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Abstract
In recent years, enterovirus A71 (EV-A71) infection has become a major global public health problem, especially for 
infants and young children. The results of epidemiological research show that EV-A71 infection can cause acute hand, 
foot, and mouth disease (HFMD) and complications of the nervous system in severe cases, including aseptic pediatric 
meningoencephalitis,	acute	flaccid	paralysis,	and	even	death.	Many	studies	have	demonstrated	that	EV-A71	infection	may	
trigger a variety of intercellular and intracellular signaling pathways, which are interconnected to form a network that leads 
to	the	innate	immune	response,	immune	escape,	inflammation,	and	apoptosis	in	the	host.	This	article	aims	to	provide	an	
overview of the possible mechanisms underlying infection, signaling pathway activation, the immune response, immune 
evasion,	apoptosis,	and	the	inflammatory	response	caused	by	EV-A71	infection	and	an	overview	of	potential	therapeutic	
strategies against EV-A71 infection to better understand the pathogenesis of EV-A71 and to aid in the development of 
antiviral drugs and vaccines.
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PRPH  peripherin
BBB  blood-brain barrier
IFNAR	 	interferon-α	receptor
RAT  retrograde axonal transport
NMJs  neuromuscular junctions
UGGT1  UDP-glucose glycoprotein glucosyltransfer-

ase 1
CpG  cytidine phosphoguanosine
MDA5	 	melanoma	differentiation	associated	gene	5
IFN  interferon
ISG  IFN-stimulated gene
CaMKII  calmodulin-dependent protein kinase II
AIF  apoptosis-inducing factor
MAPK  mitogen-activated protein kinase
BMK1  big MAP kinase 1
EGFR  epidermal growth factor receptor
COX-2  cyclooxygenase-2
PGE2  prostaglandin E2
OS  oxidative stress
ROS  reactive oxygen species
NF-κB	 	nuclear	factor	kappa	B
OAS3  oligoadenylate synthetase 3
IRF9  IFN regulatory factor 9
ISREs  IFN-stimulated response elements
iIELs  intraepithelial lymphocytes
iNK  intestinal NK cells
PP1  protein phosphatase 1
IKKβ	 	inhibitor	of	kappa	B	kinase	β
FDA  Food and Drug Administration
IMPDH  hypoxanthine dehydrogenase
GTP  guanosine triphosphate
AIM  absent in melanoma
ASC  apoptosis-associated speck-like protein con-

taining CARD domain
SAT1  spermidine-spermine N1 acetyltransferase
NLRP3  NOD-like receptor thermal protein domain 

associated protein 3
NLR  NOD-like receptor
2CL  2C ligand
SELEX  systematic evolution of ligands by exponen-

tial enrichment
CPE	 	cytopathic	effect
pIY  miRNA-based attenuated live vaccine strain
SAVE  synthetic attenuated virus engineering
VLPs  virus-like particles
IRES  internal ribosome entry site
BRAF  V-Raf murine sarcoma viral oncogene homo-

log B1
CTL  cytotoxic T lymphocyte
UpA  uridine adenosine phosphate

Introduction

Hand, foot, and mouth disease (HFMD) usually occurs in 
children under age 5 between April and June and October 
or December, with the main symptoms being fever and her-
pes on the hands, feet, mouth, and sometimes other parts of 
the body, a general feeling of illness, and low-grade fever 
in the early stage [1]. More importantly, in severe cases, 
complications can develop that involve the nervous system, 
such	as	encephalitis,	meningoencephalitis,	and	acute	flaccid	
paralysis [2]. HFMD is highly correlated with enterovirus 
(EV) infection. Enteroviruses are single positive-stranded 
ribonucleic acid (RNA) viruses belonging to the family 
Picornaviridae, and the main pathogenic serotypes include 
coxsackievirus (CV) A groups 4–7, 9, 10, and 16 and CV-B 
groups 1–3, and 5, some serotypes of echovirus, and EV-A71 
[3]. EV-A71 and coxsackievirus A16 (CV-A16) have been 
regarded as the major causes of HFMD, but coxsackievirus 
A6 (CV-A6) has steadily become one of the main viruses 
causing HFMD outbreaks in Europe, America, and Asia, 
including China, Japan, Taiwan, and Thailand [4]. EV-A71 
is a highly contagious virus that is primarily transmitted via 
the fecal-oral route, respiratory droplets, and close contact, 
and most severe cases and deaths are caused by EV-A71. 
Although enterovirus D68 (EV-D68) can also cause HFMD, 
it is spread more similarly to rhinoviruses through the respi-
ratory tract [5].

EV-A71	was	first	isolated	from	a	child	with	encephalitis	
in California in 1969 [6], and EV-A71 infection has been 
linked to many outbreaks of HFMD worldwide, particu-
larly	 large	 outbreaks	 in	 the	Asia-Pacific	 region,	 resulting	
in	a	significant	number	of	deaths	since	1997	[7–16]. Since 
2000, EV-A71 has been involved in 13 outbreaks in several 
regions of the world [17], including Japan [18, 19], Aus-
tralia [20], Malaysia [8], and Taiwan [11]. In 2008, an out-
break of EV-A71 in China prompted the authorities to put 
the country on alert, with the number of registered cases 
exceeding 60,000, including 38 deaths [21].	Different	sub-
genotypes	of	EV-A71	have	been	found	in	different	regions.	
For example, subgenotype C4 is predominantly found in 
China; C2, C4, B4, and B5 are in Taiwan; and C2, C4, and 
B5 are in Japan [22–25]. A report from WHO indicated [26] 
a surge in reported cases in China and Singapore in 2018. 
In China, 377,629 cases and 4 deaths were reported in July 
2018, representing a 27% increase from the same period in 
2017, while Singapore reported a cumulative total of 32,956 
cases in 2018, with 17,169 requiring hospitalization, but no 
fatalities. As a result, some Asian countries have already 
established national surveillance systems for HFMD/EV-
A71 [27].

The pathogenesis of EV-A71 infection is intricate and 
begins with viral attachment to host cells, for which EV-A71 
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uses scavenger receptor B2 (SCARB2) and other attach-
ment receptors as entry receptors to initiate infection in 
mammalian cells. This triggers an innate immune response 
in the host cell, which is initiated when conserved pathogen-
associated molecular patterns (PAMPs) are recognized by 
pattern recognition receptors (PRRs) [28]. However, host 
immune stress may lead to EV-A71-induced immune avoid-
ance – a process in which viral proteins play a major role 
– resulting in viral transmission within the host.

EV-A71-induced apoptosis pathways, which include 
mitochondria-mediated intrinsic apoptosis pathways [29, 
30] and non-caspase-dependent pathways caused by Ca2+ 
influx	[31, 32], can lead to irreversible damage to organ tis-
sues	on	a	large	scale.	In	addition,	the	inflammatory	response	
triggered	by	EV-A71	infection	can	lead	to	inflammation	of	
the nervous system, which can be mediated not only by TLR 
and RLR receptors [33] but also by EGF receptors [34], 
which can initiate the MAPK signaling pathway to trigger 
the	release	of	pro-inflammatory	factors	[35–42]. Addition-
ally, the accumulation of reactive oxygen species (ROS) in 
cells and mitochondria caused by EV-A71 also aggravate 
the	inflammatory	responses	[43].

At	present,	 there	are	no	known	effective	 treatments	 for	
EV-A71 infection. Ribavirin and interferon are clinical anti-
viral drugs that are frequently used, with their mechanism of 
action mainly centering around inhibiting viral RNA repli-
cation and protein translation and aiding immune regulation 
[44–50]. More importantly, there are drugs that have not yet 
been	 used	 in	 the	 clinic,	 such	 as	 vemurafenib,	 flavonoids,	
and nucleic acid aptamer, whose main mechanism is to sup-
press	the	inflammatory	response	pathways	[51, 52] or target 
the viral protein VP1 [53]. Direct-acting EV-A71 antivirals 
have	a	site-specific	effect.	These	drugs	are	promising,	and	
it is expected that they will be used in clinical applications. 
However,	even	if	effective	drugs	become	available,	the	most	
effective	way	 to	 prevent	 and	 control	 EV-A71	 infection	 is	
vaccination. Currently, the use of an inactivated EV-A71 
vaccine is a preventive measure against outbreaks of HFMD 
[54–58], while a live attenuated vaccine [59, 60], EV-A71 
virus-like particles (VLPs) [61, 62], and a VP1-based syn-
thetic peptide vaccine [63] are still undergoing preclini-
cal evaluation. Each type of vaccine and medication has 
its advantages and disadvantages, depending on the target 
group,	 necessitating	 individualized	 treatment	 for	 different	
patients	and	further	research	to	minimize	toxic	side	effects	
and treatment limitations.

Below, we review the pathogenesis of EV-A71, focus-
ing on the mechanism by which viruses invade host cells, 
release RNA to trigger innate immune responses, achieve 
immune escape through viral proteins, and trigger cellu-
lar	 inflammation	and	apoptosis	pathways.	The	 therapeutic	
mechanism of drugs for the treatment of EV-A71 infection 

and the existing vaccines, including their limitations, are 
also discussed. It is hoped that this review will provide new 
ideas for therapeutic targets and new insights for explor-
ing more-targeted treatment methods that are suitable for 
children	and	have	fewer	side	effects	and	complications	than	
existing treatment.

Infection

Viral entry

Host receptors

Humans are the natural hosts of EV-A71 [64]. EV-A71 
exhibits	broad	tissue	tropism	due	to	its	ability	to	use	different	
cellular receptors for host cell entry. It has been reported that 
human scavenger receptor class B, member 2 (hSCARB2) is 
the only receptor known to initiate conformational changes 
that lead to viral RNA uncoating in the cytoplasm [65, 66], 
while other molecules facilitate viral attachment to the cell 
surface without initiating uncoating. For example, heparan 
sulfate (HS) proteoglycans [67], P-selectin glycoprotein 
ligand 1 (PSGL-1) [68], sialylated glycan [69, 70], annexin 
II (Anx2) [71], vimentin [72], nucleolin [73],	 fibronectin	
[74], and prohibitin [12] function as “attachment receptors” 
by retaining the virus on the cell surface.

EV-A71 enters cells by utilizing SCARB2 and attach-
ment receptors, both of which are expressed on the cell 
surface. The virus binds to these receptors directly, and the 
host cell then ingests the virus via endocytosis. Once inside 
the cell, the internalized virus may come into contact with 
SCARB2	in	endosome,	and	acidification	of	 the	endosome	
causes a rearrangement of the viral capsid structure, lead-
ing to the release of viral RNA from the particles, allowing 
it to be replicated and translated [75]. Blocking the bind-
ing of EV-A71 to attachment receptors is a key therapeu-
tic strategy for treating EV-A71 infection. In recent years, 
antibody-based drugs, such as the monoclonal antibodies 
A9 and D9, carbohydrates, heparin, and heparin analogs 
have shown potential for preventing virus attachment and 
internalization [76].

Factors that facilitate viral invasion

Prohibitins and peripherin

Prohibitins (PHBs) are expressed in nuclei, mitochondria, 
and the cell membrane, and they play a role in transcription, 
nuclear signaling, and maintaining the structural integrity of 
mitochondria [77]. PHBs have been reported to be involved 
in the mechanism of viral infection, and PHBs expressed 
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The replication of EV-A71 depends on the hijacking of 
the host translation machinery by subverting cellular cap-
dependent translation. The 2A protein encoded by EV-A71 
cleaves the host translation initiation factor eIF4G, depriv-
ing it of its binding structural domain, which results in the 
disruption of the cell’s original cap-dependent translation 
machinery. The 5’ untranslated region (5'UTR) of EV-A71 
then binds to a uridylated genome-linked viral protein 
(VPg) to form an RNA secondary structure, which serves as 
an internal ribosomal entry site (IRES) that mediates initia-
tion of translation. Cleaved eIF4G recognizes the IRES and 
recruits ribosomes to translate viral proteins by interacting 
with the initiation factor eIF3 [80]. The non-structural pro-
tein 3D is an RNA-dependent RNA polymerase (RdRp) that 
mediates replication of the viral genome within a vesicle 
membrane structure (viral replication complex) [81]. A tri-
lobal structure in the 5’UTR of EV-A71 is a cis-acting ele-
ment that is necessary for negative chain synthesis and, by 
binding PABP, VPg, Poly(A), and other components [82], 
forming a cyclic ribonucleoprotein complex that initiates 
RNA synthesis and binds to RdRp for viral replication. The 
viral RNA is copied into negative-stranded RNA, which is 
then used as a template to synthesize large amounts of posi-
tive-stranded RNA [83].

When a large number of viral genome molecules and 
capsid proteins assemble into mature viral particles, the 
host cell ruptures and mature viral particles are released. 
In addition, some studies have shown that EV-A71 parti-
cles can be transmitted within secreted exosomes. Huang 
et al. [84]	showed	that	EV-A71	infection	caused	differenti-
ated C2BBe1 cells and intestinal organoids to secrete exo-
somes that contain viral components and have the ability to 
establish active infection. As the virus is mainly transmit-
ted to peripheral tissues through the oral-gut axis and the 
exosomes contain contagious viral particles that can infect 
cells in the intestine, suppressing exosome transmission is 
essential for the containment of infection in the early stage.

Invasion of the central nervous system

It is hypothesized that primary viral replication occurs in 
lymphoid tissue of the oropharyngeal cavity (tonsils) and 
small intestine (Payer’s patch), with further replication tak-
ing place in regional lymph nodes (deep cervical and mes-
enteric nodes), leading to viremia [85]. Sun et al. found that 
EV-A71 can initially infect the lungs of severely immuno-
compromised	mice,	more	specifically,	type	II	pneumocytes,	
and then systematically replicate and infect other organs 
[86]. The initial colonization site of EV-A71 is still a mat-
ter of debate, but if the initial infection is not contained, the 
virus can spread through the lymphatic circulation to deep 

on	the	cell	surface	are	specifically	involved	in	the	entry	of	
EV-A71 into neuronal cells, while membrane-bound mito-
chondrial PHBs are associated with viral replication com-
plexes and promote viral replication. The role of PHBs in 
the entry of EV-A71 and replication is limited to neuronal-
derived cells, supporting the role of PHBs in the neuro-
pathogenesis of EV-A71.

Peripherin (PRPH) also plays a similar role. In motor-
neuron-like and neuroblastoma cell lines, surface-expressed 
PRPH	facilitates	viral	entry,	while	intracellular	PRPH	influ-
ences viral genome replication through interactions with 
structural and non-structural viral components [78].

Heat shock protein 90β

When EV-A71 particles attach to the hSCARB2 or PSGL-
1,	 heat	 shock	 protein	 90β	 (HSP90β)	 on	 the	 cell	 surface	
may act as a cofactor, interacting with the virus to protect 
its protein from proteasome degradation and contributing 
to viral assembly and replication. Tsou et al. [79] inhibited 
EV-A71 entry and subsequent viral replication by knocking 
down heat shock protein 90 (HSP90) in host cells or target-
ing HSP90, using the inhibitor geldanamycin (GA) and its 
analogue 17-allyamino-17-demethoxygeldanamycin (17-
AAG). Those experiments also showed that, after EV-A71 
particles attach to surface receptors (such as hSCARB2 or 
PSGL-1), heat shock protein 90 (HSP90) expressed on the 
cell surface can bind to EV-A71 and facilitate its entry.

Intracellular replication

SCARB2 is distributed on both lysosomal and cell mem-
branes. As mentioned above, EV-A71 is capable of binding 
directly to SCARB2 or other attachment receptors. During 
infection, EV-A71 can attach to the surface of the host cell 
and	bind	 to	specific	receptors	with	 the	help	of	attachment	
receptors. A change in the structure of the virus particle then 
results in the loss of VP4, eventually leading to structural 
changes in the capsid protein, causing pores to form in the 
host cell membrane and allowing EV-A71 to enter the cell 
via endocytosis. The virus must then undergo uncoating 
through a further conformational change to release the viral 
genome, and this is thought to happen in a SCARB2-depen-
dent and low-pH-dependent manner. However, attachment 
receptors do not trigger conformational changes of the virus. 
Internalized viruses that are not bound to SCARB2 may 
encounter SCARB2 in endosomes and release RNA into 
the	 cytoplasm	 through	 uncoating	 after	 acidification.	 The	
viral genomic RNA acts directly as a messenger RNA and is 
translated into a large polypeptide that is rapidly cleaved by 
viral proteases into 11 mature structural and non-structural 
proteins.
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are closely related. In the paracellular pathway, circulating 
viruses in the blood can cross the BBB in a way that crosses 
the tight junction between neighboring endothelial cells 
without the involvement of receptors [91]. Wang and col-
leagues [91] demonstrated that the VP1 protein reduces the 
number of tight junction proteins between endothelial cells, 
thereby enhancing EV-A71’s ability to invade the brain via 
the paracellular pathway.

Retrograde axonal transport

Retrograde axonal transport (RAT) is considered the main 
route of neurotransmission [89]. In human autopsy tissues 
and animal models, EV-A71 can be transmitted into the 
CNS	through	axon	trafficking.	For	example,	Sun	et	al.	[29] 
found that, after infecting human tonsil cells, EV-A17 can 
enter	the	CNS	through	facial	nerve	fibers	that	innervate	the	
tonsils, via axon transport. The motor pathway is consid-
ered to be the main route of reverse axonal transport for 
EV-A71. The virus actively replicates in skeletal muscles, 
infects motor neurons at neuromuscular junctions (NMJs) 
and subsequently employs RAT to invade the spinal cord 
and reach the brainstem [89, 92, 93].

“Trojan horse” invasion

Metaphorically, Trojan horse invasion is a strategy by which 
host cells are induced to allow viruses to enter tissues and 
organs that are otherwise protected by their immune system. 
Some components of the host cell can be used as a Trojan 
horse to combine with components of the virus, facilitating 

lymph nodes and then spread through the blood to other 
organs or tissues. The receptors PSGL-1 and SCARB2 have 
been shown to be expressed on neuronal and glial cells of 
the human cerebrum, suggesting that EV-A71 is capable 
of invading the cerebrum through interactions with these 
receptors [85]. It has also been shown that EV-A71 can be 
isolated from brain parenchyma and spinal cord specimens, 
suggesting that the virus can be transported along peripheral 
nerves to the central nervous system via axonal nerve con-
duction [87]. In some cases, infants infected with EV-A71 
may experience a range of neurological symptoms, such 
as aseptic meningitis, brain stem encephalitis, and other 
nervous system diseases. This suggests that EV-A71 may 
be capable of invading the central nervous system (CNS) 
through multiple pathways, such as crossing the blood-brain 
barrier [88],	 retrograde	 axon	 trafficking	 [89], and “Trojan 
horse” invasion [90] (Fig. 1).

Crossing the blood-brain barrier

The blood-brain barrier (BBB) protects the CNS from 
harmful pathogens in the blood, but EV-A71 may cross the 
BBB via the transcellular pathway or the paracellular path-
way [91]. Viruses in the blood can bind to vascular endo-
thelial cells in the brain and be released across the BBB 
into the CNS through what is called the “transcellular path-
way”. Sun et al. [86] suggested a model in which EV-A71 
entered the mouse brain by inducing BBB leakage, and they 
showed that the destruction of endothelial cells of cerebral 
vessels by EV-A71 also helps the virus cross the BBB into 
the CNS. The permeability and tight connection of the BBB 

Fig. 1 Spread of enterovirus A71 
in the body. The virus spreads 
from the oral-gut axis/lungs to 
peripheral tissues via blood/lym-
phatic circulation after infection. 
Viruses can cross the blood-brain 
barrier, hijack white blood cells, 
or reverse axon transport into the 
central nervous system
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are important for controlling the replication and spread of 
the virus [102]. IFNs are divided into three groups, based on 
their interaction with receptors: type I, type II, and type III. 
Type I and III interferons are thought to play an important 
role in defending against viral infections [103]. Type I IFNs 
(including	IFNα	and	IFNβ)	are	the	main	cytokines	that	drive	
the antiviral defense in the early stages of viral infection 
and have two primary functions: First, IFNs generated by 
the TLR pathway and RLR pathway activate more than 300 
IFN-stimulated genes (ISGs) via the JAK-STAT pathway, 
establishing an antiviral state in both virus-infected cells and 
neighboring cells (Fig. 2) [104, 105]. Type I IFNs induced 
by the PRR pathway bind to heterodimeric receptors consist-
ing	of	interferon-α	receptors	1	(IFNAR1)	and	2	(IFNAR2),	
causing transphosphorylation and activation of tyrosine 
kinases such as TYK2 and JAK1. Phosphorylated STAT1/2 
subsequently associates with IFN regulatory factor 9 (IRF9) 
to form a heterotrimeric complex, which is translocated to 
the nucleus and binds to IFN-stimulated response elements 
(ISREs) to activate the transcription of ISGs. Second, they 
promote dendritic cell maturation and enhance antigen pre-
sentation	on	T	cells,	which	leads	to	a	viral-antigen-specific	
adaptive immune response [106]. Together, the expression 
patterns of EV-A71 suggest that it can suppress the antiviral 
response early in infection that would inhibit its replication 
at the site of primary infection [107]. Type III IFNs play a 
more important role in local intestinal mucosal immunity. 
EV-A71 infection mainly induces the intestinal epithelium 
to	produce	IFN-λ,	and	IFN-λR	(a	heterodimer	composed	of	
IL-28Rα	 and	 IL-10Rβ	 chains)	 is	 highly	 expressed	 on	 the	
surface of intestinal mucosa, allowing infected cells of the 
intestinal epithelium to be recognized and killed by CD3+ 
intraepithelial lymphocytes (iIELs) and intestinal NK cells 
(iNK) [108].

EV-A71 interferes with antiviral immune responses 
mainly through immune evasion. The 3C and 2A prote-
ases of EV-A71 are the main antagonists of type I IFNs. 
EV-A71 3Cpro [109] and 2Apro [110] inhibit innate immu-
nity	by	binding	to	and	cleaving	different	antiviral	signaling	
molecules,	 thereby	 affecting	 numerous	 cellular	 functions	
and	 shutting	 off	 cellular	 gene	 expression	 at	 the	 transcrip-
tional and translational levels through interaction between 
key cell signaling molecules and viral proteins at various 
levels (Fig. 2). The viral proteins 2C [111] and 3D [112] 
play important roles in innate immune evasion. EV-A71 2C 
interacts with protein phosphatase 1 (PP1), recruits PP1 to 
IKKβ	 (inhibitor	 of	 kappa	B	 kinase	 β)	 to	 form	 a	 2C-PP1-
IKKβ	complex	that	inhibits	IKKβ	phosphorylation	and,	as	a	
consequence,	the	nuclear	factor-kappa	B	(NF-κB)	signaling	
pathway [113].	3D	inhibits	IFN-γ	(gamma	interferon)	sig-
naling, which may confer anti-EV-A71 activity [112]. The 
mechanism by which 3D contributes to immune escape is 

the delivery of viral components to organelles of the host 
cell. Chang et al. [90] performed functional anatomical 
analysis on viral pathogenesis in an oral NOD/SCID mouse 
model and found that EV-A71 may initially invade leu-
kocytes and macrophages in the intestinal tract of orally 
infected mice, using them as a “Trojan horse” to spread to 
multiple organs, including the muscles, heart, and lungs, via 
blood or lymphatic circulation. Huang et al. [94] showed 
that the host UDP-glucose glycoprotein glucosyltransfer-
ase 1 (UGGT1) facilitates EV-A71 invasion by binding to 
the 3D polymerase of EV-A71, after which the reintegrated 
UGGT1 is redeployed from the endoplasmic reticulum to 
the cytoplasm to facilitate viral replication.

EV-A71 infection triggers an immune 
response and immune evasion

Viral infection can trigger various host immune responses 
to limit virus transmission, with the host’s innate antiviral 
immunity	serving	as	the	first	line	of	defense	against	EV-A71	
infection, capable of eradicating the invading virus. This 
innate immunity is also involved in the activation of adap-
tive immune responses, leading to a full range of immune 
protection. Cells in the human body contain innate recep-
tors called pattern recognition receptors (PRRs) that can 
recognize pathogens as well as fragments of damaged or 
dead	cells.	When	EV-A71	infection	occurs,	different	PRRs	
detect EV-A71 viral RNA and trigger downstream signaling 
pathways that induce the production of type I Interferons 
and	inflammatory	cytokines.	PRRs	may	be	either	intracel-
lular or extracellular [33]. PRRs that have been shown to be 
capable of recognizing the EV-A71 virus include Toll-like 
receptors (TLRs) (TLR3, TLR7/8, and TLR9) and cytosolic 
RIG-I-like receptors (RLRs) (RIG-I and MDA5) [95]. TLRs 
are primarily responsible for detecting pathogen-associated 
molecular patterns (PAMPs) on the cell surface or within 
intracellular vesicles such as endosomes or lysosomes 
[96]. TLR3 recognizes viral dsRNA, while TLR7/8 recog-
nizes viral ssRNA, and TLR9 recognizes DNA containing 
unmethylated 2’-deoxyribose (cytidine phosphoguanosine) 
(CpG) [97]. Unlike TLRs, cytoplasmic RLRs (RIG-1 and 
melanoma	differentiation-associated	gene	5	[MDA5])	detect	
viral RNA in the cytoplasm [98]. RIG-I recognizes short 
dsRNA and ssRNA with a 5’-triphosphate, while MDA5 
recognizes long dsRNA [99]. Viruses have developed 
sophisticated strategies to subvert antiviral innate immunity 
by targeting the PRR pathway (including the TLR and RLR 
pathways) and the JAK-STAT pathway [100, 101] (Fig. 2). 
TLRs and RLRs have been shown to be involved in initiat-
ing a response against viral infection [33]. Interferons (IFNs) 
play an essential role in the antiviral immune response and 
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to induce apoptosis, with the mechanism involving caspase 
activation. Notably, interactions between the EV-A71 2B 
protein and the innate immune system are thought to be 
important for mitochondrial apoptosis, as infection triggers 
conformational changes in the Bax protein, leading to apop-
tosis [30]. Sun et al. [29] demonstrated that EV-A71 infec-
tion in human tonsillar epithelial cells leads to apoptosis, 
which involves the release of cytochrome C from the mito-
chondria into the cytoplasm, activation of caspase 9, and 
a reduction in the number of apoptotic cells due to selec-
tive inhibition of caspase 9. These observations support the 
hypothesis that the mitochondria-mediated intrinsic apop-
tosis	pathway	in	EV-A71-infected	cells	is	a	form	of	inflam-
matory programmed cell death. Ca2+ also plays a vital role 
in the initiation of apoptosis. The EV-A71 VP1 protein acti-
vates calmodulin-dependent protein kinase II (CaMKII) on 
the mitochondrial surface, which results in Ca2+	influx	and	
elicits apoptosis-inducing factor (AIF), ultimately inducing 
apoptosis. Autophagy, especially in neuronal cells, may also 

still unclear, and more research is needed to investigate this 
process. In addition, several microRNAs that are regulated 
by EV-A71 infection have been shown to be associated 
with immune evasion, for example, by evading host IL-6R 
(interleukin)- and STAT3 (signal transducer and activator of 
transcription3)-mediated antiviral activity [114, 115].

Apoptosis and inflammatory response 
pathways

There is increasing evidence that EV-A71 infection induces 
apoptosis in a range of cell lines, including HeLa, rhabdo-
myosarcoma (RD), Jurkat, SK-N-MC, glioblastoma SF268, 
Vero, and human microvascular endothelial cells [116–121]. 
The apoptotic pathway induced by EV-A71 appears to be 
cell-type-specific,	 resulting	 in	 caspase-dependent	 intrinsic	
apoptosis or calcium-induced caspase-independent apop-
tosis (Fig. 3). Proteases 2A, 3C, and 2B have been found 

Fig. 2 Innate immunity and immune evasion by enterovirus A71. PRRs 
that recognize EV-A71 include TLRs (TLR3, TLR7/8, and TLR9) and 
cytosolic RLRs (RIG-I and MDA5), which bind to viral components 
to trigger innate antiviral immune responses in the TLR pathway and 
the RLR pathway, respectively, mainly producing type I IFNs. IFN, 
in turn, binds to its homologous receptor, and signals through the 
JAK/STAT pathway, and induces hundreds of ISGs, thereby increas-
ing type I interferon levels and establishing a stable antiviral state 
between cells. At the same time, these innate immune responses are 
also	 involved	 in	 the	 production	 of	 pro-inflammatory	 factors.	 How-
ever, the virus achieves immune avoidance and downregulation of 
type I IFN by cleaving key proteins involved in the innate immune 
response through 2A protease, 2C protease, and 3C protease. MDA5, 

melanoma-differentiation-associated	protein5;	JAK1,	Janus	kinase	1;	
TYK2,	 tyrosine	 kinase	 2;	 IFNAR,	 interferon-α/β	 receptor;	MyD88,	
myeloid	differential	protein-88;	TLR,	Toll-like	receptor;	IRF9,	 inter-
feron regulatory factor 9; IRF3/7, interferon regulatory factor 3/7; 
STAT1/2, signal transducer and activator of transcription 1/2; TRIF, 
TIR-domain-containing	 adapter-inducing	 interferon	 β;	 TAK1,	 trans-
forming	growth	factor	β	activated	kinase	1;	TAB2/3,	TGF-β	activated	
kinase	 2/3;	 IFNAR,	 interferon-α/β	 receptor;	 TBK1,	 TANK-binding	
kinase 1; RIG-I, retinoic-acid-inducible gene 1; MAVS, mitochondrial 
antiviral-signaling	protein;	IKK,	inhibitor	of	kappa	B	kinase;	NF-κB,	
nuclear	factor	kappa	B;	IkBα,	NF	kappa	B	inhibitor	alpha;	PP1,	protein	
phosphatase-1; 2Apro, 2A protein; 2Cpro, 2C protein; 3Cpro, 3C protein
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in cell membranes [125], and EGFR-dependent signal-
ing	is	critical	in	inflammation	pathogenesis	due	to	its	abil-
ity	 to	 regulate	pro-inflammatory	genes	 [34]. For example, 
EV-A71 infection triggers the overexpression of cycloox-
ygenase 2 (COX-2) and prostaglandin E2 (PGE2) via the 
c-Src/EGFR/MEK/ERK and c-Src/PDGFR/PI3K/Akt/p42/
p44MAPK signaling pathways (Fig. 3). It is known that 
oxidative stress (OS) occurs when the production of reac-
tive oxygen species (ROS) overwhelms cellular antioxidant 
defenses, and EV-A71-infection-induced ROS production 
can	 activate	 multiple	 inflammatory	 signaling	 pathways.	
During	EV-A71	infection,	integrin	β1/EGFR	signaling	and	
mitochondrial damage lead to the accumulation of ROS, 
which then directly or indirectly activates JNK1/2, p38, 
ERK1/2,	and	nuclear	 factor	kappa	B	 (NF-κB)	and	 further	
regulate	 the	production	of	various	pro-inflammatory	cyto-
kines (Fig. 3).

Moreover, EV-A71 stimulates the formation of intracel-
lular	 inflammasome	 complexes,	 which	 promotes	 the	 pro-
duction	 of	 pro-inflammatory	 factors.	 Recent	 studies	 [33, 

lead to apoptosis associated with EV-A71 infection, and this 
is an important pathway of host defense against viruses [30].

The	 inflammatory	 response	 produces	 pro-apoptotic	
cytokines, and therefore, the mechanism of apoptosis can 
partly	be	attributed	to	the	inflammatory	response	to	EV-A71	
[35].	Clinical	results	suggest	that	deregulated	inflammatory	
responses, such as cytokine storms, may play a key role 
in the pathogenesis of EV-A71 [33]. Studies have shown 
[2, 122, 123] that the following cytokines and chemokines 
are	induced	by	EV-A71	infection:	IL-1β,	IL-2,	IL-4,	IL-8,	
IL-10, IL-12, IL-13, IL-17F, IL-18, IL-22, IL-23, IL-27, 
IL-33,	IL-35,	IL-37,	TNF-α,	IFN-γ,	IP-10,	MCP-1,	G-CSF,	
and HMGB1. Many cellular pathways have been reported 
to	be	involved	in	EV-A71-induced	inflammatory	responses	
[35–42], with the mitogen-activated protein kinase (MAPK) 
signaling pathway playing a major role. Researchers have 
identified	 six	 MAPK	 subfamilies	 in	 mammalian	 cells,	
including	 p38MAPK	 (p38α	 /β/γ/δ),	 ERK1/2,	 ERK3/4,	
ERK7/8, JNK1/2/3, and ERK5/big MAP kinase 1 (BMK1) 
[124]. Epidermal growth factor receptor (EGFR) is present 

Fig. 3	 EV-A71-induced	inflammatory	response	pathway	and	apoptotic	
pathway. The EV-A71-triggered apoptosis pathway mainly includes 
the caspase-dependent mitochondrial apoptosis pathway and apopto-
sis caused by Ca2+	 overload.	 Excessive	 inflammation	 can	 also	 lead	
to	 cell	 damage.	 The	 inflammatory	 response	 pathways	 mainly	 rely	
on EGFR to trigger MAPK signaling pathways, including the c-Src/
EGFR/MEK/ERK and c-Src/PDGFR/PI3K/Akt/p42/p44 pathways. 
In addition, EV-A71 infection leads to the accumulation of intracel-
lular and mitochondrial ROS, which can directly or indirectly activate 
JNK1/2,	p38,	ERK1/2,	and	NF-κB,	further	regulating	the	production	
of	 various	 pro-inflammatory	 cytokines.	EGF,	 epidermal	 growth	 fac-

tor; c-Src, c-src tyrosine kinase; PDGFR, platelet-derived growth fac-
tor receptor; PIK3, phosphoinositide kinase 3; Akt, protein kinase B; 
P42/44:P42/44 mitogen-activated protein kinase; MAPK, mitogen-
activated protein kinase; ERK, extracellular regulated kinase; MEX, 
MAPK/ERK kinase; JNK, c-Jun N-terminal kinase; COX-2, cyclo-
oxygenase 2; PGE2, prostaglandin E2; p38, p38 MAP kinase; NLRP3, 
NLR family pyrin domain-containing 3; AIM2, absent in melanoma 
2; Casp-1, caspase 1; Casp-9, caspase 9; AIF, apoptosis-inducing fac-
tor; Cyto c, cytochrome C; Bax, BCL2-associated X protein; CaMKII, 
Calcium-CaM-dependent protein kinase II
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and	the	more	mature	the	immune	system,	the	more	effective	
IFN treatment becomes [131].

However,	 the	 efficacy	 of	 IFN	 in	 treating	 severe	 infec-
tions is limited due to its short half-life, which necessitates 
repeated injections. This may increase respiratory and heart 
rates,	 resulting	 in	 many	 adverse	 reactions,	 with	 flu-like	
symptoms being the most common [47, 131]. Furthermore, 
the complex IFN-induced signaling pathway makes it chal-
lenging to fully elucidate the downstream response caused 
by key ISG genes. Therefore, further studies are needed to 
understand the mechanism of IFN-mediated inhibition of 
EV-A71 virus replication.

Vemurafenib Vemurafenib is a V-Raf murine sarcoma viral 
oncogene homolog B1 (BRAF) gene inhibitor that targets 
the MAPK pathway transduction against EV-A71 infec-
tion,	offering	the	advantage	of	being	fast	and	efficient.	Hu	
et al. [52] proposed that vemurafenib competitively acti-
vates the MAPK pathway with EV-A71, thus inhibiting the 
downstream pathway activated by EV-A71 through MAPK, 
which leads to a reduction in the expression of COX-2 and 
the	release	of	pro-inflammatory	factors	in	the	NF-κB	path-
way. This approach is expected to be used to prevent ner-
vous	 system	 inflammatory	damage	caused	by	EV-A71.	 In	
addition, vemurafenib can promote the expression of endog-
enous growth genes and inhibit the JNK/p38 MAPK path-
way. It can also promote mitogenesis and proliferation of 
host cells, which in turn disrupts the replication of the viral 
genome. Vemurafenib is also known to inhibit pathways 
that	 promote	 apoptosis	 and	 inflammation,	 thus	preventing	
severe disease associated with EV-A71 infection.

In conclusion, vemurafenib shows promising antiviral 
activity	 against	 EV-A71	 infection,	 with	 greater	 efficacy	
observed when it is administered early. However, the com-
plexity of the MAPK pathway and the exact mechanism by 
which vemurafenib induces viral genome damage and VP0 
cleavage	are	still	poorly	understood,	making	 it	difficult	 to	
predict the potential interactions and links between in vivo 
factors and proteins. Therefore, current research on this 
topic remains limited to in vitro testing.

Targeting EV-A71

Ribavirin Ribavirin, which has been approved by the US 
Food	and	Drug	Administration	(FDA),	is	a	nonspecific	anti-
viral drug that mainly works by inserting itself into RNA 
molecules of nascent viruses as a mutagenic agent. It binds 
to RNA polymerase, competitively inhibiting the synthesis 
of viral RNA [132]. In addition, ribavirin can inhibit de novo 
guanine synthesis by inhibiting the activity of hypoxanthine 

126] have shown that AIM2, a cytoplasmic DNA sensor 
used to detect DNA viruses and other pathogens, is highly 
expressed in the central nervous system tissues of human 
EV-A71 encephalomyelitis patients. AIM2 can form an 
inflammasome	by	recruiting	ASCs	and	procaspase	1	to	trig-
ger IL-1 maturation and pyroptosis (Fig. 3), but the under-
lying mechanisms by which EV-A71 infection activates 
AIM2 and the role of AIM in vivo during EV-A71 infec-
tion	 remain	unclear.	 In	addition,	 the	cyclic	 inflammasome	
complex formed by NLRP3, EV-A71 3D, and ASC can also 
have a comparable function [127] (Fig. 3).

Therapeutic strategies and mechanisms

Currently,	there	are	no	effective	antiviral	drugs	for	the	pre-
vention, control, and treatment of severe EV-A71 infection. 
The drugs available for clinical treatment include nonspe-
cific	antiviral	drugs	such	as	IFN	and	ribavirin.	Although	new	
drugs,	 such	 as	 vemurafenib,	 flavonoids,	 and	 nucleic	 acid	
aptamer,	offer	advantages,	their	application	is	restricted	due	
to a lack of in vivo experimental and clinical data (Table 1). 
In addition, potential drugs for the treatment of EV-A71 
infection currently also include virus inhibitors targeting 
viral capsid proteins, the RNA-dependent RNA polymerase 
(RdRp), the 2C protein, the IRES, the 3C protease, the 2A 
protease, and other key sites (Table 1). However, most of 
these drugs are still in the early stages of development, and 
it is necessary to accelerate the progress of in vivo studies to 
allow	their	clinical	efficacy	to	be	evaluated.	At	present,	the	
best way to prevent HFMD is through the administration of 
an	effective	and	safe	vaccine.

Drugs

Targeting host cells

Interferon With	 a	 broad-spectrum	 antiviral	 effect	 [128, 
129],	IFN	is	widely	used	in	clinical	practice,	and	IFN-α	has	
been	found	to	be	effective	against	EV-A71	infection	[130]. 
As mentioned above, the RNA of EV-A71 is recognized by 
and binds to PPRs, leading to the activation of IFN produc-
tion. IFN activates the JAK-STAT pathway, upregulates the 
expression of interferon-stimulated genes (ISGs), and then 
induces	the	antiviral	effects	of	downstream	pathways	[104, 
105]. Since EV-A71 infection can easily enter the CNS 
through SCARB2 in the early stages to cause pathological 
damage, early IFN treatment can prevent severe nervous 
system	inflammation	[45, 46]. Therefore, the older the child 
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dehydrogenase (IMPDH). Thus, it reduces the concentra-
tion of guanosine triphosphate (GTP), thereby inhibiting 
viral RNA replication and protein translation and reducing 
the	 infectivity	of	 the	virus	specifically	[48, 132]. In terms 
of	cellular	effects,	ribavirin	can	convert	Th-2-type	cells	 to	
Th-1-type	 cells,	 thereby	 affecting	 immune	 regulation	 and	
limiting the cell and tissue damage caused by antibodies 
and cytotoxic T lymphocytes (CTLs) [49, 50]. In 2019, Tate 
et al. [132] reported that ribavirin can also limit the rep-
lication, translation, packaging, and protease functions of 
DNA and RNA viruses by inducing spermidine-spermine 
N1-acetyltransferase 1 (SAT1) to break down polyamines, 
to which enteroviruses show a degree of sensitivity. There-
fore, further studies on the relationship between mutagens 
and polyamine pathways are expected to provide new tar-
gets for designing broad-spectrum antiviral drugs. This sug-
gests that combining ribavirin with drugs that induce the 
polyamine	pathway	can	enhance	 the	effectiveness	of	anti-
viral therapy.

However, ribavirin has the potential to inhibit the 
proliferation	 and	 differentiation	 of	 erythroid	 cells	 and	
megakaryocytes and can result in anorexia, diarrhea, immu-
nosuppression, and other adverse reactions [133]. It may 
also increase mitochondrial toxicity, which leads to oxida-
tive stress damage. Another potential concern is ribavirin’s 
antagonistic D1 receptor activity, which may cause adverse 
reactions	affecting	a	patient’s	mental	state	and	neurobehav-
ioral disorders [134–136]. Therefore, in the clinical use of 
ribavirin,	 special	 attention	 should	be	given	 to	 the	 specific	
condition of the patient, and further studies are needed to 
develop ways to prevent these adverse reactions.

Capsid inhibitors Enterovirus capsid inhibitors were 
already being developed as early as the last century, and 
their development has progressed very quickly. How-
ever, their narrow antiviral spectrum remains a drawback. 
Although many drugs have been developed as viral protein 
capsid inhibitors, none of them have been put into clinical 
use (Table 1). Viral capsid inhibitors stabilize the capsid 
and prevent the release of the viral genome by replacing 
pocket	factors	with	compounds	with	higher	binding	affinity	
for the conserved hydrophobic pocket (the canyon region 
on the capsid). One of these, lactoferrin, has the advantage 
of	 high	 efficiency	 and	 non-toxicity,	 while	 pyridine-based	
imidazolidinone	 compounds	 have	 become	 the	most	 effec-
tive candidate drugs, targeting the virus through continuous 
modification	and	optimization,	addressing	the	issue	of	resis-
tance to certain strains.

Nucleic acid aptamers are short DNA or RNA molecules 
that	 are	 capable	 of	 recognizing	 specific	 receptors	 on	 cell	
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receptor, Nod-like receptor (NLR) family PYRIN domains 
containing omega-3 (NLRP3), IFN, and other related sig-
naling pathways by hydrolyzing host proteins [141]. Rupin-
trivir (AG7088), a peptide mimic inhibitor of 3C proteases 
containing	a	 lactam	group	at	P1,	 a	fluorophenylalanine	 at	
P2,	 a	Val	 at	P3,	 a	5-methyl-3-isooxazole	at	P4,	 and	an	α,	
β-unsaturated	ester	at	P1,	is	able	to	interact	with	EV-A71	3C	
and inhibit the function of 3C proteases through an exten-
sive network of hydrogen bonds and hydrophobic interac-
tions [142]. Rupintrivir (AG7088) is of particular research 
interest because of its ability to target 3C proteases. How-
ever, despite its promise for the treatment of severe diseases, 
rupintrivir has not yet been put to use, due to a lack of clini-
cal safety trials and poor oral availability [143–145].

Because of the high sequence conservation of the 2C pro-
tein and its ability to reshape the structure of viral RNA and 
regulate the interaction between proteins through its helicase 
activity, inhibition of this activity can inhibit viral replica-
tion. Inhibitors of the 2C protein are considered promising 
candidates due to their broad-spectrum antiviral activity 
[145], and the drugs under investigation include design-
able peptides and quinolone-based dibucaine derivatives, 
which target the helicase activity. 2C ligand (2CL), which 
does	not	affect	the	type	I	response	or	cytokine	pathways	but	
instead competes with the C-terminal amphipathic helix of 
2C for access to “the deep pocket” (a structure formed by 
the	ATPase	and	zinc	finger	domains	of	another	2C	protein),	
effectively	 inhibits	 the	2C	helicase	activity	of	a	variety	of	
viruses, including EV-A71, and disrupts the oligomerization 
of the 2C protein [146]. 2CL was also found to have a pro-
tective	effect	against	fatal	damage	in	newborn	mice	infected	
with EV-A71. Derivatives of dibucaine, such as 6aa (ben-
zene	modification)	 and	6af	 (thiophene	modification)	were	
originally designed as antiviral agents against EV-D68. Due 
to their high selectivity index and strong antiviral activity, a 
variety	of	optimized	compounds	such	as	6i	(N-ring	modifi-
cation) [145]	and	6aw	(fluorine-substituted	benzene	modifi-
cation) [147] can also inhibit the helicase activity of the 2C 
protein. Therefore, the virus replication function mediated 
by	 the	2C	protein	 is	 inhibited,	and	 the	antiviral	effect	can	
be exerted in the early stage. In addition, the introduction of 
fluorine	improves	the	microsomal	stability	of	6aw,	lengthen-
ing its half-life, which is conducive to the continuous action 
of the drug. Notably, derivatives of dibucaine, which also 
have oral activity, have shown strong antiviral activity with 
low cytotoxicity in studies in mice, leading to fewer side 
effects	while	 protecting	 EV-A71-infected	mice	 from	 fatal	
damage. Nevertheless, the activity of 2C protein inhibitors 
against EV-A71 is generally low. This is possibly related to 
the time of action of the drug at the target, so the stability 
of the drug in the liver microsome needs to be considered 
when designing 2C protein inhibitors against EV-A71.

membranes in vitro after undergoing selection and ampli-
fication	via	systematic	evolution	of	ligands	by	exponential	
enrichment (SELEX), and this technique is expected to be 
utilized	 for	 targeted	drug	delivery	due	 to	 its	 high	 affinity,	
targeting	 specificity,	 and	cellular	 internalization	capability	
[137, 138]. Aptamers not only acquire biological informa-
tion about the target but also bind to the target molecule in 
a similar way to antibodies, anchoring on its surface with-
out causing changes within the molecule [139]. They can 
therefore	improve	immunotherapy	by	enhancing	specificity	
for the target molecule. VP1, an important structural pro-
tein	of	EV-A71,	has	been	identified	as	a	target	for	aptamers	
[140]. In 2021, Zou et al. [53] used SELEX to screen three 
DNA aptamers that could attach to the VP1 of EV-A71, and 
in	a	later	in	vitro	antiviral	test,	they	observed	a	significant	
reduction	 in	 the	degree	of	 cytopathic	 effect	 (CPE)	 in	EV-
A71-infected RD cells treated with aptamers, together with 
a notable decrease in the expression level of VP1, indicat-
ing the potential of aptamers to inhibit EV-A71 infection 
by targeting VP1. Although the exact mechanism by which 
they function remains to be investigated, aptamers appear 
to be promising candidates for combination therapy against 
EV-A71	 infection	 due	 to	 their	 specificity	 for	 EV-A71-re-
lated targets [53] and their ability to bind to a variety of 
molecules, including nanoparticles, siRNA/miRNA, and 
chemical drugs [137, 138]. However, the current applica-
tion of SELEX is limited to in vitro settings, and the nucleic 
acid sequence selection procedure is complicated. Long 
oligonucleotides tend to self-hybridize, while short oligo-
nucleotides	 have	 lower	 specificity,	 and	 the	 mutability	 of	
EV-A71	makes	it	difficult	to	select	optimized	nucleic	acid	
sequences [53]. Overcoming these problems is crucial for 
the future development of aptamer-based drugs to treatment 
of EV-A71 infections.

Protease and protein inhibitors Increasing knowledge 
about the structural characteristics of EV-A71 proteins has 
led	to	the	development	of	diverse	inhibitors	specific	for	dif-
ferent viral targets, including the IRES and the 3D, 2C, 3C, 
and 2A proteins (Table 1). Although their overall in vitro 
inhibitory is not as strong as that of capsid inhibitors, few 
of these compounds have been eliminated as a result of 
resistance selection tests. Currently, there are relatively few 
drugs targeting structural proteins such as VP4 and non-
structural proteins such as 3A, and further development 
would be worthwhile.

3C proteases play an important role in promoting viral 
replication, inhibiting host innate immunity and trigger-
ing programmed cell death. For example, 3C proteases 
not only participate in the processing of most protein pre-
cursors	 but	 also	 affect	Toll-like	 receptor	 (TLR),	 RIG-like	
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clinical trials inactivated vaccines targeting HFMD infec-
tions	caused	by	different	subgenotypes	of	EV-A71.	Encour-
agingly, three inactivated EV-A71 vaccines from Beijing 
Sinovac (China) [54], Beijing Vigoo (China) [55], and the 
Chinese Academy of Medical Science (CAMS, China), 
respectively [56], have been put on the market in China. 
Despite	differences	in	vaccine	strains,	cell	systems,	devel-
opment	 techniques,	 and	virulence	 effects,	 the	vaccines	 all	
achieve similar immunogenicity to the virus and can induce 
a	 specific	 immune	 response.	 Previous	 studies	 [148–150] 
have	 shown	 that	 inactivated	 vaccines	 can	 induce	 specific	
immune responses without causing strong immune-related 
inflammatory	 reactions	 through	 the	 regulation	 of	 various	
genes. Liang et al. [148] found that inoculation with the 
CAMS vaccine resulted in a strong Th1/Th2 response. The 
Th1	response	delayed	the	inflammatory	response,	while	the	
Th2	response	induced	the	production	of	long-lasting	specific	
neutralizing antibodies. This is often considered an impor-
tant indicator of the post-immunization immune response.

In clinical studies, the inactivated EV-A71 vaccine has 
been	 found	 to	 be	 effective	 and	 safe	 [54–56, 151–153]. It 
is	 capable	 of	 producing	 specific	 long-lasting	 neutralizing	
antibodies [54, 56, 151–153],	which	 can	 specifically	 pre-
vent HFMD caused by EV-A71 infection and related serious 
complications [55, 151, 153], and it has the potential for 
cross-neutralization [152], which can help prevent hospital-
ization and severe cases. However, it also has some short-
comings that should not be ignored. First, the inactivated 
vaccine can cause local injection reactions such as redness, 
swelling, and pain at the injection site (sequelae have not 
yet been observed) because it requires the aluminum adju-
vant to assist its function in vivo [54, 56, 151–153]. Second, 
young	patients	are	more	likely	to	suffer	from	adverse	reac-
tions, such as fever and local injection reactions [56, 152, 
153], and it is worth noting that EV-A71 infections are most 
common in children under the age of 5. In addition, it is 
still not clear whether children who are given inactivated 
EV-A71 vaccine will produce cross-neutralization reactions 
when they are routinely vaccinated.

Live attenuated vaccine

Compared to inactivated vaccines, live attenuated vaccines 
can induce stronger humoral and cellular immunity, which 
means a longer-lasting immune state. In 2019, Ye et al. [59] 
developed a miRNA-based attenuated live vaccine strain 
(pIY) that showed reduced viral replication in both RD and 
SHYSY-5Y cells by inserting two miRNA target genes, let-
7a	and	miR-124a,	into	specific	locations	in	the	genome	of	
an EV-A71 mutant. The virus expressing the corresponding 
miRNA	is	not	able	to	replicate	in	cells	carrying	the	specific	
miRNA because the corresponding homologous miRNAs 

Targeting both host cells and EV-A71

Flavonoids Flavonoids, which are widely found in plants, 
share	similar	structures	and	 functions	such	as	anti-inflam-
matory,	anti-cancer,	antioxidant,	and	anti-allergic	effects.	Of	
these,	apigenin	has	been	shown	to	be	the	most	effective	in	
preventing cytotoxicity induced by EV-A71. In a study by 
Lv et al. [39], EV-A71 was found to be sensitive to apigenin, 
and a dose-dependent inhibition of peptide translation from 
the IRES of the 5’-UTR and blocking of EV-A71 genomic 
RNA synthesis were observed. In addition, apigenin was 
found to inhibit multiple responses induced by EV-A71 
[39]. For example, it was found to inhibit the phosphoryla-
tion of components of the JNK/p38 MAPK pathway, lead-
ing to a reduction in viral replication. It was also found to 
block caspase-3 cleavage and to downregulate ROS to pro-
tect cells from ROS-induced damage. Apigenin also exerts 
anti-inflammatory	 effects	 by	 inhibiting	 the	 expression	 of	
most cytokines, except GM-CSF and IL-2. Although the 
specific	mechanism	 of	 its	 inhibitory	 effect	 is	 not	 known,	
the number and position of hydroxyl groups in the B-ring 
of	flavonoids	may	play	an	important	role	 in	 the	 inhibition	
of IRES activity. Further research is necessary to examine 
the	chemical	structure	and	action	mechanism	of	these	flavo-
noids and their relationships [39].

in vivo experiments reported by Dai et al. [51] demon-
strated	 for	 the	first	 time	 that	 all	 flavonoids	were	 effective	
in protecting neonatal mice from lethal EV-A71 challenges. 
This discovery highlights their potential as noncytotoxic 
antiviral drugs against EV-A71. However, the relative scar-
city of in vivo data prevents a comprehensive understanding 
of the molecular mechanisms involved and the long-term 
toxicity	of	purified	flavonoids,	thus	hindering	their	clinical	
approval for treating HFMD caused by EV-A71. It therefore 
is imperative that further safety studies be conducted.

Vaccine

As	mentioned	 above,	 there	 is	 currently	 no	 specific	 treat-
ment for HFMD, and the best way to prevent it is the use of 
effective	and	safe	vaccines.	Different	types	of	vaccines	have	
different	mechanisms	of	action	and	specific	advantages	and	
disadvantages. It is important to note that a major problem 
with current EV-A71 vaccines is that they are generally 
subtype-specific	and	do	not	induce	widespread	neutralizing	
activity against all EV-A71 subtypes (Table 2).

Inactivated vaccine

Inviragen (Singapore) [57] and the National Health Research 
Institutes (NHRI, Taiwan) [58] have developed and put into 
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as	IFN-γ,	IL-2,	IL-4,	and	IL-6,	and	can	therefore	induce	a	
stronger	specific	immune	response	than	that	induced	by	an	
equal amount of inactivated vaccine. However, the persis-
tence of neutralizing antibodies induced by EV-A71-VLPs 
and	 the	 specificity	of	 the	Th1/Th2	 immune	 response	after	
vaccination are still unknown and need to be studied further 
[62].

Synthetic peptide vaccine (VP1-based)

Subunit vaccines do not contain genetic material, which 
makes them safe and non-infectious. This type of vaccine 
includes recombinant vaccines, such as peptides and pro-
teins. VP1 is a major antigen that can induce neutralizing 
antibodies, and it is therefore considered an ideal antigen for 
subunit vaccines. In 2021, Lei et al. [63] produced a series 
of synthetic peptides corresponding to the VP1 protein, and 
immunization of EV-A71-infected mice with three of them 
resulted in a reduction in lesions in the muscle, intestine, 
and brain. According to previous studies, only a portion of 
the epitopes carried by macromolecular antigens can induce 
protective antibodies [157]. Therefore, designing synthetic 
peptide vaccines containing these epitopes can help to 
induce a highly targeted immune response while reducing 
vaccine	side	effects	and	adverse	reactions.

Although peptide-based vaccines are relatively safe and 
highly	specific,	 the	 immune	response	 they	 induce	 is	weak	
because	 of	 their	 low	 immunogenicity.	 If	 these	 difficulties	
can be overcome, the clinical potential of peptide vaccines 
will increase greatly, because of their advantages regarding 
side	effects	and	safety.

Conclusion

EV-A71 virus infection has become a global public health 
concern because of regional and seasonal outbreaks that can 
place a major burden on public health. Although symptoms 
are generally mild, and the infection is self-limiting, if the 
initial infection is not controlled in time, extensive inva-
sion of tissues and organs can occur, potentially causing 
damage	due	to	inflammation.	More	importantly,	EV-A71	is	
capable of causing serious neurological damage, especially 
in infants and young children. This damage can manifest as 
aseptic meningitis, polio syndrome, and even death if nerve 
centers are infected.

The pathogenic mechanism of EV-A71 infection is com-
plex, and a number of receptors have been reported to be 
involved in cell entry, including hSCARB2 [65, 66], HS 
proteoglycans [67], PSGL-1 [68], sialylated glycan [69, 70], 
Anx2 [71], vimentin [72], nucleolin [73],	fibronectin	[74], 
and prohibitin [12]. The main role of most of these receptors 

are present in these two cell lines. Moreover, pIY selec-
tively inhibits its entry into skeletal muscle and the spinal 
cord, thus preventing serious neurological complications 
and	reducing	the	viral	load	while	retaining	sufficient	immu-
nogenicity	to	induce	a	strong	IFN-γ	response	and	effective	
cellular immunity. This is conducive to the establishment of 
long-term memory and lifelong protection. Hence, pIY is 
considered a candidate vaccine for treating severe EV-A71 
infection.

However, live attenuated vaccines also have limitations. 
For example, miRNA-based vaccines may produce escape 
mutant strains that have lower immunogenicity and have the 
potential to revert to virulence. Besides, the general safety 
of miRNA vaccines in humans remains to be evaluated.

In 2019, in order to de-optimize VP1 fragments, Tsai et 
al. [60] used synthetic attenuated virus engineering (SAVE) 
to insert codons of varying lengths into the capsid protein 
gene of a C4 genotype virus. This resulted in codon usage 
bias and an increase in CpG and UpA (uridine adenosine 
phosphate)	 dinucleotides,	 which	 affected	 the	 translation	
efficiency	 of	 viral	 proteins	 compared	 to	 the	 C2	 genotype	
virus. Codon de-optimization preserves immunogenicity 
and	 reduces	 the	 efficiency	 of	 replication	 and	 translation	
of the dominant virus. This can reduce the virulence of 
EV-A71 and increase the neutralizing antibody titer. Fur-
thermore,	 the	high-fidelity	determinant	also	ensures	a	 low	
mutation rate and replication rate. This safe, stable, and up-
to-date	strategy	has	also	been	reflected	in	the	development	
of	vaccines	against	poliovirus	and	influenza	A	virus.

EV-A71-VLPs

An EV-A71 vaccine based on virus-like particles (EV-
A71-VLPs) has become a new vaccine candidate with high 
levels	 of	 safety	 and	 effectiveness.	 Using	 a	 yeast	 system	
[154], Yang et al. [61] developed an EV-A71-VLPs vac-
cine against P1 produced in Pichia pastoris, which induced 
higher titers of neutralizing antibodies at high doses than 
the same amount of inactivated vaccine. In that study, the 
reason for the stronger immunogenicity was unclear, but it 
was probably related to the amino acid sequence of P1. In 
addition,	 the	 insertion	 of	 different	 promoters	 enabled	 the	
recombinant yeast to express more proteases and structural 
proteins,	and	the	EV-A71-VLPs	were	highly	purified,	which	
was conducive to eliciting high titers of neutralizing antibod-
ies in mice [62].	Although	obtaining	purified	EV-A71-VLPs	
is time-consuming, the procedure is relatively easy to scale 
up for mass production. EV-A71-VLPs mimic the natural 
conformation	of	the	virus	and	retains	enough	specific	epi-
topes to achieve high immunogenicity [154–156]. After 
injection, EV-A71-VLPs can trigger high-level production 
of	specific	IgG	antibodies	and	a	variety	of	cytokines,	such	
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against the virus is established. However, the viral 3Cpro, 
2Apro and 2Cpro have evolved the ability to exert immune 
avoidance by blocking key proteins in the innate immune 
response signaling pathway. There is also evidence suggest-
ing that 3Dpro and several microRNAs also play impor-
tant roles in innate immune evasion, but the mechanism by 
which this occurs is still unclear.

It is important to study the mechanisms involved in apop-
tosis	and	the	inflammatory	responses	caused	by	EV-A71,	as	
these damage tissues and organs (Fig. 3). EV-A71-induced 
apoptosis pathways include mitochondria-mediated intrin-
sic apoptosis pathways and non-caspase-dependent path-
ways caused by Ca2+	influx.	Apoptosis	is	cell-specific.	For	
example, the apoptotic mitochondrial pathway mediated by 
the activation and cleavage of caspase-9 has been identi-
fied	as	 the	main	pathway	 through	which	EV-A71	 induces	
the death of apoptotic cells and tonsillar epithelial cells [29, 
117].	It	is	certain	that	the	inflammatory	response	is	antivi-
ral. For example, a recent study [159] showed that IL-18 
is protective against EV-A71 infection in mice and that the 
pathogenesis induced by EV-A71 infection can be reversed 
in vivo using recombinant IL-18. In contrast, an exces-
sive	inflammatory	response	can	cause	irreversible	damage.	
The	 inflammatory	 response	 signaling	 pathway	 is	 mainly	
believed to be mediated primarily by the MAPK signaling 
pathway, and the accumulation of ROS in cells or mitochon-
dria	aggravates	the	inflammatory	response	(Fig.	3). In addi-
tion, the TLR and RLR signaling pathways produce other 
pro-inflammatory	factors	in	addition	to	IFNs	(Fig.	2).

Specific	 antiviral	 drugs	 for	EV-A71	 infection	 have	 not	
yet	been	developed.	Nonspecific	antiviral	drugs	such	as	IFN	
and ribavirin can be used for clinical treatment. The use of 
IFN against EV-A71 infection can activate ISG expression 
in the JAK-STAT pathway, inducing the innate immune 
response in the downstream pathway, blocking viral repli-
cation, inhibiting viral cytopathy, and preventing nervous 
system	inflammation	[45, 46, 104, 105, 160]. Ribavirin not 
only acts as a mutagen that increases the error rate of the 
viral polymerase and interferes with viral replication but 
also plays a role in immune regulation [48–50, 132]. The 
efficacy	of	IFN	treatment	is	higher	in	older	children	than	in	
younger children because their immune systems are more 
mature [131], and ribavirin is therefore more suitable for 
the treatment of young children with mild HFMD [161, 
162].	Vemurafenib	and	flavonoids	can	also	inhibit	the	JNK/
p38	MAPK	pathway	and	exert	an	anti-inflammatory	effect,	
despite	using	different	pathways	to	inhibit	viral	replication	
[39, 52, 163].	Vemurafenib	acts	quickly	and	effectively,	but	
flavonoids	are	non-cytotoxic	to	neonates	and	are	more	ben-
eficial	 for	 treating	 young	 children	 infected	 with	 EV-A71	
[51, 52].	In	addition,	aptamer	can	enhance	the	specificity	of	
target molecules associated with EV-A71 infection, making 

is to strengthen the adhesion of EV-A71 to the cell surface, 
but	hSCARB2	is	more	specific	and	can	also	promote	con-
formational changes in the virion that allow the viral RNA 
to be released in the cytoplasm. Blocking the binding of 
EV-A71 to attachment receptors is an important therapeutic 
strategy. In recent years, monoclonal antibodies have been 
developed for the treatment of EV-A71 infection, but this 
research is still at an early stage, and these antibodies are 
not yet in clinical use. Many factors contribute to the abil-
ity of EV-A71 to enter cells. PHBs and PRPH expressed on 
the cell surface can promote entry of the virus into nerve 
cells and aid in its replication [78, 158]. These factors are 
potential drug targets to limit neurological complications. 
Another	factor,	HSP90β,	which	is	also	expressed	on	the	sur-
face of the cell, facilitates viral entry by interacting with 
EV-A71 particles and protecting viral proteins from protea-
somal degradation. After binding to the viral receptor, the 
virus enters the host cell through endocytosis and releases 
its positive-stranded RNA genome into the cytoplasm. The 
viral genomic RNA serves as an mRNA template for the 
translation of precursor polyproteins, which undergo further 
processing by virus-encoded proteases to produce func-
tional viral proteins in infected cells.

If EV-A71 is not controlled or cleared soon after estab-
lishing an infection in the respiratory or gastrointestinal 
tract, it can spread to deep lymphoid tissue and replicate 
rapidly. This can eventually result in viremia in various 
tissues and organs through blood circulation. Importantly, 
intestinal organoids can secrete exosomes containing infec-
tious virus particles, and these are also potential targets 
for inhibiting the spread of the virus within the body. It is 
worth noting that the location of the initial colonization site 
of EV-A71 is controversial, with some researchers suggest-
ing that it is in lymphoid tissue of the oropharyngeal cav-
ity (tonsils) and small intestine (Payer’s patch) [81, 85] and 
others suggesting that EV-A71 initially infects type II alveo-
lar cells in the lungs [86]. The mechanism by which EV-A71 
enters the CNS is also of great importance because this can 
lead to serious complications. It is currently thought that the 
virus infects the CNS by destroying endothelial cells and 
inducing BBB leakage, by retrograde axon transport, and by 
hijacking leukocytes (Fig. 1).

EV-A71 also subverts antiviral innate immunity by tar-
geting the PRR and the JAK-STAT pathways (Fig. 2). In the 
PRR pathway, type I IFN-mediated antiviral immunity is 
triggered	by	different	PRRs	that	detect	EV-A71	viral	RNA	
in various cell types. PRRs that recognize EV-A71 include 
TLRs (TLR3, TLR7/8 and TLR9) and cytosolic RLRs 
(RIG-I and MDA5) [95]. Type I IFNs, which are mainly 
produced by the PRR pathway, in turn trigger the intracellu-
lar JAK-STAT pathway, releasing more IFNs to act extracel-
lularly on neighboring cells. As a result, a state of defense 
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