures [4] or by sampling structures from

the Boltzmann ensemble [5]. Nevertheless, the equi-

librium view of RNA folding can be misleading: the

time needed to reach equilibrium can become very

long and, since RNAs in the cell have high turnover,

may easily exceed the lifetime of the RNA molecule.

The tendency of RNA molecules to form long-

lived folding intermediates is a direct consequence

of the high stability of RNA helices. It is therefore

not surprising that Nature makes use of this feature

to produce RNAs that can switch between conforma-

tional states with different function.

It is still an open question to what extent the func-

tional structures of natural RNAs are determined by

folding kinetics rather than by equilibrium thermo-

dynamics. Nevertheless, there is a growing number

of well-studied examples where RNA function is

clearly mediated by structural changes, and thus

the static view of RNA structure is insufficient.

The renewed interest in RNA as a versatile bio-

molecule has also inspired diverse experimental

approaches to measure folding kinetics in detail,

ranging from classical temperature jump experi-

ments [6] to time-resolved NMR spectroscopy [7,

8] and single molecular methods [9]. In this contri-

bution we aim to provide an overview of the differ-

ent computational strategies for modeling RNA

folding kinetics and discuss strengths and limitations

of the respective approaches.

Evidence for kinetic folding in natural RNAs

In a cellular context the nascent RNA molecule starts

folding before the transcription process is completed

and the folded structure may therefore depend on

the speed of elongation, site-specific pausing of the

RNA polymerase, and interactions of the nascent
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RNA molecule with proteins or small-molecule me-

tabolites [10, 11].

In naturally occurring (m)RNAs two broad classes

of structural elements, capable of toggling between

alternative conformations, can be observed which

differ mainly in their switching mechanism. The first

class comprises structure elements whose functions

are triggered by a local or global external signal such

as temperature, pH, or binding of small metabolites.

These types of elements therefore function as a sen-

sor, and are often located in the 50-UTRs of mRNAs,

in particular of fundamental metabolic genes [12].

Typical examples include RNA thermometers [13]

or riboswitches [14].

Riboswitches, for example, are common regula-

tory elements in bacteria. In general, they can be

divided into an aptamer part that binds a small

metabolite, and an ‘‘expression platform’’ whose

structure modulates gene expression. Conforma-

tional changes in the aptamer part are relayed to

the expression platform where translation can be

modulated by changing the accessibility of the ri-

bosome entry site. Similarly, transcription can be

effected by the formation (or destruction) of a ter-

minator hairpin. Riboswitches control gene expres-

sion directly without any intermediates, and thus

allow an extremely rapid response to environmental

changes. They can be found in all kingdoms and

are presumably one of the oldest regulatory mecha-

nisms [15].

The second class are ‘‘self-induced’’ RNA switches

[16], that are initially present in a long-lived metasta-

ble state, that eventually re-folds spontaneously with-

out an outside trigger. Self-induced switches allow to

limit biologically functional properties of RNA struc-

tures to certain time windows. The most prominent

examples are the attenuation regulation of bacterial

amino acid bio-synthetic operons [17] or the hok=soc

RNA antitoxin system [18] for the maintenance of R1

plasmid in E. coli.

A deeper understanding of how this additional

layer of RNA regulation integrates into cell-wide reg-

ulatory circuits requires the study of the folding ki-

netics of RNA. Furthermore, several computational

studies suggest that the folding pathways of natural-

ly occurring RNAs are encoded within their primary

sequences [19–21]. In other words, evolution has

optimized the co-transcriptional folding pathway of

these sequences by employing strategies like tran-

sient structural elements guiding the folding or the

suppression of the formation of alternative helices

that would compete with the functional structure.

Modeling the folding process

Most approaches to kinetic RNA folding aim to di-

rectly model the physical folding process. All these

approaches are based on a straightforward descrip-

tion of folding in terms of a stochastic process. In

general any such model is defined by three key

ingredients: (i) The state space, comprising the set

of structures or conformations a given RNA sequence

may assume, (ii) a move-set defining the elementary

transitions that can occur between such conforma-

tions, and (iii) transition rates for each of these

allowed transitions.

The folding process can now be described as a

continuous time Markov process, governed by a

master equation for the state probabilities PxðtÞ of

observing state x at time t.

dPxðtÞ
dt

¼
X

y6¼x

½PyðtÞkxy � PxðtÞkyx� ð1Þ

kxy is the transition rate from state y to state x,

with kxy>0 for all transitions allowed by the move

set. Conservation of probability, i.e., the fact thatP
x PxðtÞ ¼ 1 for all t, implies that the diagonal ele-

ments kxx ¼ �
P

x6¼y kyx.

Since we aim to describe a physical process that

converges towards thermodynamic equilibrium in

the limit of long time, the move-set and rates have

to meet additional ergodicity requirements. Firstly,

the Markov chain should be irreducible, i.e., it

should be possible to reach every conformation y

from any starting conformation x using a finite num-

ber of moves. Secondly, the transition rates should

fulfill the detailed balance condition.

�ykxy ¼ �xkyx ð2Þ

Here �x is the stationary distribution of the pro-

cess, which in our case should be the Boltzmann

distribution �x ¼ expð��GðxÞ=RTÞ=Z, with �GðxÞ
the free energy of state x and Z the partition function

Z ¼
P

x expð��GðxÞ=RTÞ. If the above conditions

are fulfilled, Markov chain theory guarantees that the

stationary state �x is unique and limt!1 PxðtÞ ¼ �x

for any initial condition Pxð0Þ.
As an example, let us consider the simple model

folding kinetics in the space of secondary structures,
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as used e.g., in the kinfold program [22]. Given an

RNA molecule with sequence s, the state space is

given by the set of secondary structures X that are

compatible with s, i.e., structures that can be formed

by sequence s while considering only Watson-Crick

(GC, AU) and wobble (GU) pairs and avoiding

pseudoknots.

The simplest move-set considers only addition

and removal of single base pairs. In other words a

transition between conformation x and y is allowed

only if the two structures differ by a single base pair.

It is easy to see that this move-set is ergodic, since

any structure x can be converted into the ‘‘open

chain’’ structure containing no base pairs, by suc-

cessively removing all base pairs. Note also, that

move-sets introduce a notion of distance between

conformations as the minimum number of moves

needed to move from x to y. In the case of single

base pair addition and removal this is known as the

‘‘base-pair distance’’.

For pseudoknot-free secondary structures there

is a well established energy model that assigns a

free energy to every structure based on the Turner

energy rules [23–25]. Based on these energies the

Metropolis rule [26] is the simplest and most widely

used rule to obtain transition rates that satisfy de-

tailed balance:

kxy ¼ � � maxð1; eð�GðxÞ��GðyÞÞ=RTÞ ð3Þ
The constant� sets the time-scale of the process and

should be chosen by comparison with experiment.

Other possibilities for the choice of conformation

space, move-set, and rate models will be described

below. Note that the master Eq. (1) can be written in

vector form with K ¼ ðkxyÞ the transition rate matrix

d

dt
PðtÞ ¼ KPðtÞ ð4Þ

This equation gives rise to the formal solution

PðtÞ ¼ et�KPð0Þ; ð5Þ
where Pð0Þ is the initial distribution vector.

Simulation techniques

If the dimension of K, i.e., the total number of con-

formations, is small enough to allow diagonalization,

then the complete folding behavior can be computed

with ease for arbitrarily long times. In most cases,

however, the size of the conformation space makes

this approach infeasible, and the only practical re-

course is stochastic simulation of Eq. (4) using

Monte-Carlo techniques.

It may be worth noting that special care has to

be taken in Monte-Carlo simulation to conserve de-

tailed balance, since the number of neighbors for

different conformations is not constant. In a basic

rejection based Monte-Carlo implementation the

transition rate for the move x ! y is the product of

two parts, the a priori probability to attempt a cer-

tain move Aðx ! yÞ times the acceptance probabili-

ty Pðx ! yÞ. Normally, one would simply choose a

neighbor at random from the neighborhood of x,

NðxÞ, and thus A is inversely proportional to the

number of neighbors, Aðx ! yÞ ¼ 1=jN ðxÞj. Since

this is not constant, using the Metropolis rule for the

acceptance probability does not guarantee detailed

balance.

One way to circumvent this problem is to use a

rejectionless Monte-Carlo approach. In this Monte-

Carlo variant, all possible moves from the start

conformation x are evaluated and the new conforma-

tion y is chosen from this list with probability

Pðx ! yÞ ¼ kðx ! yÞ=
P

z kðx ! zÞ. The clock is

then advanced by a value �t chosen from a Poisson

distribution with mean 1=
P

z kðx ! zÞ. This algo-

rithm is known in physics as the ‘‘n-fold way’’ or

‘‘Bortz-Kalos-Liebowitz (BKL)’’ method [27], while

in chemistry it is usually referred to as the Gillespie

algorithm [28].

Rather than perform Monte-Carlo at constant

temperature one may use simulated annealing tech-

niques in order to accelerate folding [29]. Here the

simulation starts at a high temperature which is

gradually lowered to physiological temperature. It

should be noted that the folding pathway obtained

along such a cooling schedule need not coincide

with the folding pathway at constant temperature.

Finally, some authors use optimization techniques

such as genetic algorithms rather than Monte-Carlo

simulation. Note that the cross-over operation em-

ployed in genetic algorithms has no equivalent in

the physical folding process. Nevertheless, the tech-

nique has been used to predict likely folding path-

ways [30, 31].

As we will see below most existing approaches

are based on the model described here and mainly

differ in the set of allowed conformations (e.g., with

or without pseudoknots), the move-set, as well as the

energy rules and resulting rate model.
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Move sets and coarse grained configuration spaces

As mentioned above, the most elementary move-set

consists only of base-pair insertion and deletion and

corresponds to the smallest possible steps in confor-

mation space. While this allows the most detailed

description of folding pathways, it necessarily leads

to extremely long simulation runs. Many approaches

therefore choose to allow larger structural changes

by using the formation or destruction of an entire

helix as the basic step. This allows to explore the

conformation space in a much smaller number of

steps and consequently enables the simulation of

larger RNAs up to the size of large ribosomal RNAs.

An intermediate between base pair moves and helix

moves that allows changing several uncorrelated

base pairs in a single time step is introduced in

Ref. [32].

Helix based methods usually start by compiling a

list of all allowed helices, where typically only satu-

rated helices are used, that cannot be extended on

either side. In order to keep the list small a minimum

helix length of typically 3 or 4 is required.

In the simplest version, a helix is either present in

its entirety or completely absent. Thus, an allowed

conformation is uniquely determined by the set of

helices that are present in the structure, and may be

represented by a binary vector that specifies which

helices are present and which are absent. Clearly,

only non-overlapping helices can be present simul-

taneously in any given structure. Folding simulations

in this scenario are no more complicated than in the

case of single base pair moves. The space of allowed

conformations is, however, severely restricted. The

problem is that two long helices are mutually exclu-

sive, if they overlap even by a single base. Any con-

formation where one helix is shortened in order to

accommodate another is thus excluded.

It is therefore common to include conformations

with partial helices [33–36]. An insertion move may

now insert a partial helix or even shorten existing

helices in order to make room. This is followed by

a local optimization where the extents of conflicting

helices are optimized to obtain a structure that is a

local energy minimum. While this has been used

quite successfully in practice, from the theoretical

point of view there are some caveats.

Given a set of helices, the concrete structure that

is produced by inserting these helices will in general

depend on the order in which they were inserted.

This makes it difficult to even judge how many dif-

ferent conformations can be formed by the algo-

rithm. Moreover, it is in general not possible to

ensure that the resulting Markov process is revers-

ible. The exact way this conflict resolution is done

varies between implementations, but in all cases it is

a local optimization procedure that affects only heli-

ces adjacent to the newly inserted or destroyed helix.

As a consequence, it cannot be guaranteed that a

series of moves, followed by their corresponding re-

verse moves, recovers the original structure. An ex-

ample for such a scenario is shown in Fig. 1. In

practice, one assumes that such cases are rare and

should therefore introduce no noticeable artifacts.

Kinetic rate models

The detailed balance requirement (2) leaves much

freedom in the choice of kinetic rates, as it fixes only

the ratio between forward and backward rates. The

usual Ansatz is to define a transition state and set the

rate using the Arrhenius equation

kxy ¼ � expð�ð�Gy
xy ��GðxÞÞ=RTÞ ð6Þ

where �Gy
xy is the free energy of the transition state.

The Metropolis rule (3) thus identifies the transition

state with the energetically higher of the two states x

and y. In general the exact rate model matters less

when moves are small such as in the case of single

base pair moves. Such simulations therefore often

Fig. 1 Conflict resolution for helix kinetics and a scenario
for possible violation of reversibility. In the first step helix C
is inserted. Since helices B and C partially overlap, the end
point k is optimized leading to a shortened helix B0. In the
next two steps helix A is destroyed and re-formed. However,
helices A and B partially overlap, and since helix B has
already been shortened after insertion of C, optimization of
the cut-point between A and B results in an elongated A with
B being eliminated. Thus, removal and re-insertion of helix
A did not restore the original conformation, the Markov
chain is not reversible
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simply use the Metropolis rule. Simulations using

the symmetric ‘‘Kawasaki’’ rule k ¼ � expð��G=
ð2RTÞÞ, where �G is the free energy difference be-

tween the two states, showed qualitatively the same

behavior. Nevertheless, Schmitz and Steger [29] sug-

gest to split �G into two parts, the change in free

energy from stacking interactions and the change in

loop entropies. The change in stacking energy is then

used for the barrier when opening a base pair, while

the change in loop energy is used when closing a

pair. Thus the transition state corresponds to a con-

formation where loop penalties for bringing the ba-

ses together has been paid, but the energetically

favorable stacking interactions have not yet been

established.

For helix based moves the quality of the rate mod-

el is much more important. Tacker et al. [37] propose

a rate model for helix moves similar to that de-

scribed for single base pairs above: the (mostly en-

tropic) change in loop energies is used as activation

energy when forming a helix, while the change in

stacking free energies is used when opening a helix.

The same approach was adopted e.g., in Refs. [38,

39]. Similarly, Zhang and Chen [40] use the total

change in entropy when forming helices and the total

change in enthalpy when destroying them.

In Isambert’s Kinefold program [35] the insertion

of a helix is initiated by inserting a nucleus of usu-

ally length 3, choosing the energetically best nucle-

ation point. The rate of helix formation is then given

by an Arrhenius law using the free energy barrier for

nucleation. This barrier is given by the entropic pen-

alty incurred by inserting the nucleus. The nucle-

ation site may overlap an existing helix, in which

case that helix has to be shrunk to make room for

the nucleus. In this case the free energy necessary to

shrink the helix is added to the barrier as well.

In all cases the prefactor � can be chosen to fit

experimentally measured re-folding times.

Energy rules

Free energies for RNA secondary structures are nor-

mally modeled using the so-called nearest neighbor

model, and parameters for this model have been

derived in the Turner group based on a large number

of oligo-nucleotide melting experiments [23–25].

This model, however, does not include energies for

pseudoknotted structures. Pseudoknots are often

neglected because it is algorithmically difficult to

include them in the dynamic programming algorithms

used for predicting optimal structures. Kinetic folding

algorithms do not share this problem, and conse-

quently many kinetic folding programs explicitly al-

low pseudoknots.

The free energy of a pseudoknotted structure is

primarily composed of two contributions, a stabiliz-

ing one arising from the base stacking in the helices

and a destabilizing one stemming from the loss in

entropy of the looped regions. While the former

contribution is accurately described by the nearest-

neighbor energy model, the challenge lies in ob-

taining a realistic estimate of the loop entropies.

Modeling these pseudoknot energies is more difficult

than for regular secondary structures in several re-

spects: (i) there are almost no thermodynamic mea-

surements for pseudoknotted structures. (ii) While a

Pseudobase [41] lists a moderate number of pseudo-

knotted structures, most of these are small H-type

knots. (iii) While any pseudoknot free secondary

structure is at least sterically feasible, most hypo-

thetical pseudoknotted structures are not [42]. With

the exception of some models for H-type pseudo-

knots [43, 44], existing approaches are therefore

based on statistical mechanics models of simple

polymer chains, rather than thermodynamic mea-

surements, e.g., Refs. [35, 45–48].

Chen and Dill [45, 49], apparently inspired by

successful work on lattice protein models, developed

one of the first statistical mechanics polymer models

of RNA. In their model, a secondary structure is

represented as a self-avoiding walk on a 2D square

lattice, where each nucleotide occupies one lattice

point. Hence, excluded volume effects in the loop

regions and between substructures are taken into ac-

count in coarse grained manner. The reason for this

rather drastic coarse-graining of RNA molecules is

that the conformational partition function of the lat-

tice RNA representation can be calculated quite effi-

ciently up to chain lengths of about 200 nts. Starting

from the conformational partition function any de-

sired property of the RNA chain such as melting

curves can be calculated. In an attempt to improve

the lattice model predictions of thermodynamic

properties of RNA conformational change, Zhang

and Chen [50] extended the two-dimensional lattice

RNA model to a three-dimensional version on a cu-

bic-square lattice.

In order to tighten the correspondence between

polymer model and the ‘‘real’’ RNA structure, Cao
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and Chen [51] developed a lattice based ‘‘atomic’’

RNA conformation model. Following Olson’s virtual

bond model [52], the RNA backbone is modeled as

chain using two atoms per residue. For the lattice,

Cao and Chen chose the diamond lattice since angles

and torsion angles correspond well to typical values

of the virtual bond model. For helical regions an off-

lattice 3D structure is produced initially, again us-

ing the virtual bond model and setting all torsion

angles to a standard helical value. This tertiary struc-

ture model is then fitted onto the diamond lattice.

Finally, loop regions are modeled as self-avoiding

walks on the diamond lattice such that the end-points

of the loops are constrained to the corresponding

lattice points of the embedded helices.

For loop types in normal secondary structures,

such as hairpins, bulge and internal loops the results

agree well with loop entropies from the Turner mod-

el, at least for the longer loops. Similarly, simple

H-type pseudoknots can be modeled well using this

approach. Complex pseudoknots are less amenable

since possible loop configurations have to be sam-

pled separately for each possible location and orien-

tation of all helices. Consequently, the approach has

so far been used only for relatively small examples,

including models of RNA–RNA interaction com-

plexes [53] and H-type pseudoknots [54].

Isambert and Siggia [35] attack the problem of

assigning a conformational entropy to a knotted

structure by decomposing the structure into so-called

local nets (single stranded closed circuits, that en-

close up to two internal helices) and global con-

strains between the local nets. For the local nets,

single stranded regions are modeled as springs and

helices as stiff rods. In this approximation, entropy

contribution of the local nets can be calculated ana-

lytically [55]. The constraints between the local

nets are modeled as a cross-linked ‘‘Gaussian gel’’

obtained by contracting the local nets to single ver-

tices connected by Gaussian springs, see Fig. 2. The

entropy of this cross-linked gel is then calculated

numerically by algebraic iteration. The approach

does not explicitly treat excluded volume except

through the persistence length of the RNA chain.

However, among the existing approaches this is the

only one that allows for arbitrarily complex struc-

tures. For consistency their Kinefold program uses

the above approach even for loops that are not in-

volved in pseudoknots and uses Turner energies only

for stacked pairs.

Heuristic approaches to kinetic folding

All of the above approaches are computationally

expensive at least for somewhat longer RNAs. In

particular, since for stochastic simulation a fairly

large number of trajectories has to be sampled. It

is therefore tempting to devise simpler heuristics to

obtain a single or a small number of plausible fold-

ing pathways.

The simplest folding heuristic is based on a step-

wise addition of single helices to a structure in a

greedy manner. The algorithm starts with an empty

structure and a list of potential helices. In each step

the energetically most favorable helix, i.e., the one

leading to the largest decrease in free energy is

inserted, and subsequently all helices that conflict

with the selected helix (since they would form base

triples or pseudoknots) are deleted from the list. The

algorithm stops when the list is empty or all remain-

ing helices would increase the free energy of the

structure. In its simplest form this algorithm was

introduced already in 1984 [56] as an attempt to

obtain an algorithm that is faster than the prediction

of minimum free energy structures via dynamic pro-

gramming. Various variants of this ‘‘greedy’’ heu-

ristics have been implemented, that differ mostly in

the way which compatible helix is chosen for addi-

tion. Li and Wu [57], for example, pick a helix at

random, provided that the free energy of the result-

ing structure is lowered. Abrahams et al. [58] extend

the original method by allowing pseudoknotted con-

figurations as well as folding during transcription.

Geis et al. [59] recently implemented in the

program KinWalker a heuristic approach which com-

Fig. 2 Left the H-type pseudoknot is the simplest and by
far most common type of pseudoknot. Middle More compli-
cated pseudoknots, such as this one are neglected in most
approaches. Right the corresponding cross-linked Gaussian
gel used in Isambert’s Kinefold to estimate the global part of
the conformation entropy
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putes a co-transcriptional folding pathway for long

RNA sequences (1500 nts). The algorithm constructs

a series of metastable structures by a stepwise com-

bination of thermodynamically optimal structural

fragments, which can be calculated efficiently for

all substructures by the standard dynamic program-

ming approach for RNA folding. In each extension

step, the energy barrier for potential structural rear-

rangements is estimated and only re-arrangements

with an activation barrier below some threshold are

accepted. Estimation of energy barriers is done by

explicitly constructing re-folding paths, where only

shortest paths, with a minimal number of base pairs

openings and closings, are allowed.

Energy landscapes

Not only are stochastic simulations time consuming,

it can also be tedious to extract from them the local

minima that act as meta-stable states and kinetic

traps in the folding process. It is even more difficult

to identify transition states for re-folding between

two such meta-stable states, for the simple reason

that two different trajectories, even with the same

start and end points, will in general share only few

exactly identical intermediate structures.

It is therefore of interest to compute local minima,

and energy barriers between them, directly via an

analysis of the energy landscape. In Refs. [22, 60]

we developed a flooding algorithm that decomposes

the landscape into basins surrounding local minima

connected by saddle points. Briefly, the program bar-

riers works by processing the conformations of a

landscape in energy sorted order, starting at the glob-

al minimum. For each conformation x the set of

neighboring conformations NðxÞ (e.g., in the case

of RNA, those that can be reached by opening or

closing a single base pair) is constructed. If none

of the neighbors has been observed before, x is a

local minimum and thus the first member of a new

basin. If the neighborhood NðxÞ contains previously

observed conformations from at least two basins m1,

m2, then x is a saddle point connecting m1 and m2.

Finally we assign x to the lowest basin in its neigh-

borhood. The saddle points and local minima thus

identified form a hierarchy that can be visualized

conveniently in the form of a so-called barrier tree,

see Fig. 3 for an example.

The flooding algorithm is not specific to RNA

landscapes and has in fact been used to study the

landscapes resulting from various optimization prob-

lems [61–63]. However, in the case of RNA the

analysis is aided by the availability of an efficient

algorithm that produces the low energy part of the

conformation space [3]. This makes the landscape

approach effective for RNA the size of, say a

tRNA, where the complete landscape may contain

over 1017 structures, while the relevant part, contain-

ing low energy conformations with E<0, may con-

sist of only a few million structures. While analyzing

1017 structures is clearly infeasible, the barriers pro-

gram can handle 10 million structures with ease. Of

course even the number of low energy conformations

grows exponentially with sequence length, and as a

consequence, the barriers approach is rarely success-

ful for sequences of more than 80–100 nts.

In general the approach is best suited to analyze

refolding processes, since the re-folding time be-

tween two local minima can be estimated directly

from the energy barrier separating them. The barrier

tree is less helpful in predicting which of several

meta-stable states will be preferentially populated

when the folding process starts from an un-folded

state.

Moreover, local minima can be used as a starting

point for a coarse graining of the conformation

space. Wolfinger et al. [64] use a partitioning of

the landscape into macrostates, where a macrostate

is defined as the set of all starting conformations for

which a gradient walk ends in the same local mini-

mum m. While constructing the tree, the barriers

program identifies these ‘‘gradient basins’’ and cal-

culates effective transition rates between any two

macrostates � and � as

kð� ! �Þ ¼
X

x 2 �

X

y 2 �

kðx ! yÞProb½xj��

¼
X

x 2 �

X

y 2 �

kðx ! yÞe�EðxÞ=RT=Z�;
ð7Þ

where we have assumed local equilibrium within

each macrostate and Z� is the partition function

over all conformations in macrostate � and the

Metropolis rule Eq. (3) is used to model the micro-

state transition probabilities kðx ! yÞ.
Tang et al. [65, 66] adopt a computational tech-

nique that is used for motion planning in robotics,

known as probabilistic roadmaps, to build an approx-

imated representation of the RNA folding landscape.

A probabilistic roadmap is a graph where the vertex
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set represents valid sampled conformations of the

folding landscape and edges are introduced into the

graph if a feasible transition exists between the two

conformations. A structure based distance criterion

is used to avoid the construction of all N2 (re-fold-

ing) paths between the N nodes of the graph. The

probabilistic roadmap is used as basis to calculate

the time evolution of the population of different

conformations providing information on folding

rates, transition states, and the equilibrium distribu-

tion. In contrast to the analysis of folding landscapes

based on exact enumeration using the barriers pro-

gram, the motion roadmap approach has been ap-

plied to RNAs up to a size of 200 nts.

Folding on variable landscapes

In many cases one is interested how RNA structure

changes in response to changes in external param-

eters like ionic conditions. This type of folding on

a variable landscape occurs in several special ap-

plications, such as when modelling ‘‘pulling experi-

ments’’ [67] where an external force is applied to the

RNA, or when modeling the transport of an RNA

molecule through a pore [68]. More importantly,

all naturally produced RNAs undergo folding during

transcription: since transcription is slow compared

to local folding processes, the partially synthesized

RNA will start folding while the molecule is still

being synthesized.

While folding of full length RNAs from the un-

folded state usually results in a variety of prima-

ry folding products, co-transcriptional folding can

channel folding trajectories such that almost all

molecules fold into the same (possibly meta-sta-

ble) structure, see Fig. 4 for an example. Thus, for

RNAs with several long-lived states it is essential

to consider co-transcriptional folding in order to

predict which of these will be preferentially popu-

lated initially.

For all methods that simulate trajectories it is rel-

atively straightforward to include co-transcriptional

folding [69]. In the simplest case, the total simula-

tion is simply divided into slices of length � , corre-

sponding to the mean time for extending the RNA by

one nucleotide. At the end of these time slices the

RNA is extended by adding an unpaired nucleotide at

the 30 end. Instead of using fixed time slices, RNA

extension itself can also be treated as a stochastic

process. Most of the tools mentioned above allow

to perform co-transcriptional folding in this way.

For the energy landscape approach discussed above,

it is possible to analyse the folding landscape for all

partially synthesized RNAs separately, and then con-

struct a mapping that establishes the correspondence

between the local minima in different size land-

scapes [70].

In Nature, however the situation is still more com-

plicated, since transcription speed is far from con-

stant. Many genes contain specific pause sites [71]

Fig. 3 Barrier tree (left) and folding kinetics (right) for the artificial sequence UCCACGGCUGUUAGUGGAUAACGGC.
The right panel shows the occupancy of macro-states as a function of time with the open chain as initial state. The two lowest
lying local minima 1 and 2 have almost equal energy and thus equilibrium occupancy. Local minimum 2 however is kinetically
preferred achieving almost 80% occupancy around t ¼ 1000
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where transcription is temporarily stalled. Recent

evidence suggests that these pause sites are indeed

functional, guiding the folding process in order to

avoid the formation of severely misfolded intermedi-

ates [11].

RNA polymerase II is a highly conserved enzyme

that has been studied extensively and shows little

variation even between bacteria and eukaryotes.

Over the past decade, a fairly large amount of struc-

tural, biochemical, and kinetic information about the

polymerase [72] and the fundamental biological pro-

cess of transcription [73] has been collected, and

single molecule methods have been established to

detect transcription pause sites [74]. Nevertheless,

no detailed mechanistic model has been put together

that is valid across species, and allows the prediction

of transcription speed or pause sites [75, 76]. The

above studies imply that pause sites are not just de-

termined by sequence signals but also by the RNA

structure. A truly faithful simulation of folding dur-

ing transcription would therefore have to include the

interplay between the structure currently formed by

the nascent RNA strand with transcription speed of

the polymerase.

Concluding remarks

In contrast to the prediction of ground state struc-

tures and equilibrium properties, modelling of RNA

folding dynamics remains a challenging problem.

Since most approaches are computationally expen-

sive, it is important to choose a method that is suit-

able for the size of the RNA in question.

For short RNAs of up to around a hundred nucleo-

tides, methods operating at the resolution of single

base pairs are most suitable and will presumably pro-

vide the highest accuracy. Helix based approaches are

much faster, and therefore represent the method of

choice for medium size RNAs. The web based

Kinefold and RNAkinetics servers fall in this catego-

ry and allow the simulation of sequences up to 400

and 300 nts.

An interesting alternative is the analysis of energy

landscapes. The resulting barrier trees provide a con-

venient summary of possible folding scenaria with-

out the need to sample trajectories from different

initial states. In addition, barrier trees form the basis

for a coarse graining such that the folding dynamics

can be solved exactly in the reduced conformation

space.

Fig. 4 Left Barrier tree for the E. coli attenuator sequence, and structures of the ground state 1 and deepest local minimum 4.
Right Fraction of trajectories ending in either the ground state or meta-stable state. Simulations were performed
using the kinfold program either on the full length sequence or with co-transcriptional folding and two different transcription
speeds
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Unfortunately, a systematic benchmark comparing

the accuracy of different methods is difficult due to

the small number and limited resolution of ex-

perimental measurements. Nevertheless, there are

several examples where computational results were

shown to be in good qualitative agreement with ex-

periment. Occasionally, kinetic folding is used as

means to include pseudoknots in RNA structure pre-

diction. However, current attempts to derive free

energies for pseudoknotted structures are still quite

rough. Given the poor accuracy of pseudoknot

energies compared to regular secondary structure

elements, it is not certain that pseudoknot inclu-

sion leads to an overall improvement in prediction

accuracy.

In the future, we expect that the design of RNA=
DNA molecules with particular dynamic proper-

ties will become an important application for the

methods discussed here, especially in the emerging

fields of synthetic biology and nucleic acid based

nanotechnology.
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7. Micura R, Höbartner C (2003) Chem Biochem 4:984
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