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Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite 
progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of 
protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are 
numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, 
changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of 
the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs 
for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Inte-
grating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and 
middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on 
CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature 
on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our 
knowledge in this area are discussed.

Introduction

Species A rotaviruses, members of the family Sedoreoviri-
dae, are the leading viral cause of acute gastroenteritis and 
are responsible for 128,500–215,000 deaths of children 
under 5 years old worldwide [103, 120, 165, 170]. Rotavirus 

particles consist of a triple-layered capsid including the core 
shell formed by virus protein 2 (VP2), which encloses the 
11 segments of the double-stranded RNA (dsRNA) genome 
[62], the intermediate capsid (VP6), and the outer capsid 
(VP7), which is decorated with VP4 spikes protruding from 
its surface [62]. Based on the RNA sequences of VP7 (a gly-
coprotein or G-type antigen) and VP4 (a protease-sensitive 
protein or P-type antigen), rotaviruses are classified into 
various G and P genotypes. Neutralizing antibodies (nAbs) 
are induced by both VP7 and VP4 proteins, while non-neu-
tralizing antibodies are elicited by other structural proteins 
(VP6, VP2) and non-structural protein 4 (NSP4) [42, 145, 
161, 162]. Proteolysis of VP4 results in its cleavage into two 
subunits, VP5* and VP8*, the head of the VP4 spike, which 
interacts with host cell receptors and is required for virion 
attachment and thus rotavirus infection [154]. Transmission 
occurs mainly by the fecal-oral route, although spread by 
person-to-person contact, contaminated water, or fomites 
is also possible [52]. The virus is highly contagious, and 
almost all unvaccinated children experience at least one 
rotavirus infection during their first two years of life [98, 
175]. Accordingly, rotavirus infection is one of the main 
causes of childhood morbidity and mortality globally [165]. 
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To date, no specific therapy for rotavirus-induced gastroen-
teritis is available, but the introduction of approved, safe, 
and effective live attenuated oral vaccines such as Rotarix 
and RotaTeq has had a great impact on the prevention and 
control of severe rotavirus-associated disease [13]. Moreo-
ver, Rotavac (Bharat Biotech) and Rotasiil (Hyderabad and 
Serum Institute of India) have exhibited an efficacy similar 
to that of RotaTeq and Rotarix in India [15] and have been 
prequalified by the World Health Organization (WHO). In 
2009 [190], WHO recommended the inclusion of rotavirus 
vaccines in the national vaccination programs of all member 
countries. To date, 120 countries have included oral rotavi-
rus vaccines (RotaTeq or Rotarix) in their national vaccina-
tion programs, and approximately 15 additional countries are 
planning to introduce them [1, 33]. Following the introduc-
tion of rotavirus vaccines, numerous high-income countries 
in the Americas, Europe, and Australia have reported a sig-
nificant decline in hospitalizations and deaths of infants due 
to acute gastroenteritis [13, 23, 26]. However, this has not 
been the case in several low- and middle-income countries 
[56, 134, 165, 183], implying the need for improved next-
generation vaccines [69] and/or a better understanding of the 
immune correlates of protection (CoPs) during the course 
of natural infection and vaccination. There are several rea-
sons suggested for the observed lower efficacy/effectiveness 
of live attenuated rotavirus vaccines in low- and middle-
income countries than in high-income countries. The most 
notable reasons include high titers of maternal antibodies 
(Abs) [56, 133, 174], impaired immune responses (due to 
malnutrition, environmental enteropathy, gut microbiota, 
and coinfections) [36, 56, 109, 135, 174], and differences in 
host receptor human histo-blood group antigens (HBGAs) 
[56, 121, 126].

By definition, a CoP is an immune response that is statis-
tically correlated with protection against disease by vaccina-
tion (or natural infection) and might be either mechanistic 
(mCoP; which is causally responsible for the protection) 
or non-mechanistic (nCoP; which does not cause protec-
tion but correlates with other immune responses that are 
protective) [138]. In the case of rotavirus infection, CoPs 
are complex and can be affected by numerous factors. Cur-
rently, the rotavirus-specific immunoglobulin A (rotavirus-
IgA) level is considered the standard for the assessment of 
vaccine/infection-induced immunity against rotavirus, while 
it is suggested to be a suboptimal nCoP marker in low- and 
middle-income countries [65, 142]. Indeed, maternal Abs, 
including IgG and IgA, which are thought to be responsible 
for the lower vaccine efficacy in low- and middle-income 
regions, might be factors that affect protection [104]. In 
addition, the presence of non-nAbs against VP2, VP6, NSP2, 
and NSP4, which are detected in most individual sera after 
rotavirus infection, are main antigenic targets other than 
VP4 and VP7 in immune responses and protection, but their 

clinical significance for protection is unclear [29, 44, 49, 
131]. Moreover, the gut microbiome is also implicated in the 
pathogenesis of rotaviruses [57]. It has been shown that the 
microbiome diversity in rotavirus-infected children is lower 
than in healthy uninfected children [57]. The complexity and 
large number of factors contributing to protection against 
rotavirus infection present an important challenge, both for 
vaccination programs to control rotavirus infection in many 
(especially developing) countries and for next-generation 
vaccine development efforts. Herein, the clinical endpoints 
and the protective immune responses to natural infection or 
vaccination are reviewed, and limitations and gaps in our 
knowledge in this area are discussed.

Immune responses to natural rotavirus 
infection as potential CoPs

It has been suggested that immune responses to asympto-
matic or symptomatic natural rotavirus infection do not pro-
vide sterilizing immunity but might protect the individual 
from moderate-to-severe disease and/or hospitalization for 
subsequent reinfections [64, 175]. Of note, the incidence 
of asymptomatic rotavirus infections in children between 6 
and 24 months of age has been found to be 3-4 times higher 
than that of symptomatic infections. Interestingly however, 
both symptomatic and asymptomatic primary rotavirus 
infections confer a similar degree of protection against sub-
sequent infections [175]. These observations highlight the 
crucial role of asymptomatic rotavirus infections in pro-
tection against disease and have implications for vaccine 
development.

The level of immunity generated by natural infection 
can be determined by observing a subsequent episode of 
rotavirus infection. One episode of rotavirus infection might 
provide > 70% protection against rotavirus-induced diarrhea, 
while after two subsequent infections (symptomatic or 
asymptomatic), complete protection for moderate-to-severe 
illness may be achieved [14, 18, 64, 93, 175, 186, 189]. In 
a cohort study of young children in India, the difference of 
the severity of diarrhea in the first and second infections 
was not found to be statistically significant, and protection 
against moderate or severe disease was only 79% after three 
subsequent infections [68]. Furthermore, a community 
cohort study of newborn children in Guinea-Bissau showed 
that a single infection conferred 66% protection against 
reinfection in the same epidemic, but only 34% protection 
against reinfection in subsequent epidemics [64]. The 
variability in protection after subsequent rotavirus infections 
could be attributed to differences in the subsequent inoculum 
size or differences in the level of immunity generated by 
natural infection in different population groups [44].
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Numerous studies have shown that rotavirus-specific Abs 
can be used as immune markers following natural infection 
[40]. However, reports on Ab-based acquired homotypic 
and/or heterotypic immunity after natural rotavirus infec-
tion are complex and controversial. In this context, some 
studies have found homotypic Ab responses to be induced by 
initial exposure to a rotavirus and heterotypic Ab responses 
to be induced by subsequent exposures [38, 39, 55, 75, 129, 
130, 147, 155, 163]. These findings suggest that homotypic 
immunity would be primed by Ab generation against homo-
typic epitopes on VP4 or VP7 proteins [74]. However, het-
erotypic protection might be boosted by generation of Abs 
against heterotypic (conserved) epitopes of VP4 or VP7 
proteins [132] and also by non-nAbs directed against VP6, 
VP2, NSP2, and NSP4 [20, 125]. Accordingly, there are 
reports suggesting that serum titers of nAbs against rotavirus 
are correlated with either homotypic or heterotypic protec-
tion from viral disease [8]. However, due to the polyclonal 
nature and diversity of Abs raised against rotavirus proteins, 
the exact level (IU/mL) of serum Abs that can be consid-
ered protective is not known. In this context, the results of 
an early trial conducted in a Japanese orphanage indicated 
that nAb levels higher than 1:128 were protective against 
homotypic rotavirus gastroenteritis caused primarily by a 
G3 strain, while heterotypic responses against G1 and G4 
strains were also produced [38]. Similarly, the results of a 
later study provided analogous data for homotypic protec-
tion, indicating that repeated infections with the same G 
type were less likely to occur [175], Accordingly, a case-
control study in Bangladesh demonstrated that children with 
rotavirus-related diarrhea had considerably lower baseline 
homotypic and heterotypic nAb titers than age-matched 
controls, suggesting the importance of nAbs for protection 
against the disease [187]. Of note, results of similar stud-
ies on rotavirus-infected children with or without gastro-
enteritis indicated a correlation with pre-existing levels of 
IgA rather than IgG for protection against viral disease [84, 
116]. In contrast, results of another study on Bangladeshi 
children suggested a correlation of IgG titers with protec-
tion against symptomatic and clinically significant rotavirus 
diarrhea [46]. Interestingly, the results of another study from 
Mexico [176] suggested the importance of both IgG and IgA 
as correlates of protection, showing that serum IgG titers 
of > 6400 and IgA titers of > 800 were associated with a 
lower risk of rotavirus infection. However, these titers were 
significantly higher than those reported in a study in the 
United States in which IgG titers of > 800 and IgA titers of 
> 200 were associated with a lower risk of rotavirus infec-
tion [130]. In parallel, results of a recent study on Indian 
children suggested the potential importance of sufficient 
pre-existing IgG and IgA Ab titers in serum for a reduced 
risk of rotavirus infection and found an increase in the titers 
of such Abs with age [141]. Therefore, ambiguous reports 

and controversial results pertaining to the type and titer of 
the Abs required for protection against rotavirus infection 
or disease indicate the need for better understanding of how 
they function as CoPs.

It has been shown that passive transmission of IgA and 
nAbs via breast milk can inhibit rotavirus infection [19, 
32, 61, 123, 124, 152, 167]. Therefore, breastfeeding may 
protect against rotavirus infection not only by the nonspecific 
action of glycoproteins such as lactoferrin and lactadherin 
[160] but also by rotavirus-specific IgA that is produced via 
the gut-mammary gland axis [127]. Previous studies showed 
a rural/urban residency gradient of rotavirus-specific Abs 
[45, 127]. In this context, it has been shown that the level 
of IgA against rotavirus in breast milk from Bangladeshi 
mothers (whose exposure to rotaviruses is considerably 
higher) was higher than that from Swedish mothers. 
Considering the higher efficacy of rotavirus vaccination 
in Sweden than in Bangladesh, this observation might 
suggest a reverse relation of rotavirus-specific IgA in breast 
milk to rotavirus vaccination efficacy in breastfed children 
[127]. A similar study conducted in a rural community in 
Bangladesh showed that exclusive breastfeeding might 
temporarily protect infants and postpone severe rotavirus 
diarrhea, but there was no overall protection during the first 
two years of life [45]. In agreement with this, in a study 
in India, it was shown that IgA titers in the breast milk of 
mothers whose infants were infected with rotavirus within 
the first 5 days of life were significantly lower than in that of 
those whose infants were uninfected during the same time 
period [89]. However, contrary to the above reports, in a 
Mexican study, there was no difference in the titers of breast 
milk Abs between breastfed infants infected with rotavirus 
and those who remained unaffected during the first year 
of life [22]. Accordingly, a study undertaken in Vietnam 
showed that, while the level of total IgA was significantly 
higher in mothers living in a rural region than those in 
an urban region, urban mothers had significantly higher 
rotavirus-specific IgA Ab titers than rural mothers [168]. 
Although maternal anti-rotavirus Abs protect neonates and 
unvaccinated infants during the period of immune system 
maturation and can be protective during this time of high 
risk for experiencing severe rotavirus disease, further studies 
are required to determine its importance and contributing 
role in protection against rotavirus disease. Despite extensive 
investigations on the protective role of rotavirus-specific 
Abs [40], studies and data on the protective role of the 
T-cell immune responses in the course of natural rotavirus 
infection or vaccination are limited [101, 115]. Studies in 
animal models have indicated a crucial role of T cells in 
replication-inhibited clearance of infection and generation of 
protection-associated Abs [55, 118, 119]. Induction of both 
CD4+ and CD8+ T cell responses in rotavirus infection has 
been documented, albeit at much lower levels compared to 
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other viral infections [88, 114]. A recent systemic review 
showed that although rotavirus-specific T cells are generally 
present at low frequency, their reactivity is broadened with 
increasing age in children [101]. In addition, CD4+ and 
CD8+ T cell responses in rotavirus infection are heterotypic 
and more transient, but they can occur in the absence of 
detectable antibody responses through repeated exposure 
[101]. Therefore, it is necessary to fully understand the 
protective role of rotavirus-specific T-cell responses in the 
course of natural infection or vaccination [111]. A summary 
of studies on potential CoPs against natural rotavirus 
infection is shown in Table 1.

Immune responses to rotavirus vaccination 
as potential CoPs

For most of the vaccines that have been approved for human 
use, such as those against hepatitis A and B, rabies, poliovi-
rus, measles, anthrax, diphtheria, and tetanus, the humoral 
(antibody) response, which is usually measured by neu-
tralization assay or ELISA, is the most important CoP [85, 
139]. Of note, for many established enteric vaccines (such as 
those for hepatitis A, Vi typhoid, and poliovirus infections), 
humoral responses are considered CoPs, although they may 
not correlate well with protective efficacy or relevant gut 
immune responses [85, 139]. Likewise, in the case of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
strain-specific neutralizing Abs are the principal CoPs, and 
their titers correlate directly with protection against infec-
tion [58, 70]. However, it has also been shown that T cell 
responses and Fc effector Abs are also important players 

Table 1   Summary of studies describing potential CoPs in natural rotavirus infection

*nAb: neutralizing antibody
a Adult volunteer study
b NA titer >1:128
c A serologic response (77 percent), of which 52% were first and 48% repeated infections
d IgA titer >1:200
e IgG titer >1:800
f IgA titer >1:800
g IgG titer >1:6400
h The prevalence of protective serum IgA and IgG titers increased from 36% and 45% before season 1 to 77% and 96% after season 2 (P < 0.02 
and 0.001).

Location Seroconversion % Mediator of protection against infection and/or disease Refs.

United States 67 IF antibody and nAb*a [93]
Japan Not reported Homotypic nAbb [38]
Denmark 73 (IgA) and 100 (IgG) Serum IgA [84]
United States 66 Serum IgG and jejunal NA [187]
United States 67 Serum nAb against VP4 and VP7 (homotypic and heterotypic) [74]
Bangladesh Not reported Serum IgG [46]
Bangladesh Not reported Heterotypic NA [188]
Japan Not reported Homotypic NA [39]
United States 83 (Fecal IgA) Fecal IgA [116]
United States 91 (IgA), 88 (IgG), and 79 (NA) Serum IgAc, IgGd and NA (homotypic) [130]
United States 36 and 77 (IgA)h

45 and 96 (IgG)
Serum IgA and IgG [129]

Venezuela 92 (IgA) Homotypic NA [147]
Mexico 77c Serum IgA and IgG [176]
Nicaragua > 55 Colostrum IgA [61]
Mexico 77 Serum IgAe and IgGf [177]
Guinea-Bissau 70 Not reported [64]
India Not reported Serum IgA and IgGg [141]
Bangladesh 49 Serum IgA and IgG [110]
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that can affect the efficacy of vaccines against SARS-CoV-2 
infection [58, 67, 96]. It should be noted that vaccine-
induced Abs might either act directly by neutralizing the 
infectious agent or be a marker for the presence of a robust 
T-cell response that protects against pathogenesis through 
distinct immunological mechanisms [21]. Therefore, despite 
the value of vaccine-induced neutralizing Abs as CoPs, for 
development of effective and durable vaccines against rota-
viruses, other factors might need to be considered. Indeed, 
rotavirus vaccines represent one of the most complex chal-
lenges for the definition of CoPs. Vaccination has already 
impacted the global burden and epidemiology of rotavirus 
disease in a positive way, with great success in high-income 
countries, but the same is not true for low-income socie-
ties [24]. Infants typically receive two oral doses of Rotarix 
(GSK, UK) or three oral doses of RotaTeq (Merck, USA) in 
their first 6 months of life. In addition, two other live attenu-
ated oral rotavirus vaccines, Rotavac (Bharat Biotech) and 
Rotasiil (Hyderabad and Serum Institute of India), have also 
been prequalified by WHO and licensed in several countries. 
Moreover, several monovalent rotavirus vaccines, such as 
Rotavin-M1 (PolyVac) [151, 166], Lanzhou lamb rotavirus 
(LLR) [192], and neonatal rotavirus vaccine (RV3-BB) [16], 
are licensed nationally in Vietnam, China, and Australia, 
respectively. Furthermore, several non-replicating rotavirus 
vaccines, including recombinant or inactivated vaccines, 
have shown promising results in preclinical or clinical stud-
ies. Identifying relevant CoPs for these vaccines would 
permit us to predict both the risk of clinical disease and 
vaccination efficacy [8]. Since the introduction of rotavirus 
vaccines, the intestinal IgA response and its surrogate, the 
serum IgA level, have been considered the principal CoPs. 
In this context, various human trials conducted in several 
countries around the world with different economic, cultural, 
sanitary, and nutritional conditions have used anti-rotavi-
rus-IgA levels to examine the efficacy of rotavirus vaccines, 
especially for Rotarix and RotaTeq. Vaccine-induced anti-
rotavirus IgA levels (> 20 U/mL) are an important predic-
tor of protection against rotavirus infection and are associ-
ated with vaccine efficacy [11, 44, 65, 137, 169]. In some 
trials, type-specific neutralizing Ab titers have also been 
reported [9, 44, 156, 178]. A review of clinical trial data 
for the Rotarix and RotaTeq vaccines [137] showed that a 
geometric mean concentration (GMC) of anti-rotavirus IgA 
below 90 was associated with a decline in vaccine efficacy. 
Indeed, efficacy during first 2 years of life was significantly 
lower in countries with an IgA GMC < 90 than in coun-
tries with a GMC > 90. This suggests that IgA titers might 
be an important immune correlate protecting children from 
rotavirus diarrhea [137]. However, rotavirus-specific post-
immunization serum IgA titers and seroconversion were 
more strongly associated with protection from rotavirus diar-
rhea in high-income (low child-mortality) countries than in 

low- and middle-income (high child-mortality) countries. 
In this context, it was shown that rotavirus-specific post-
immunization serum IgA titers were not an optimal corre-
late of protection in many low- and middle-income (high 
child-mortality) countries such as Bangladesh [110]. Similar 
studies have shown that low serum rotavirus-specific IgA 
is associated with increased rotavirus load in vaccinated 
Malawian children with acute gastroenteritis and is also 
associated with an increased risk of clinical rotavirus vac-
cine failure [12, 140]. It has been shown that the kinetics of 
fecal Rotarix RNA shedding as well as the IgA responses 
in immunized twins after the first and second vaccine doses 
were similar, suggesting that rotavirus vaccine viral repli-
cation in the intestine and the host immune response are 
similar in twin siblings [60]. Generally, the documentation 
of factors that are related to protection will facilitate the 
improvement of rotavirus vaccines strategies. A summary of 
studies on potential CoPs related to vaccination is presented 
in Table 2.

Live attenuated rotavirus vaccines

WHO‑prequalified rotavirus vaccines

The results of clinical trials and systemic reviews on all four 
licensed rotavirus vaccines [6, 9, 13, 82, 102, 197] have 
indicated low vaccine efficacy and effectiveness in low- and 
middle-income countries (29–77% within the first/second 
year after vaccination) compared to that of higher-income 
countries, where the efficacy was 85–98% for preventing 
severe rotavirus disease by immunization with RotaTeq or 
Rotarix [6, 15, 59, 95, 102, 108, 122, 144, 150, 159, 164, 
177, 179, 180]. The results of the clinical trials in India and 
Niger for the Rotasiil vaccine demonstrated an efficacy of 
36% and 67%, respectively, against severe rotavirus gastro-
enteritis [86, 99]. The results of a phase III efficacy trial of 
the Rotavac vaccine in India indicated an efficacy of 55% 
against severe rotavirus disease, with overall protection up 
to two years of age [15]. Similar results were reported for 
the same vaccine in infants in Zambia [41]. Reports on post-
licensure vaccine effectiveness data indicated 84-86% (13 
studies), 75-77% (8 studies), and 57-63% effectiveness for 
Rotarix in countries with low, medium, and high childhood 
mortality rates, respectively. For the RotaTeq vaccine, effec-
tiveness was reported to be 84-90% (20 studies) and 45-66% 
in countries with low and high child mortality rates, respec-
tively [25, 91]. Although efficacy data from clinical trials are 
available for Rotavac and Rotasiil, no post-licensure vaccine 
effectiveness data have been reported for these vaccines.

As discussed above, rotavirus-specific IgA Abs are 
used to monitor vaccine effectiveness at the population 
level. Studies relating rotavirus IgA seroconversion to 



	 T. Latifi et al.72  Page 6 of 16

protection have indicated that, in high-income countries, 
including Europe, Japan, Hong Kong, China, and Aus-
tralia, high levels of vaccination effectiveness for both 
Rotarix and RotaTeq, with long-lasting (until two years 
of age) protection (both homotypic and heterotypic) have 
been documented. More recently, it was shown that for 
infants vaccinated with Rotarix in high-income countries, 
seroconversion might serve as a perfect CoP, correlating 
with 96% reduction in the risk of rotavirus gastroenteritis 

compared to infants showing no seroconversion [11]. 
However, lower and more variable levels of protection 
(about 30-60%) and reduction in the duration of protec-
tion have been reported in low- and middle-income coun-
tries, including South Africa, Malawi, Ghana, Kenya, and 
Mali, for the same vaccines [9, 15, 41, 53, 86, 99, 112]. 
In clinical studies, anti-rotavirus IgA is a valuable indica-
tor of protection against rotavirus gastroenteritis. In par-
ticular, oral rotavirus vaccines replicate in the gut, and a 
mucosal IgA response (or its surrogate, serum IgA) can 

Table 2   Summary of studies describing potential CoPs for rotavirus vaccines

*Serum nAb: serum neutralizing antibody; **seroconversion: ≥ 20 u/ml or threefold rise; ***GMT = geometric mean titre; #IgG; ^IgA; $nAbs
^ Vaccine efficacy of three doses of RV3-BB vaccine administered on a neonatal schedule against severe rotavirus gastroenteritis was 94% at 12 
months and 75% at 18 months of age.
# Serum IgA seroconversion was observed in 52% of participants 4 weeks after administration of three doses of RV3-BB administered on the 
neonatal schedule. At 18 weeks, cumulative IgA seroconversion was also detected in 67% of participants in the neonatal schedule group com-
pared with 59% of participants in the infant schedule group.
& A serum IgA response was detected in 74% and 63% of RV3-BB recipients in the infant and neonatal schedule group, respectively.

Vaccine Location % Vaccine efficacy % Anti-rotavirus 
seroconversion** 
(95% CI)

Anti-rotavirus IgA 
or IgG, Serum nAb, 
GMT*** (95% CI) 
U/ml

Ref

World Health Organiza-
tion prequalified

Rotarix Europe 90.4 86 (83–88) 197 (175–222) 181
Latin American 80 61 (53–68) 66 (49–87) 169
Japan 91 85 (68–95) 217 (109–428) 95
South Africa 32 57 (44–68) 59 (37–93) 112
Malawi 34 47 (30–64) 51 (26–102) 53
Hong Kong 95 97 (86–99) 314 (215–460) 108

Rotateq Ghana 55 78 (67–87) 23 (15–37) 9
Kenya 63 73 (60–84) 30 (18–51) 164
Mali 17 82 (70–91) 31 (18–51) 159
Bangladesh 42 78 (66–87) 29 (18–45) 156
Vietnam 63 97 (89–99) 158 (107–234) 198
Europe, the United 

States, and Latin 
America

- 95 (91–97) - 181

China 95 - 82 (66–102) 122
ROTASIIL India 36 46 (43–50) 19 (17–21) 144

Nigeria 67 - - 86
ROTAVAC India 55 35 (29–41) 20 (17–23) 15, 59

Zambia - 33 (24–42) - 41
ROTAVAC-5D - 40 (32–49) -

Nationally licensed RV3-BB Indonesia 94, 75^ - 185 (78–437) 153
RV3-BB New Zealand - - 74, 63& 16
RV3-BB Malawi - - 52, 67, 59# 192
BRV-TV India - - 28 (24–32) 151
ROTAVIN Vietnam - 188 (64–75) 48 (40–57) 166
ROTAVIN-M1 - 87 (55–72) 35 (27–44)

Non-replicating, par-
enteral

P2-VP8* South Africa - 99–100#

20–34^
≥4-fold increase from 

baseline#,^

≥2·7-fold increase 
from$ baseline

79
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be considered an imperfect CoP. Although, it is not con-
sidered a true clinical endpoint and does not accurately 
predict specific levels of protective immunity, it is still a 
practical and informative measure of an infant’s risk of 
rotavirus gastroenteritis after vaccination.

Nationally licensed rotavirus vaccines

A study of vaccination with one dose of rhesus rotavirus-
tetravalent vaccine (RRV-TV, licensed as RotaShield) 
showed that anti-rotavirus-IgA seroconversion was associ-
ated with protection from infection, but not from gastro-
enteritis. After three doses, the titer of anti-rotavirus IgA 
was found to have a significant association with protec-
tion against acute gastroenteritis, but no specific titer was 
reported as a CoP for this vaccine [43]. Another study com-
pared serum anti-rotavirus IgA levels as a marker of protec-
tion in both RRV-TV (RotaShield)-vaccinated and naturally 
infected children. The results of that study indicated that a 
serum anti-rotavirus IgA level >1:800 correlated with 68% 
protection in children who had been infected previously, but 
this was not a reliable CoP for those immunized with the 
RRV-TV vaccine [73]. In parallel, results of a meta-analysis 
on the same vaccine indicated that levels of anti-rotavirus 
IgA ≥ 20 U/mL were moderately correlated with a lower 
risk of gastroenteritis in vaccinated children [37].

The effect of maternal Abs (either acquired transplacen-
tally or from breast milk) were also studied extensively, but 
no inhibitory or beneficial effect on rotavirus vaccination 
efficacy (‘vaccine uptake’) could be documented [5, 77, 
149]. It has been shown that, in the presence of maternal Abs 
and breast milk, neonatal P[6] strains such as RV3 (G3P[6]) 
replicate efficiently in the gut of the infected infant without 
causing any disease symptoms [30]. Based on this finding, 
this naturally attenuated human neonatal strain (G3P[6]) 
was used to develop the RV3-BB vaccine. The RV3-BB 
vaccine has been shown to be immunogenic and well toler-
ated when the first dose is given within 0–5 days after birth 
(neonatal schedule) or when the first dose is administered 
at 6-8 weeks of age (routine infant schedule) [16, 18]. The 
efficacy of RV3-BB when administered in three doses on a 
neonatal schedule (birth, 6 weeks, and 10 weeks) was shown 
to be 94% at 12 months and 75% at 18 months of age in 
a high-child-mortality setting in Indonesia [17, 153]. In a 
similar study in Malawi, 4 and 18 weeks after administration 
of three doses of RV3-BB on a neonatal schedule (birth, 6 
weeks, and 10 weeks), cumulative serum IgA seroconversion 
was observed in 52% and 67% of participants, respectively, 
compared to 59% of these on an infant schedule (6, 10, and 
14 weeks) [191]. Furthermore, recent studies in Indonesia 
and New Zealand [34, 54] have shown that maternal rota-
virus Abs in breast milk appear to have a minimal impact 
on RV3-BB vaccine uptake when administered with a short 

delay in breast-feeding in settings with a high rotavirus dis-
ease burden. Anti-rotavirus IgA levels in colostrum or breast 
milk and levels of placental IgG and serum nAbs did not 
show any impact on the serum IgA response or stool excre-
tion after three doses of RV3-BB vaccine using either a neo-
natal or infant schedule [34, 54]. Interestingly, immunization 
with three doses of RV3-BB vaccine in Indonesia resulted in 
an efficacy of 94% for neonates (0 to 5 days, 8, and 14 weeks 
of age) and 75% for infants (8 weeks, 14, and 18 weeks of 
age), suggesting that this vaccine is appropriate for use in 
a birth dose vaccination schedule [17]. Strategies including 
changes in vaccine scheduling, administration of probiotics, 
antibiotics, or immunomodulatory drugs, and development 
of novel vaccine formulations may further improve rotavi-
rus vaccine performance [69]. However, it remains to be 
seen whether improved immune responses will translate into 
improved CoPs.

Non‑replicating rotavirus vaccines

P2‑VP8*‑based recombinant rotavirus vaccines 
(RecVs)

It has been shown that protection against rotavirus infection 
can be mediated by nAbs that target epitopes on the VP7, 
VP5*, and VP8* proteins [125, 163]. Therefore, these 
proteins are candidate antigens for the development of 
improved, next-generation, broadly effective rotavirus 
vaccines [107, 125]. In this context, the results of a recent 
study showed that VP8* fused with the P2 epitope of tetanus 
toxin (so-called P2-VP8*; a non-replicating, parenteral 
vaccine) was capable of inducing anti-rotavirus nAbs with 
homotypic protection characteristics [66], i.e., they were 
protective only against the rotavirus genotypes included in 
the vaccine formulation. More recently, to cope with this 
shortcoming and to induce significant heterotypic immunity, 
a trivalent P2-VP8*-P[8]/P[6]/P[4] vaccine was developed 
(numbers in brackets indicate the included genotypes) [76, 
117]. The results of human trials in South African adults, 
children, and infants showed that this vaccine induced high 
levels of anti-P2-VP8* IgG and nAbs against three different 
P-type antigens [78, 79]. However, the proportion of infants 
with an anti-P2-VP8 IgA seroresponse to each P-type antigen 
was only between 20% and 34% [79]. It remains to be seen 
whether Abs to the trivalent P2-VP8 subunit vaccine are 
capable of protecting children against infection and diarrhea 
from increasingly variable homologous and heterologous 
rotavirus strains. More recently, several mRNA-based 
P2-VP8 vaccines have been developed and evaluated in 
mice, guinea pigs, and gnotobiotic pigs [33]. Induction of 
high levels of anti-P[8] IgG and virus-neutralizing antibodies 
against both homotypic P[8] and heterotypic P[4] and P[6] 
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rotavirus strains was observed in the vaccinated animals 
[33]. It should be noted that almost all human rotavirus G 
types have been detected in combination with P[8], P[4], or 
P[6] specificity. Therefore single or multivalent formulations 
with two or more of the P[8], P[4], and P[6] VP8* proteins 
(VP8*-P[8]/P[4]/P[6]) might provide pan-antigenic coverage 
of almost all G (VP7) types and confer cross-neutralizing 
protection against the most common rotavirus genotypes.

There are ongoing prime/boost vaccination studies using 
oral and parenteral non-replicating rotavirus vaccines. In this 
context, immunization with one dose of the oral Rotarix vac-
cine (prime) followed by one dose (boost) of the trivalent 
nanoparticle vaccine (S-VP8*P [8]/P[4]/P[6] nanoparticles 
consisting of the S domain of norovirus VP1 and rotavirus 
VP8*) was shown to be capable of eliciting high titers of 
virus-specific neutralizing IgG and IgA Abs [33, 83].

It should be noted that oral vaccines replicate in the gut 
and induce an intestinal mucosal IgA response. Therefore, 
it is logical to consider that non-replicating parenteral rota-
virus vaccines might use other pathways of protection and 
thus have different CoPs than their live oral vaccine coun-
terparts. Of particular note, it has been shown that some of 
the IgA Abs in serum contain a secretory component that 
might be derived from the intestine via “spillover”. This 
observation might account for the correlation of rotavirus-
specific IgA levels in serum with protection from disease 
[7]. For parenteral vaccines, however, IgG rather than IgA 
might be a suitable marker of immunogenicity and a CoP. In 
this context, it has been shown that transplacental-derived 
IgG protects infants from rotavirus disease and interferes 
with live oral rotavirus vaccine uptake, while hyperim-
mune serum protects non-human primates against rotavirus 
challenge [133]. Serum IgG has also been shown to protect 
against viral infections in the lung and intestinal lumen due 
to its ability to cross epithelial barriers by receptor-mediated 
transcytosis [31, 143]. Future studies might clarify the role 
of neutralizing Abs and key immunogen(s) responsible for 
broad and durable protection.

VP6‑based RecVs

It has been suggested that Abs targeting the VP6 protein 
of the middle capsid layer might play a significant role 
in protection from rotavirus infection by inhibiting virus 
replication [29, 162]. VP6-specific Abs (which are elicited 
at high titers in the course of natural infection/vaccination) 
are capable of protecting rotavirus-infected mice via passive 
transfer [27, 63], while immunization with VP6-based 
vaccines also induces or enhances protective immunity [71, 
105]. Recently, parenteral and/or mucosal immunization of 
mice with a VP6 oligomeric subunit preparation was shown 
to provide partial protection against rotavirus challenge 
[172]. In addition to being highly immunogenic, VP6 has 

several other useful characteristics that could allow it to 
be used in adjuvants, immunological carriers, and drug-
delivery vehicles and also as a scaffold for production of 
valuable nano-biomaterials [158]. Moreover, VP6-specific 
llama-derived nanobodies have been shown to have 
extensive cross-neutralizing activity that protects neonatal 
mice from rotavirus-associated diarrhea [28, 113]. Similarly, 
orally administered rotavirus VP6-specific nanobodies 
have been shown to be effective against rotavirus-induced 
diarrhea in neonatal pigs [172]. These findings highlight 
the potential value of broadly neutralizing VP6-specific 
nanobodies as a treatment that might complement or be 
used as an alternative to the current strain-specific rotavirus 
vaccines [172]. It has been shown that Abs elicited against 
VP6 during natural infection of mice and humans are of the 
IgA and IgG isotypes [94] and that natural infection and 
vaccination induce similar levels of serum IgA Abs [106]. 
However, results of a more recent study indicated that 
neutralization by VP6-specific IgG was far more effective 
than neutralization by VP6-specific IgA [29]. These results 
suggest that rotavirus VP6 Abs may play an important role 
as a potential CoP and suggest that VP6 might be useful as 
a vaccine antigen.

VP6‑NSP4‑based RecVs

The rotavirus nonstructural glycoprotein 4 (NSP4) is a viral 
enterotoxin that plays important roles in rotavirus patho-
genesis. There is a high seroconversion rate for induction of 
anti-NSP4 Abs following natural rotavirus infection, with a 
heterotypic response detectable in 48% of people infected 
[181]. These observations suggest that anti-NSP4 Abs might 
be CoPs in rotavirus-induced diarrhea. Abs raised against 
NSP4 are broadly reactive and might prevent diarrhea caused 
by various rotavirus genotypes [145, 181, 193]. Therefore, 
despite being a relatively weak immunogen, NSP4 has been 
used in several studies as a target Ag for development of 
rotavirus vaccines [2, 193]. Recently, it was reported that 
a combination of recombinant rotavirus VP6 nanospheres 
(VP6S) and NSP4 proteins formulated in aluminum hydrox-
ide adjuvant elicited higher levels of anti-NSP4 Abs in mice 
than NSP4 alone [4]. Thus, it appears that the immunogenic-
ity of NSP4 can be enhanced by cost-effective strategies for 
the purpose of developing NAP4-based rotavirus subunit 
vaccines.

VLP‑based vaccines

Virus-like particles (VLPs) have been investigated as 
rotavirus vaccine candidates in several studies [128, 
157, 194]. Several VLP vaccine candidates based on the 
combination of VP2, VP4, VP6, and VP7, produced either 
in baculovirus-infected insect cells (Baylor College of 
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Medicine) or using plant-based platforms (Mitsubishi 
Tanabe Pharma) have been developed [48, 50, 51, 90, 100]. 
In preclinical studies, these vaccine candidates induced 
production of a broad range of heterotypic and homotypic 
nAbs without any significant toxicity in animal models. 
Accordingly, a plant-based VLP vaccine (Ro-VLP) is 
currently being tested in a human clinical trial. The results 
show that intramuscular administration of this Ro-VLP 
vaccine to infants elicited a stronger IgG than IgA response 
in serum, and nAbs against rotavirus were elicited that 
protected vaccinated infants from disease [100]. Moreover, 
it has been shown that intramuscular administration of a live 
or inactivated rotavirus vaccine in an animal model (rabbits) 
is capable of inducing intestinal rotavirus-specific IgG and 
protecting rabbits from rotavirus infection [47]. In further 
support of a protective role of IgG, it has been shown that 
intravenous injection of sera with high rotavirus-specific IgG 
titers to non-human primates resulted in the transport of IgGs 
to the intestinal lumen to inhibit rotavirus infection [188]. 
These findings suggest that both parenteral immunization 
with rotavirus VLP vaccines and administration of oral 
rotavirus vaccines have the potential to contribute to 
protection against rotavirus infection through transudation 
or permeation of Abs (IgG) into the intestinal lumen.

Inactivated rotavirus vaccines

Although inactivated rotavirus vaccines (IRVs) can be safe 
and effective for prevention of rotavirus infection in children, 
no approved and licensed vaccines are available to date. The 
Centers for Disease Control and Prevention (CDC) of the 
United States recently developed a heat-inactivated whole-
virus vaccine consisting of human rotavirus G1P[8] strain 
CDC-9. Pre-clinical studies showed that intramuscular 
administration of IRV CDC is able to induce IgG, IgA, and 
homotypic and heterotypic nAbs in serum and protection 
against rotavirus infection and acute gastroenteritis in animal 
models [173, 184, 185]. In addition, parenteral administra-
tion of this inactivated vaccine was also shown to induce 
mucosal immunity by promoting expression of the gut hom-
ing receptor LPAM-1 (integrin α4β7) on T and B cells in the 
spleen and intestinal mesenteric lymph nodes of vaccinated 
mice [146]. In support of this, it has also been shown that 
circulating T and B cells in children with rotavirus gastroen-
teritis express LPAM-1, while LPAM-1-expressing B cells 
secrete rotavirus-specific Abs [72, 87, 148]. However, no 
defined CoPs for LPAM-1 expression after either natural 
rotavirus infection or oral and parenteral rotavirus vaccina-
tion have been suggested.

Gut microbiome and CoPs against rotavirus 
infection

An antiviral effect of probiotics against rotavirus infection 
via mechanisms such as immune enhancement or modula-
tion of intestinal microbiota (probiotic-related reductions in 
rotavirus gastroenteritis) has been proposed [3, 97]. Rota-
virus-induced gastroenteritis has been shown to decrease 
the intestinal microbial diversity and composition, while 
recovery is associated with a return of the intestinal flora 
to that of the non-infected state [35, 171]. The significant 
role of the gut microbiome in immune responses that indi-
rectly affect CoPs against rotavirus infection has mainly been 
demonstrated in rotavirus-infected/vaccinated animal mod-
els, such as gnotobiotic (Gn) piglets. Several clinical studies 
have suggested that the gut microbiota plays a role in the 
variation of rotavirus vaccine efficacy observed in different 
parts of the world. Although vaccine efficacy usually cor-
relates with anti-rotavirus IgA levels, anti-rotavirus IgA is 
an imperfect CoP and may not necessarily reflect protection 
against clinically relevant disease. Furthermore, intestinal 
commensals such as Lactobacillus rhamnosus GG (LGG), 
L acidophilus, L. reuteri, and Bifidobacterium lactis Bb12 
(Bb12), which regulate gut immunity, significantly enhance 
rotavirus vaccine immunogenicity and reduce the severity 
of gastroenteritis and the amount of viral shedding [10, 80, 
92, 136, 182, 195, 196]. These observations support fur-
ther exploration of microbiome manipulation as a way of 
improving rotavirus vaccine efficacy [81]. Since gut micro-
biota might indirectly affect the CoPs in rotavirus infection/
vaccination, understanding the influence of the diversity and 
composition of the microbiome on gut immunity might lead 
to new treatments or vaccination approaches [97].

Conclusion

Although natural infection and rotavirus vaccination both 
induce anti-rotavirus immune responses, the mechanisms 
by which these immune responses contribute to long-term 
protection against rotavirus infection is not fully understood. 
In general, levels of rotavirus IgA and homotypic and 
heterotypic nAbs in serum, elicited by natural infection 
might protect children from later infections and thus might 
be considered CoPs in the context of natural infection. Since 
oral rotavirus vaccination failures seem to be correlated with 
lower anti-rotavirus IgA levels in serum, the level of IgA 
induced by vaccination might also be considered a CoP in 
the context of vaccination. Moreover, the significant role 
of IgGs that transudate into the intestinal lumen and inhibit 
virus infection has also been highlighted by studies of 
parenteral rotavirus vaccines. In the case of oral rotavirus 
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vaccines, differences in the gut microbiota have been 
found to be associated with rotavirus immunogenicity, 
and specific taxa of bacteria have been associated with a 
boosted rotavirus vaccine response. Accordingly, total 
circulating Abs and homotypic and heterotypic nAbs are 
associated, but not completely correlated, with protection. 
This implies a potential role of other immune mechanisms 
such as cross-reactive T cells in protection against rotavirus 
infection. Some predictors of protection may not be directly 
involved in the control or clearance of infection. Therefore, 
further studies on the molecular immunology of rotavirus 
vaccination and infection are needed to understand the 
interactions between the arms of the immune system 
and viral antigens and to fill the knowledge gap regarding 
correlates of protection against rotavirus infection.
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