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Summary. Because of an inherent dependence on host cell second and third
messenger signaling pathways for activation of HIV-1 expression, a potential
exists for a relationship between the induction of latent HIV-1 and cell-cycle-
related events. To investigate this potential relationship, cellular models of
latent HIV-1 infection (OM-10.1 promyelocytes, ACH-2 T-lymphocytes, and
U1 promonocytes) were chemically treated or g-irradiated to synchronize
cultures at each cell cycle stage and then examined for constitutive and TNF-a-
induced HIV-1 expression. Cell cycle synchronization alone had no effect on
HIV-1 expression in OM-10.1 and U1 cultures; whereas enhanced constitutive
HIV-1 expression was observed in ACH-2 cultures at G2�M. A 2 hour TNF-a
treatment of all synchronized OM-10.1 cultures activated HIV-1 expression to a
similar extent as unsynchronized cultures. In contrast, the extent of TNF-a-
induced HIV-1 expression in ACH-2 S and G2 + M cultures and in the Ul G0/G1

culture was greater than that in unsynchronized control cultures. However, no
delay in the initial response was observed. Thus, the in¯uence of cell cycle on
constitutive and induced HIV-1 expression varied in each cellular model and,
therefore, may further relate to the different molecular mechanisms maintaining
viral latency.

Introduction

The replicative cycle of HIV-1 can conceptually be divided into afferent
(pre-integrative) and efferent (post-integrative) phases [4, 28]. The afferent
phase holds the cell-free virion as the central element and involves those steps
necessary for viral binding, penetration, reverse transcription, and proviral
integration into the host genome. The efferent phase encompasses the events
necessary for the successful transcription and translation of the integrated



provirus and the assembly, packaging, and release of new progeny virions [4].
Although the division between these conceptual phases of HIV-1 replication
may be somewhat arti®cial, very different cellular and viral factors regulate the
pre- and post-integration aspects of the viral life cycle.

While cellular activation and entry into the cell cycle are required for the
afferent replication of certain avian and murine onco-retroviruses [17, 21, 22,
44], several observations have raised doubts concerning the absolute
requirement for cell division during afferent HIV-1 replication. HIV-1 can
productively infect non-dividing cells of the macrophage lineage [15, 20, 32],
even after irradiation [47]. Furthermore, productive acute HIV-1 infection has
been reported in CD4-positive HeLa cells arrested in cell cycle [29] and in
C8166 T-lymphoid cells blocked in cell division [30]. The mechanism by which
non-dividing cells become infected has been linked to viral-associated Vpr and
matrix proteins which can function to assist in the transport of the HIV-1 pre-
integration complex to the nucleus [19, 23]. However, incomplete and
inef®cient HIV-1 reverse transcription [49] without subsequent viral integration
[40] has been observed during infection of T-lymphocytes in the absence of
cellular activation.

It is generally accepted that following proviral integration extracellular
stimulation via cytokines or the T-cell receptor is required to activate HIV-1
expression [4]. Because viral activation is critically dependent upon normal
cellular signal transduction pathways, the possibility exists for a regulatory
role of cell-cycle-related factors in post-integrative HIV-1 replication
[26]. Furthermore, activation of the HIV-1 provirus involves poorly de®ned
protein kinases, some of which theoretically could be among the group
of temporally synchronized kinases involved in the progression of cells
through the G0/G1, S, and G2 + M phases of the cell cycle (reviewed in
[14, 27, 33]).

To investigate the in¯uence of cell-cycle-related factors on the post-
integrative phase of the HIV-1 replication cycle, we performed viral activation
studies on several chronically infected cell models synchronized in the
individual stages of the cell cycle. These studies demonstrated that regardless
of which cycle stage the cells resided at the point of induction, the initiation
of HIV-1 expression occurred within a similar time frame. However,
basal level of viral expression and the extent of the HIV-1 response to
activation varied among the differing models tested and at speci®c cell cycle
stages.

Materials and methods

Cell culture and cell cycle synchronization

OM-10.1 promyelocytes (HL-60 derived) [5], ACH-2 T-cells (A3.01 derived) [7], and U1
promonocytes (U937 derived) [13] were obtained following acute HIV-1Lai infection and
clonally contain either one (OM-10.1 and ACH-2) or two (U1) stably integrated provirions.
These cultures were maintained in RPMI 1640 basal medium (Gibco, Grand Island, NY)
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containing 10% fetal bovine serum, 2 mM L-glutamine, and 1% Pen-Strep (Gibco) at 37 �C
in a humidi®ed atmosphere of 7% CO2 and 93% air. Cell cultures were synchronized to the
early S phase of the cell cycle by treatment with 1 mM thymidine [1, 31] for 12 h after
which the cells were placed back into complete culture medium. Cultures enriched for cells
in the S and G0/G1 phases were obtained at 4 and 12 h post-thymidine removal,
respectively. To better synchronize cultures at the G2�M stage, normal cultures were
exposed to 20mM genistein [42] or g-irradiated (625±1 000 Rads) by exposure to a 137Cs
source. These cultures were used 24 h after treatment. The chemical and g-irradiation
treatments were staggered to simultaneously obtain cultures synchronized at each stage of
the cell cycle (Fig. 1A).

Cell cycle analysis

Cell cycle analysis was performed by propidium iodide staining of cellular DNA. Cells
were washed once with phosphate-buffered saline (PBS) and resuspended in 0.5 ml
PBS containing 50 mg per ml propidium iodide, 2 mg per ml RNase A, and 0.6% Nonidet
P-40. Cellular DNA content was analyzed using a Becton Dickinson FACScan
system equipped with Cell-Fit DNA quantitation software (Becton Dickinson, San
Jose, CA).

HIV-1 induction and detection

HIV-1 induction experiments were performed at 5�105 cells per ml using human
recombinant TNF-a (Genzyme Corp., Cambridge, MA) at 20 (OM-10.1) or 100
(ACH-2 and U1) U per ml. Exposure to TNF-a was limited to 2 h after which
TNF-a was removed by washing and the cells were returned to complete culture
medium.

Detection of cellular HIV-1 expression was performed by immuno¯uorescence analysis
(IFA). Brie¯y, acetone ®xed cells were blocked with 10% goat serum in PBS and then
stained with FITC-conjugated anti-HIV-1 serum pooled from AIDS patients. The per-
centage of positive cells was visually determined by UV light microscopy [5]. HIV-1 p24
core antigen was detected in culture supernatants by antigen capture ELISA (Coulter,
Hialeah, FL). Northern analysis for HIV-1 speci®c RNA was performed as described [6].
Equivalent amounts of total puri®ed RNA were denatured and electrophoresed through a
0.8% agarose gel containing formaldehyde. After being transferred to a nylon membrane
(Hybond, Amersham Corp., Arlington Heights, IL), the RNA was probed in a 50% form-
amide hybridization buffer overnight at 42 �C using a 32P-labeled, 2.5-kb XbaI-PstI
fragment of pHXB2 [37] containing the 50-long terminal repeat.

Results

Synchronization of chronically HIV-1-infected cells

To study potential interrelationships between cell cycle and HIV-1 activation,
the percentage of cells at each individual stage of the cell cycle had to be
substantially increased. Using the approach shown in Fig. 1A, synchronization
of chronically HIV-1-infected cultures resulted in an enrichment of cells at the
G0/G1, S, or G2�M cell cycle stage (Fig. 1B, Table 1). No apparent differences
were observed in the synchronization of the chronically infected cell models
and their respective uninfected parental lines (data not shown).
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Fig. 1. Synchronization of cultures to enrich for cells in the various cell cycle stages.
A Schematic time scale for staggered treatments to obtain individual cell cultures
synchronized to each stage of the cell cycle as detailed in Materials and methods.
B Cell cycle analysis of synchronized cells by propidium iodide uptake at T-0. DNA
content distinguishes cells in each cell cycle stage and illustrates thymidine and g-
irradiation enrichment of the cell populations. The histogram patterns are representative for

all cell types based on several independent synchronization experiments



Effect of cell cycle synchronization on constitutive HIV-1 expression

Synchronized cultures were ®rst examined for alterations in the level of
constitutive HIV-1 expression. In OM-10.1 and U1 cultures, synchronization
alone did not alter the low constitutive level of HIV-1 expression. In contrast,
ACH-2 cells showed a marked increase in basal HIV-1 expression at the
G2�M stage as evidenced by both anti-HIV-1 IFA (Table 2) and Northern
analysis (Fig. 2B). Because g-irradiation can directly activate the HIV-1 long
terminal repeat promotor [39], the chronically infected cell models were also
synchronized to the G2�M stage by treatment with genistein. A similar pattern
of increased HIV-1 basal expression at the G2�M stage was evident in
genistein-treated ACH-2 cultures (Table 2). An increase in basal HIV-1
transcription was also observed by Northern analysis in ACH-2 cultures
synchronized to the G0/G1 stage (Fig. 2B); however, this increase was not
re¯ected by parallel anti-HIV-1 IFA (Table 2).

Induction of HIV-1 expression in synchronized cultures

To examine the relationship between cell cycle and HIV-1 activation from
latency, cultures were stimulated with TNF-a for just 2 h so that viral induction
occurred only while the cells resided in a speci®c cell cycle stage. TNF-a
treatment had little effect on cell cycle status of the synchronized cultures;
however, as expected [45], a transient and modest accumulation of cells in the S
phase was evident in unsynchronized cultures (data not shown). The initiation

Table 1. Percentage of cells in each cell cycle stage after synchronization

Cell cycle status Cell cycle stagea

Cell line of culture
G0/G1 S G2 + M

ACH-2 Unsynchronized 47.60� 1.73 45.17� 1.35 7.23� 0.58
G0/G1 68.13� 9.85 23.10� 13.71 7.85� 1.34
S 3.87� 0.64 80.87� 15.06 3.63� 0.45
G2�M (genistein) 17.10� 12.06 47.80� 4.30 35.10� 16.04
G2�M (g-irradiation) 9.33� 5.79 26.40� 6.31 66.43� 7.05

OM-10.1 Unsynchronized 40.58� 2.33 47.16� 1.64 12.28� 2.85
G0/G1 62.82� 3.88 20.05� 0.78 16.25� 4.31
S 11.35� 9.83 84.20� 5.31 9.82� 3.89
G2�M (genistein) 11.45� 7.99 48.50� 7.63 40.10� 0.28
G2�M (g-irradiation) 4.81� 3.88 4.09� 1.52 76.91� 6.42

U1 Unsynchronized 45.05� 2.05 45.70� 0.71 9.20� 1.31
G0/G1 66.40� 0.62 16.63� 5.95 17.70� 6.07
S 25.27� 6.20 64.53� 4.03 8.37� 1.27
G2 + M (genistein) 17.53� 17.79 36.10� 30.58 46.40� 23.55
G2 + M (g-irradiation) 4.15� 3.04 17.00� 15.13 76.47� 9.48

a Mean percentage of cells in each cycle stage from a minimum of three independent
experiments � standard deviation
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Fig. 2. TNF-a induction of HIV-1 transcription in OM-10.1 (A), ACH-2 (B), and U1 (C)
cultures synchronized to the various cell cycle. Northern analysis autoradiographs for
activated HIV-1 transcription in OM-10.1 (A) at T-0 and T+5 were intentionally over
exposed to show detail. Full length (9.3 kb genomic) and spliced HIV-1 RNA species (4.3
kb envelope and 2.0 kb regulatory) are indicated. Ethidium bromide staining of the 28S

ribosomal RNA in each lane was used to insure quantity and integrity (not shown)
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of HIV-1 expression was then monitored by Northern analysis. The extent of
viral activation and expression was monitored on a cell-per-cell basis by anti-
HIV-1 IFA and on the culture basis by supernatant p24 antigen levels.

In synchronized OM-10.1 cultures, the pattern of HIV-1 transcriptional
activation was identical regardless of the predominant cell cycle stage at the
time of TNF-a stimulation (Fig. 2A). Furthermore, the amount of HIV-1 RNA
that accumulated during the course of TNF-a induction was similar in all OM-
10.1 cultures. This ®nding was further supported by anti-HIV-1 IFA in which
approximately 75% HIV-1 expressing cells were observed in all OM-10.1
cultures at 24 h (Table 2). Similarly, TNF-a induction resulted in an equivalent
increase (>10-fold) in detectable p24 antigen in each OM-10.1 culture (Fig. 3).

Table 2. Direct immuno¯uorescence detection of HIV-1 expression in unsynchronized and
synchronized cultures after TNF-a induction

Cell line

ACH-2 OM-10.1 U1
Cell cycle status of
culture Medium TNF-a Medium TNF-a Medium TNF-a

Unsynchronized 10 70 10 75 1 5
G0/G1 10 70 10 75 2 25
S 10 70 10 75 1 5
G2�M (genistein) 50 80 15 75 1 15
G2�M (g-irradiation) 50 75 15 75 1 15

Percentage of cells expressing HIV-1 at 24 h with medium alone or TNF-a treatment for
2 h. Data is representative of 3 independent experiments

Fig. 3. HIV-1 expression at each stage of the cell cycle 24 h post TNF-a induction. Viral
antigen in cell-free culture supernatants was measured by HIV-1 p24 antigen capture
ELISA (Coulter). Data represents induced viral production as compared to the corre-

sponding similarily synchronized culture without TNF-a stimulation
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TNF-a treatment of ACH-2 cultures activated HIV-1 transcription by
5 h at each cell cycle stage (Fig. 2B), although a greater initial HIV-1
RNA accumulation was observed in the synchronized cultures. By 26 h
post-TNF-a induction, all ACH-2 cultures showed similar levels of HIV-1 RNA
(Fig. 2B) and approximately 70% HIV-1 expressing cells (Table 2).
Interestingly, the amount of supernatant p24 antigen detected after TNF-a
induction was dissimilar among ACH-2 cultures. A greater than 10-fold
increased was observed in the G2 + M culture and 5-fold in the S culture; while
only a 3-fold increase was observed in both the unsynchronized and G0/G1

cultures (Fig. 3).
The pattern of TNF-a-induced HIV-1 expression in U1 cultures was

dissimilar to both OM-10.1 and ACH-2 cultures. Northern analysis revealed
that all U1 cultures responded to TNF-a induction by 8 h; however, the amount
of viral RNA in cultures at the G0/G1 stage was markedly increased throughout
the course of the experiment (Fig. 2C). HIV-1 transcription was modestly
increased in the U1 G2�M culture, but this effect was evidenced only late in
the induction period. By anti-HIV-1 IFA, unsynchronized and S-stage cultures
showed approximately 5% HIV-1-expressing cells, cultures synchronized to the
G0/G1 stage showed 25% HIV-1-expressing cells, and the G2�M culture
showed 15% HIV-1-expressing cells (Table 2). Consistent with these results,
unsynchronized and S-phase U1 cultures expressed lower amounts of viral
antigen and the highest amount of viral expression was detected in the G0/G1

culture supernatants (Fig. 3).

Discussion

The in¯uence of cell-cycle-related factors on HIV-1 expression was examined
in models of chronic infection. Enhanced constitutive HIV-1 expression was
observed in ACH-2 T-lymphocytes synchronized to the G2�M stage; while no
effect on constitutive viral expression was seen in synchronized OM-10.1
promyelocytes and in U1 promonocytes. The initial response time to TNF-a-
induced HIV-1 activation was similar in all synchronized cultures, although the
magnitude of response differed among the various models of chronic infection.
These results demonstrate that cell cycle-related factors can in¯uence the extent
of HIV-1 expression in a cell line dependent manner and further suggests that
multiple mechanisms control HIV-1 latency [6, 10].

Productive acute HIV-1 infection of normal T-lymphocytes is dependent on
cellular activation. This dependency re¯ects the need for these cells to enter the
cell cycle and permit the stable integration of an HIV-1 provirus [2, 3]. HIV-1
infection of non-dividing macrophages [15, 20, 32, 47] and transformed T-cell
lines arrested in cycle [2, 29, 30] does not require activation; however, these
cells normally reside at some cell cycle stage outside of G0. Therefore, cell
cycle status is an important component of the acute infection process.

In contrast, our data suggests that cell cycle-related factors are not an
absolute requirement for the initiation of viral expression from an integrated
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provirus. In accordance with this, TNF-a induction of NF-kB can occur at each
stage of the cell cycle with increased binding activity in cells arrested at G2

[12]. Our studies further indicate that second and third messenger signaling
pathways required for TNF-a activation of latent HIV-1 expression do not
critically involve kinases or phosphatases whose activity oscillates in a cell-
cycle-dependent manner and that this response pathway persists during a
variety of cellular in¯uences.

TNF-a cytolysis has been associated with the G2�M stage of the cell cycle
[8, 9, 38], apparently due to signaling events that occur at the G1/S interface
[38]. Also, the level of TNF receptor surface expression ¯uctuates in a cell
cycle-dependent manner with the highest level expressed at the G2�M stage
[46]. However, data from this study shows that TNF-a signaling pathways that
result in HIV-1 activation are not in¯uenced by factors that oscillate in a cell
cycle-dependent manner; therefore, diverge from those resulting in cytolysis.
Signaling via other cytokine receptors also activates HIV-1 expression in U1
cells [34]; however, the cell cycle in¯uence on these signaling pathways has yet
to be investigated.

In addition to its role in HIV-1 preintegration complex nuclear localization,
the HIV-1 regulatory protein Vpr can directly hinder cell cycle progression [36]
by blocking the activation of the p34cdc2/cyclin B complex required for cells to
enter M phase [18, 24, 35]. Blockade of this regulatory pathway could result in
a delay of apoptosis and possibly allow for increased viral expression in
infected cells while at G2�M [24]. Although it is unlikely that the models of
chronic infection used in this study harbor wild-type Vpr [36], enhanced viral
expression by ACH-2 G2�M cultures further supports the possibility that one
function of Vpr is to permit increased HIV-1 production at G2�M prior to
cytolysis.

The cellular protein p53 has been described to regulate expression of cell
cycle-related genes (reviewed in [43]). Overexpression of the anti-proliferative
form (wt-p53) arrests cells at the G1 stage, while mutant forms of the protein
allows cellular proliferation and may be involved in transformation. Addition-
ally, mutant forms of p53 enhance HIV-1 replication in cotransfection studies
[11, 16, 41] and could potentially in¯uence viral expression in these models of
chronic infection. While endogenous mutant p53 expression is absent in U1
[11] and unlikely in OM-10.1 cells [25, 48], ACH-2 cells do express endo-
genous mutant p53 [11]. Therefore, the unique pattern of HIV-1 expression in
synchronized ACH-2 cultures may result to some extent from mutant p53
interacting with other factors that ¯uctuate with the cell cycle.

In our studies, enhanced HIV-1 transcription was also observed in ACH-2
cultures synchronized to the G0/G1 phase. Interestingly, accumulation of HIV-1
RNA in these cultures did not result in an increased level of viral expression as
detected by p24 antigen or IFA. This disparity was not evident in U1 cultures
synchronized at G0/G1 where increased HIV-1 transcription did correspond to
an increase in viral expression. A separation of signals necessary for ef®cient
viral transcription and translation has been previously observed and resulted in
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an apparent synergy when TNF-a and IL-6 were used in combination [34].
Thus, in least in some cell types, the factors required for ef®cient viral
transcription and translation may not coordinate in a cell cycle-dependent
manner.

It is clear from our studies that TNF-a-induced HIV-1 expression can occur
at each stage of the cell cycle in various models of chronic infection. However,
cellular factors or other in¯uences on cell cycle progression, including virally
encoded factors such as Vpr, may further modify the extent of HIV replication
from infected cells.
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