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expression regulator (Rev), helper protein negative factor 
(Nef), viral infection factor (Vif), viral protein U (Vpu), and 
viral protein R (Vpr).

HIV-1 is a single-stranded RNA virus whose genomic 
RNA is reverse transcribed to DNA, which then integrates 
into the genome of CD4+ T cells [2]. During this process, 
some CD4+ T cells carrying HIV-1 DNA become quiescent. 
The level of viral transcription in the latent HIV-1 reser-
voir is extremely low, and almost no virus particles are pro-
duced. In the absence of viral proteins, infected cells remain 
in a stable dormant state for a long time, and their presence 
is not recognized by the immune system. However, the 
integrated proviruses still have the ability to replicate and 
can be activated to produce infectious virions when highly 
active antiretroviral therapy (HAART) is interrupted. AIDS 
is very difficult to cure due to the latency reservoir estab-
lished during the infection. The majority of latent proviruses 
are believed to be present in resting memory CD4+ T cells, 
but some proviruses can persist in macrophages [3, 4], den-
dritic cells [5–7], astrocytes, and hematopoietic stem cells 
[8, 9].

Achieving a functional cure for AIDS has required solu-
tions that can eliminate the latent virus. However, the most 
commonly used treatment, HAART, is not able to achieve 
this goal. Although it has been shown to significantly reduce 

Introduction

Acquired immunodeficiency syndrome (AIDS), was first 
identified in 1981 and is now one of the three major infec-
tious diseases in the world [1]. Human immunodeficiency 
virus 1 (HIV-1), which causes AIDS, is a retrovirus that con-
tains two copies of the viral single-stranded RNA genome 
within the core of the virus particle. There are long termi-
nal repeats (LTRs) at each end of the HIV-1 genome, and 
the genes between the LTRs encode the viral structural 
proteins Gag, Pol, and Env, as well as regulatory proteins 
required for viral replication, which include the HIV-1 
transcriptional transactivator (Tat), viral structural protein 
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Abstract
The "Shock and Kill" method is being considered as a potential treatment for eradicating HIV-1 and achieving a functional 
cure for acquired immunodeficiency syndrome (AIDS). This approach involves using latency-reversing agents (LRAs) to 
activate human immunodeficiency virus (HIV-1) transcription in latent cells, followed by treatment with antiviral drugs to 
kill these cells. Although LRAs have shown promise in HIV-1 patient research, their widespread clinical use is hindered 
by side effects and limitations. In this review, we categorize and explain the mechanisms of these agonists in activating 
HIV-1 in vivo and discuss their advantages and disadvantages. In the future, combining different HIV-1 LRAs may over-
come their respective shortcomings and facilitate a functional cure for HIV-1.
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the viral load in the peripheral blood to an undetectable 
level [10], it cannot completely eradicate latent HIV-1. As a 
result, patients receiving HAART may have to treat HIV-1 
as a chronic disease, and those who stop taking the drugs 
may experience a resurgence of HIV-1 [11].

To address the problem of the latent HIV-1 viral reser-
voir, a "Shock and Kill" strategy has been proposed. In this 
approach, gene expression of the HIV-1 provirus is induced 
using latency reversing agents (LRAs), and HIV-1-bearing 
cells are subsequently eliminated by HAART [12]. In this 
review, we classify and summarize the mechanisms and 
roles of LRAs for a better understanding of the functions of 
these molecules in the process of AIDS treatment.

In general, LRAs can be divided into four categories: (1) 
small-molecule inhibitors that affect histone modifications, 
(2) DNA methylation inhibitors, (3) small molecules tar-
geting transcriptional regulatory complexes, and (4) small-
molecule inhibitors of the NF-κB pathway. Each of these is 
discussed separately below.

Small-molecule inhibitors that affect histone 
modifications

Histone deacetylase inhibitors

The function of histone deacetylase (HDAC) is to remove 
acetylation from lysine residues in histones. There are four 
types of HDAC (I-IV) that differ in their size, number of 
active centers, cellular localization, and homology to yeast 
HDAC proteins [13]. It has been reported that the regulation 
of chromatin function is associated with HIV-1 prolifera-
tion ability, and histone acetyltransferase and deacetylase 

are two chromatin-modifying enzymes that activate latent 
HIV-1 and are considered targets for treating HIV-1 infec-
tion [14]. HDACs can inhibit gene expression through 
deacetylation [15]. HDAC inhibitors typically interfere with 
the deacetylase activity of HDAC by blocking its catalytic 
domain [15, 16], resulting in an increase in histone acetyla-
tion levels, overcoming the inhibitory effect of HDACs and 
stimulating viral transcription in latently infected cells [17, 
18] (Fig. 1). HDAC inhibitors can activate latent HIV-1 in 
vitro, induce the expression of transcripts and antigens, and 
reduce the reservoir of latent HIV-1 [19, 20]. Acetylation of 
the nucleosome 1 (NUC-1) protein has been recognized as 
a critical step in transcription initiation and subsequent acti-
vation of the virus [21]. For example, a reversible HDAC 
inhibitor, trichostatin A (TSA), has been shown to activate 
latent viruses in HIV-1-infected cell lines [22]. When cells 
are exposed to TSA, HDAC1 is translocated from NUC-1, 
increasing histone H4 acetylation, and activating the expres-
sion of latent virus [23]. CC-4a (Fig. 1) is another HDAC 
inhibitor that has anti-deacetylase ability and can activate 
HIV-1 transcription.

HDAC inhibitors can potentially be used in HIV-1 treat-
ment to clear the latent reservoir [24, 25]. Clinical trials 
have demonstrated the efficacy of HDAC inhibitors [26] 
such as vorinostat, panobinostat, romidepsin (RMD), and 
valproic acid. Of these, RMD shows the highest potency 
and specificity against class I HDACs [27], and resistance 
experiments in monocytes have demonstrated the possibility 
of reducing the HIV-1 reservoir [17]. In a study using an in 
vitro T-cell model of HIV-1 latency, a sixfold increase in the 
amount of cellular HIV-1 RNA was observed after exposure 
to 40 nM RMD for 4 hours [28]. In preclinical models, the 
HDAC inhibitor entinostat (MS275) has proven successful 

Fig. 1 Small-molecule compounds that modify histone methylation 
and acetylation activate latent HIV transcription. Histone methyl-
transferase inhibitors (HMT) reduce the level of histone methylation, 
which significantly activates latent HIV. BIX01294, chaetocin, and 
HMT inhibitors (HMTi) inhibit G9α, SUV39H1, and HMT, respec-
tively, to facilitate the transcription of pre-viruses. Histone deacetylase 

inhibitors (HDACi) can inhibit the deacetylation of histones. With the 
accumulation of histone acetylation, the chromatin structure becomes 
loose, thus increasing the recruitment of transcription factors such as 
YY1, CTIP-2, p50-p50 homodimer, and CBF-1 to the HIV-1 5’ LTR. 
CC-4a is a novel selective inhibitor of histone deacetylase I that shows 
promise in reactivating latent HIV-1 and has low cytotoxicity
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in causing alterations in HDAC activity and pro-inflam-
matory cytokine expression levels in mice [29]. However, 
clinical trials have associated RMD with numerous serious 
adverse cardiac events [30]. Analysis of patient electrocar-
diograms revealed that the severity of the adverse effects 
was primarily influenced by the drug dosage and duration 
of administration. However, it was also observed that long-
term oral administration of low doses of the drug might mit-
igate this toxicity [31]. In addition, HDAC inhibitors have 
many other drawbacks, including toxicity to normal cells, 
resulting in thrombocytopenia and neutropenia, as well as 
causing nausea, diarrhea, and fatigue [32–34]. Furthermore, 
the effectiveness of HDAC inhibitors in HIV-1 treatment is 
influenced by various factors, including pharmacokinetics, 
concentration, and exposure time [19].

Histone methylation inhibitors

Histone methylation not only participates in the structure 
of chromatin but also plays a critical role in regulating gene 
expression (Fig. 1). The histone methyltransferase (HMT) 
Suv39H1 mainly participates in the trimethylation of Lys9 
of histone H3 (H3K9me3), leading to the silencing of HIV-1 
transcription [35, 36]. An inhibitor of SUV39H1, chaeto-
cin, has shown promise as a drug for reducing the HIV-1 
viral reservoir and has been shown to produce a 25-fold 
increase in latent HIV-1 expression [37, 38] (Fig. 1). The 
combination of chaetocin and the HDAC inhibitor TSA has 
been shown to have a strong synergistic effect on HIV-1 
expression [37]. Chaetocin does not activate T cells and can 
therefore be used without causing inflammation and related 
cytotoxic effects [37]. However, precise control of the con-
centration of chaetocin is crucial, because if used improp-
erly, it can have deleterious effects on non-target cells [39]. 
H3K9me3 chromatin immunoprecipitation analysis showed 
that when SUV39H1 was incubated with HIV-1-infected 
cells, chaetocin could alter the HIV-1 LTR and significantly 
reduce trimethylation at H3K9 [40] (Fig. 1). Chaetocin can 
also promote the recombination of LTR chromatin, leading 

to reactivation of HIV-1 [37]. G9α is an important enzyme 
that is responsible for H3K9 dimethylation (H3K9me2). 
BIX01294, a small-molecule inhibitor of G9α (Fig. 1), 
when administered peripherally to mice, causes a reduction 
in H3K9 methylation [41] and activation of viral transcrip-
tion. Histone methylation inhibitors, especially chaetocin, 
have shown positive effects in the treatment of HIV-1/AIDS 
[38].

DNA methylation inhibitors

DNA methylation is a critical epigenetic process that 
is involved in chromatin structure and gene regulation. 
Changes in methylation modifications are one of the epi-
genetic alterations caused by the integration of HIV-1 DNA 
into the host genome [42]. DNA methyltransferase inhibi-
tors show promise in reversing abnormal DNA methylation 
processes, which makes them a potential target for reversing 
HIV-1 latency. By inhibiting DNA methyltransferases, these 
inhibitors can reactivate HIV-1 and potentially eliminate 
latent HIV-1 reservoirs. DNA methylation usually occurs 
at CpG sites, especially around transcription start sites 
[43] (Fig. 2). Studies have shown that the HIV-1 promoter 
is often affected by DNA methylation [44], and modifica-
tion of DNA methylation proteins can affect the interaction 
between the virus and key transcription factors in the local 
epigenome, which may inhibit HIV-1 gene expression [45]. 
Therefore, DNA methyltransferase inhibitors can partially 
reactivate HIV-1 gene expression [46]. One inhibitor, 5-aza-
cytidine (5-AzaC), a nucleoside analogue of cytosine, is 
phosphorylated by deoxycytidine kinase (Fig. 2). Adminis-
tration of low doses of 5-AzaC to clinical patients that result 
in only minimal levels of DNA methylation [47] neverthe-
less leads to reactivation of HIV-1 [48]. DNA methyltrans-
ferase inhibitors may have significantly different effects 
on the activation of latent HIV-1, depending on the chro-
mosomal location of the provirus and the epigenetic and 
transcriptional environment in the cell. MG98 is a specific 

Fig. 2 DNA methyltransferase (DNMT) 
inhibitors (DNMTi) affect the transcription 
of HIV-1 by acting on DNA methylation. 
They can inhibit the aggregation of DNMT 
on the HIV-1 LTR, preventing the meth-
ylation of two CpG islands near the HIV-1 
transcription initiation site, thus relieving 
the transcriptional suppression caused by the 
high methylation in the promoter region of 
HIV-1. 5-aza-2'-deoxycytidine (5-aza-CdR) 
is also an inhibitor of DNMT
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Upregulation of P-TEFb activity can have negative 
effects on cells [56, 57]. For example, abnormally upregu-
lated P-TEFb may participate in other signaling pathways 
[58, 59], affecting the cell’s response to DNA damage [58, 
60]. This suggests that P-TEFb may play a role in maintain-
ing genome stability.

Bromodomain and extraterminal domain (BET) inhibi-
tors are used to treat HIV-1 infection because they block the 
binding of bromodomain-containing proteins to P-TEFb. 
JQ1 is a well-known BET inhibitor that has been shown to 
reactivate latent HIV-1 provirus [61, 62] (Fig. 3). The mech-
anism of action of JQ1 involves inhibiting the binding of 
Brd4 to P-TEFb, thereby initiating gene transcription of the 
HIV-1 provirus.

BET inhibitors have also shown potential in regulating 
immune responses, preventing inflammation, and control-
ling cytokine synthesis [63–65]. Several BET inhibitors 
have been observed to exhibit HIV-1 reactivation properties 
and are currently undergoing clinical trials. For instance, 
RVX-208 and PFI-1 are considered potential candidates for 
anti-HIV-latency therapy. In a study investigating the abil-
ity of these two BET inhibitors to activate latent HIV-1 in 
latently infected Jurkat T cells in vitro as well as in patient-
derived resting CD4+ T cells in vivo [66], neither RVX-208 
nor PFI-1 elicited widespread and robust T cell activation. 
At present, I-BET-151 remains the only BET inhibitor being 
tested for HIV-1 activation in vivo [67]. In general, due to 

inhibitor of human DNA methyltransferase 1 (DNMT1) 
that is generally well tolerated and easy to administer by 
intermittent intravenous infusion. However, in clinical tri-
als, MG98 was found to cause side effects, including fever, 
chills, fatigue, and weakness [49–51].

Small molecules targeting transcriptional 
regulatory complexes

The 7SK snRNP signaling pathway is an important target of 
current HIV treatment strategies.

The transcription elongation factor P-TEFb was first 
identified as a regulator of HIV transcription, but sub-
sequently, many other viral and host proteins have been 
found to interact with P-TEFb [52, 53], mainly by regulat-
ing its activity. For example, hexamethylene bisacetamide 
(HMBA) was originally developed as a treatment for leu-
kemia, but subsequent research has shown that it may also 
act as a P-TEFb agonist in the treatment of HIV-1 infec-
tion. This drug activates the Akt signaling pathway, pro-
moting the release of P-TEFb due to the phosphorylation 
of HEXIM. Subsequently, Tat recruits active P-TEFb to the 
vicinity of the trans-activation response (TAR) element, 
which phosphorylates the carboxy-terminal domain (CTD) 
of RNA polymerase II and promotes transcriptional elonga-
tion of HIV genes (Fig. 3) [54, 55].

Fig. 3 Small-molecule compounds affect the activation of HIV-1 by 
acting on transcriptional regulatory complexes. Dithiothreitol not only 
causes the degradation of PTEN but also increases the phosphorylation 
of Akt, causing HEXIM1 to dissociate from the 7SK SNP complex, 
releasing P-TEFb. HMBA activates Akt through the PI3K pathway, 
and the phosphorylation of HEXIM-1 can also release P-TEFb. Tat 

recruits active P-TEFb to the vicinity of the trans-activation response 
(TAR) element and promotes phosphorylation of the RNA polymerase 
II (RNA Pol-II) carboxy-terminal domain (CTD), the dissociation of 
NELF, and activation of DSIF, thereby stimulating transcription elon-
gation. Since JQ1 inhibits the competition between Brd4 and Tat for 
P-TEFb, it also stimulates transcription
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promoting its entry into the nucleus to bind to the HIV pro-
moter region. For example, bryostatin-170 isolated from 
marine invertebrates activates IκBα kinase [77], leading 
to the phosphorylation and degradation of IκBα. PKC can 
stimulate P-TEFb activity, thereby reactivating latent HIV-1 
with minimal cell toxicity [75]. Recent data from clinical 
and preclinical trials are highly encouraging and provide 
strong support for further investigation of PKC agonists as 
safe and effective LRAs in patients. In a non-human primate 
model of AIDS, the administration of certain PKC agonists 
resulted in the reactivation of latent simian immunodefi-
ciency virus (SIV) without any apparent toxicity observed in 
vivo [78]. Likewise, in a humanized mouse model of AIDS, 
a synthetic bryostatin analogue not only demonstrated the 
ability to reactivate latent HIV-1 but also exhibited a poten-
tial killing effect against the virus [79]. Although PKC ago-
nists have proven to be highly effective in reversing HIV-1 
latency, their clinical application has been hindered by their 
side effects and cytotoxicity [76, 80, 81], which would have 
to be controlled before they can be used in killing strategies 
against HIV-1 (see Table 1).

Tumor necrosis factor (TNF) appears to be a major driver 
of HIV-1 transcription early in the disease [82]. While TNF 
is recognized by its receptor protein (Fig. 4), the TNFR-
associated death domain (TRADD) interacts with the cyto-
plasmic death domain of TNFR1 through its own death 
domain to affect the secretion of growth factors and cell 
proliferation. Then, TNFR2 interacts with the TRAF pro-
tein, and receptor interaction proteins (RIPs) are recruited, 
activating several signaling cascades and leading to the acti-
vation of transcription factors to favor the binding of p65/
p50 NF-κB complexes to binding sites present in the HIV-1 

their potency and low toxicity, BET inhibitors hold sig-
nificant promise as potential candidates for future therapy 
against reactivated latent HIV-1.

The PTEN inhibitor disulfiram releases HEXIM1 from 
the 7sk snRNP and recruits P-TEFb from its transcription-
ally inactive form to the HIV-1 promoter through the Akt 
signaling pathway [68, 69] (Fig. 3), stimulating transcrip-
tional elongation and virus production. Disulfiram is a safe 
and well-tolerated drug that can maintain a low viral load 
[70, 71]. However, due to significant inter-individual dif-
ferences in the pharmacokinetics and pharmacodynamics of 
disulfiram, it is difficult to determine the appropriate dose. 
In addition, there are significant inter-individual differences 
in the plasma levels of disulfiram and its metabolites. Par-
ticipants in a clinical study were able to sustain low levels 
of virus within two months after disulfiram treatment [70], 
indicating that higher levels of drug exposure in vivo may 
have long-term effects on HIV-1 production.

Small-molecule inhibitors of the NF-κB 
pathway

In the classical NF-κB signaling pathway, when IκB is phos-
phorylated and degraded [72], most of the released p65/p50 
is recruited to the nucleus, promoting gene transcription 
[73, 74].

Protein kinase C (PKC) agonists are commonly used as 
drugs to reverse HIV-1 latency by stimulating the classical 
NF-κB signaling pathway [75, 76] (Fig. 4). Drugs such as 
prostaglandins and bryostatins induce transcription from 
the dormant HIV-1 provirus by releasing active NF-κB and 

Fig. 4 Small-molecule inhibitors affect the 
latency of HIV-1 by acting on the NF-κB 
signaling pathway. TNF-α is recognized 
by TNF-α receptor and gradually recruits 
TRADD, TNF receptor-associated factor 
TRAF, and receptor-interacting protein 
(RIP), leading to activation of the NF-κB 
signaling pathway. NF-κB binds to the 
NF-κB binding site in the LTR promoter, 
thereby stimulating transcription. In addi-
tion, PKC agonists can also promote the 
entry of NF-κB into the nucleus. CC-4a as 
a novel HDAC inhibitor that can release 
IKB-α from the IKB-α/NF-κB complex 
and activate proviruses through the NF-κB 
signaling pathway

 

1 3

Page 5 of 9   301 



Z. Zhou et al.

Activation of proviruses activates the immune system, 
which contributes to the "Shock and Kill" strategy. Sev-
eral LRAs have been documented to cause widespread 
activation of proviruses. For instance, chidamide, a benza-
mide-based HDAC inhibitor, has been demonstrated to suc-
cessfully reactivate latent HIV-1 in cellular models and in 
primary CD4+ T cells from HIV-1-infected individuals [92, 
93]. Such findings highlight the potential of LRAs in aiding 
HIV-1 eradication strategies by activating latent viral reser-
voirs and rendering them vulnerable to immune recognition 
and elimination.

Through oral administration of chidamide and using 
HIV-1 DNA and HIV-1 RNA levels in patients for refer-
ence, researchers have observed a notable enhancement in 
the HIV-1-specific cellular immune response accompanied 
by a modest 37.7% reduction in cell-associated HIV-1 DNA 
levels [94]. Initially, at the initial dose, the researchers did 
not observe a significant increase in cell-associated HIV-1 
RNA. However, as the dose was increased, changes became 
apparent. It is important to emphasize that individual LRAs 
have a tendency to over-activate the immune system, which 
can lead to various side effects. Combining multiple LRAs 
might help to minimize these side effects.

In summary, the combination of HAART and LRAs rep-
resents a promising approach to HIV-1 treatment. However, 
given the significant challenges posed by the variability of 
the virus, it is crucial to continue developing new and more-
effective therapies.
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