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Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small 
genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabo-
lism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. 
In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the 
virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, 
and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of 
geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with 
host factors to provide a mechanistic understanding of the infection process.

Introduction

Geminiviruses are a group of non-enveloped plant viruses 
with small circular single-stranded DNA (ssDNA) with a 
size of 2.5-5.2 kb. The capsid is composed of coat protein 
subunits that form twinned incomplete icosahedral parti-
cles, giving rise to the name geminivirus [1]. Geminiviruses 
infect economically important crops worldwide, causing 
severe loss to agriculture [2, 3]. They are transmitted by 
insect vectors such as whiteflies, treehoppers, leafhoppers, 
and aphids [4]. The family Geminiviridae is divided into 14 
genera, namely Becurtovirus, Begomovirus, Capulavirus, 
Citlodavirus, Curtovirus, Eragrovirus, Grablovirus, Mal-
dovirus, Mastrevirus, Mulcrilevirus, Opunvirus Topilevirus, 
Topocuvirus, and Turncurtovirus, based on the insect vec-
tors, genome organization, and the host range of their mem-
bers [4–6]. At present, the family Geminiviridae includes 
more than 500 species [4]. The members of all of the gen-
era of the family Geminiviridae except Begomovirus have 
a single genomic component, while the genus Begomovirus 

includes viruses with either a single genomic component, 
referred to as monopartite viruses, or two genomic compo-
nents (DNA-A and DNA-B), referred to as bipartite viruses 
(Fig. 1) [2]. The genome of a monopartite begomovirus is 
equivalent to DNA-A of a bipartite begomovirus. Begomo-
viruses containing a monopartite genome are widespread in 
Old World countries in Africa, Asia, Australia, and Europe, 
whereas bipartite begomoviruses are mostly found in the 
New World, with some exceptions [7]. The genomic compo-
nents DNA-A and DNA-B contain ORFs in a bidirectional 
orientation. The origin of replication (ori), a stem-loop 
region containing a nonanucleotide sequence (5’-TAA​TAT​
TAC-3’), and the bidirectional promoter are located in the 
intergenic regions (IRs) of DNA-A and DNA-B [8]. The 
DNA-A component of the genome contains seven ORFs, 
two in the viral sense and five in the complementary sense. 
Genes oriented in the complementary sense (anticlockwise) 
such as AC1, AC2, AC3, AC4, and AC5 are responsible 
for replication and expression of the other viral genes. The 
AV1 (coding for the coat protein CP) and AV2 genes are 
in the viral sense (clockwise). The DNA-B component has 
two genes: BC1 (in the complementary sense, coding for a 
viral movement protein) and BV1 (in the viral sense, coding 
for a nuclear shuttle protein). Here, we review our current 
understanding of the role geminivirus proteins play in patho-
genesis and how their interaction with host factors subverts 
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the host defense, the overview of functions of the ORFs rep-
resented as in Fig. 2. 

DNA‑A

AV1/V1

The AV1/V1 ORF encodes the only structural protein, the 
coat protein (CP), which is involved in the assembly and 
packaging of the geminivirus genome [9–11]. Although 
the CP is not required for geminivirus replication, dele-
tion of the CP gene results in a reduction in viral ssDNA 
accumulation [12, 13]. In some instances, it has also been 
observed to elevate the expression of dsDNA [13]. The 

decrease in ssDNA could be related to the role of CP in 
packaging of ssDNA, with the lack of a CP causing the 
ssDNA to be exposed to nucleases, leading to its degrada-
tion. The increase in dsDNA hints at its role in the conver-
sion of dsDNA to ssDNA [12, 13].

Since the monopartite viruses lack DNA-B, which 
encodes proteins that facilitate nucleocytoplasmic shut-
tling and inter- and intracellular movement for systemic 
spread, the other ORFs complement the movement func-
tion of DNA-B in monopartite viruses. The CP serves 
as a nucleocytoplasmic shuttling protein in the case 
of mastreviruses [14, 15] and monopartite begomovi-
ruses [16, 17]. Interestingly, the property of nucleocy-
toplasmic shuttling is conserved in bipartite begomo-
virus as well [18, 19]. The CP is also involved in the 

Fig. 1     Genome organization of ssDNA plant viruses belonging to 
the family  Geminiviridae. The yellow circle at the top represents 
the origin of replication. All the ORFs are labeled and color-coded. 
AC1/C1, replication-associated protein (Rep); AC2/C2, transcrip-
tional activator protein (TrAP); AC3/C3, replication enhancer protein 
(REn); AV1/V1, coat protein; AV2/V2, pre-coat protein; BC1, move-
ment protein (MP); BV1, nuclear shuttle protein (NSP). CR, SCR, 

and SIR refer to the common region, satellite conserved region, and 
short intergenic region, respectively.  Recently, many small ORFs in 
the monopartite virus TYLCV and βV1 in a betasatellite were identi-
fied. ORFs of members of five recently created genera were identified 
using the ORF Finder programme (https://​www.​ncbi.​nlm.​nih.​gov/​orffi​
nder/) and are appropriately positioned.

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
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nucleocytoplasmic shuttling of the viral DNA with the 
help of the nuclear localization signals (NLSs) present 
in its N-terminal, C-terminal, and central regions as well 
[10, 15, 20]. Analysis of the CP from tomato leaf curl 
Java virus (ToLCJV) revealed that arginine-rich stretches 
of amino acids at positions 16 to 20 (KVRRR) and 52 to 
55 (RKPR) in the N-terminal region are essential for NLS 
activity and that a hydrophobic stretch in the C-terminal 
region from residues 245 to 250 (LKIRIY) is important 
for nuclear export signal (NES) activity [21]. Further-
more, CP interacts with the ssDNA and dsDNA forms 
of the geminivirus genome via its N-terminal domain 
[22]. The nucleocytoplasmic shuttling of the viral DNA 

is also facilitated by the interaction of CP with host pro-
teins involved in nucleocytoplasmic trafficking, such as 
importin α and karyopherin α1 [16, 23]. In addition to the 
nuclear shuttling of the viral DNA, the CP of geminivi-
ruses also helps in the systemic movement of viral DNA 
[12, 13, 15]. It is noteworthy that monopartite viruses 
require CP for systemic movement, while bipartite bego-
moviruses can exhibit systemic movement in the absence 
of the CP because this function is carried out by proteins 
encoded by DNA-B. However, it is dependent on the host 
in some cases. For example, in the case of tomato golden 
mosaic virus (TGMV), the virus without CP can still 
exhibit systemic movement in Nicotiana benthamiana, 

Fig. 2   Functional summary of viral proteins associated with the 
geminivirus disease complexes. A pictorial representation of the 
components of geminivirus disease complexes and the effect of their 
encoded proteins on the host is shown. The core genomic compo-
nents of geminivirus (helper virus or DNA-A, DNA-B) and the well-

characterized satellite molecules DNA-α and DNA-β are indicated 
in different colors at the center. The important roles played by each 
viral protein and the corresponding genetic factors involved in host 
manipulation are indicated at the periphery with colors corresponding 
to their genetic origin.



310	 R. Devendran et al.

1 3

but not in Nicotiana tabacum or Datura stramonium, 
which suggests the possible involvement of host factors 
in the movement of the virus [24]. Studies have shown, 
however, that the coat proteins of bipartite begomoviruses 
are not required for cell-cell movement but can enhance 
the efficiency of cell-cell movement and systemic spread 
[18, 24].

The CP is required for vector-mediated transmission of 
geminiviruses, and it is known to interact with proteins of 
the vectors and their endosymbionts (Table 1). Mutational 
studies have demonstrated the importance of the CP and 
identified amino acids at positions 129, 130, 134 as essen-
tial for whitefly-mediated transmission and assembly of 
virion particles in the case of tomato yellow leaf curl 
Sardinia virus (TYLCSV) [25, 26]. Amino acids at posi-
tions 124, 149, and 174 of abutilon mosaic virus (AbMV) 
are important for whitefly transmission, and mutations at 
these positions can enhance vector-mediated transmission 
[27]. Residues in the CP also determine the specificity 
of the virus for insect vectors, and altering these resi-
dues affects host insect specificity. For example, a T147S 
substitution appears to be responsible for differences in 
whitefly transmissibility between the Asia-I and Asia-
II-1 strains of squash leaf curl China virus (SLCCNV) 
[28]. Sometimes, viruses manipulate cellular events in 
the whitefly. For example, the CP of tomato yellow leaf 
curl virus (TYLCV) induces apoptosis in whiteflies. 

Interestingly, suppressing apoptosis reduces the viral titer 
in whiteflies, while its activation increases the viral titer. 
The mechanism by which this occurs is not known [29].

AV2/V2

The AV2/V2 gene encodes a pre-coat protein (also known as 
the AV2 protein). The 5’ end of the AV2/V2 ORF overlaps 
with the 3’ end of the CP ORF. The AV2 protein of many 
geminiviruses acts as a pathogenicity determinant. In East 
African cassava mosaic Cameroon virus (EACMCV), the 
pathogenicity is dependent on a conserved protein kinase 
C domain present in AV2 [40]. Mutation of the AV2 pro-
tein causes a reduction in the accumulation of ssDNA and 
dsDNA in plants, but not in protoplasts, indicating that 
mutation of AV2 impairs the movement of the virus. Fur-
thermore, a localization study using an AV2-GFP fusion 
confirmed the role of the AV2 protein in geminivirus move-
ment [13, 41]. In TYLCV, the V2 protein, together with 
exportin α, plays a role in the nuclear export of the coat 
protein (V1) and promotes the redistribution of V1 in the 
perinuclear region. Plants infected with TYLCV-V2 with a 
substitution mutation (V2C85S) that abolishes interaction 
with V1 exhibited delayed and mild symptoms compared to 
plants infected with wild-type virus [42]. The AV2 protein 
also inhibits the hypersensitive response (HR) by interacting 
with the host factor. TYLCV V2 inhibits HR by interacting 

Table 1   Factors from the vector that interact with the geminiviral coat protein

Virus Interacting factor from B. tabaci or its 
endosymbiont

Significance of the interaction Reference

Cotton leaf curl Rajasthan virus (CLCuV), 
Tomato leaf curl New Delhi virus 
(ToLCNDV)

Thioredoxin-like protein Unknown [30]

Tomato yellow leaf curl virus (TYLCV) Heat shock protein 70 (HSP70) Presumed to protect TYLCV proteins 
against degradation

[31]

Tomato yellow leaf curl Sardinia virus 
(TYLCSV)

HSP16 Presumed to prevent aggregation of virus 
in whiteflies or to prevent viral destruc-
tion in hemolymph

[32]

Cotton leaf curl Rajasthan virus (CLCuV), 
Tomato leaf curl New Delhi virus 
(ToLCNDV)

Midgut protein Supportive for transmission [33]

Tomato yellow leaf curl virus (TYLCV) Cyclophilin B Supportive for transmission [34]
Tomato yellow leaf curl virus (TYLCV) GroEL (from Hamiltonella, an endosym-

biont)
Facilitates TYLCV transmission [35]

Tomato yellow leaf curl virus (TYLCV) Tumorous imaginal discs (Tid) Part of the whitefly immune system that 
responds against virus

[36]

Cotton leaf curl Multan virus (CLCuMuV) Vascular protein sorting-associated protein 
(vps) twenty associated 1 (Vta1)

Facilitates CLCuMuV transmission [37]

Tomato yellow leaf curl virus (TYLCV) Clathrin Transport of TYLCV across midgut of 
whitefly by clathrin-mediated endocy-
tosis

[38]

Tomato yellow leaf curl virus (TYLCV) Vesicle associated membrane protein 2 
(VAMP-2)

Promotes acquisition by whiteflies [39]
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with and inhibiting the activity of CYP1, a papain-like 
cysteine protease [43].

AV2 also acts as an RNAi silencing suppressor of both 
transcriptional gene silencing (TGS) and post-transcriptional 
gene silencing (PTGS). TYLCV-V2 suppresses PTGS by 
interacting with SlSGS3 (suppressor of gene silencing 3) 
from tomato. The Arabidopsis thaliana homolog, the SGS3 
protein (AtSGS3), has already been reported to be involved 
in the RNA-silencing pathway [44, 45], and TYLCV V2 
suppresses TGS by interacting with histone deacetylase 6 
(HDA6). In this case, TYLCV V2 prevents the recruitment 
of the DNA methyltransferase MET1 by HDA6, resulting 
in hypomethylation of the viral DNA and the successful 
establishment of infection [46]. The V2 protein of the same 
virus also disrupts the de novo methylation of viral DNA 
in cajal bodies by interacting with AGO4 [47]. In another 
example, V2 from cotton leaf curl Multan virus (CLCuMuV) 
interacts with N. benthamiana AGO4 and suppresses RNA-
dependent DNA methylation (RdDM)-mediated TGS [48]. 
The V2 from tomato yellow leaf curl China virus (TYL-
CCNV) suppresses silencing by binding to the 21-nt siRNA 
duplex and the 24-nt single-stranded siRNA [49]. TGS 
mediated by hypermethylation of DNA in the viral promoter, 
on the other hand, has been implicated in the ‘recovery’ of 
the host plant from geminivirus infection. Tomato leaf curl 
New Delhi virus (ToLCNDV)-AV2 blocks RDR1-mediated 
host recovery in tobacco plants. However, tomato leaf curl 
Gujarat virus (ToLCGV)-AV2 does not affect host recovery 
[50]. It would be interesting to study this recovery phenom-
enon in more detail.

AC1/C1

AC1/C1 encodes a replication-associated protein (Rep) that 
is highly conserved among geminiviruses. Rep is an early 
protein that is produced following entry into the host cell, 
and it plays an important role in the replication and tran-
scription of the other viral genes. Rep contains three impor-
tant domains: an N-terminal domain, a central domain, and 
a C-terminal domain. The N-terminal domain is essential for 
DNA binding and DNA nicking activity, the central domain, 
also referred to as the oligomerization domain, is involved 
in oligomerization of Rep, and the C-terminal domain is 
involved in ATPase activity and contains the Walker A and 
Walker B motifs essential for ATPase activity [51, 52].

Role of Rep in replication initiation, cleavage, and ligation

Rep interacts with many host factors, including retinoblas-
toma-related protein (RBR), a regulator of cell division; pro-
liferating cell nuclear antigen (PCNA), a DNA clamp and 
processivity factor of DNA polymerase; replication protein 
A (RPA), a single-stranded nucleic acid binding protein; 

replication factor C (RFC), a DNA clamp loader; radiation-
activated DNA repair proteins (RAD) such as RAD51 and 
RAD54, which are indispensable for recombination; and 
minichromosome maintenance protein 2 (MCM2), a com-
ponent of the pre-replication complex, all of which help in 
viral replication [53–55]. To initiate replication, Rep binds at 
two sites in the common region (CR) of the viral genome in 
a sequence-specific manner. One is in the iteron sequences, 
and another is in the nonanucleotide sequences. In the case 
of TGMV and squash leaf curl virus (SqLCV), the CR is a 
200-nt region at the origin of replication (ori) that contains 
a 60-nt stem-loop structure that is essential for replication 
[56]. Iterons are iterative elements in the CR found between 
the transcription start site and the TATA promoter of AC1. 
They can be 8-12 nucleotides in length and can vary among 
different geminiviruses [57]. In the case of TGMV, Rep 
binds to a 13-bp region containing 5-bp repeat motifs sepa-
rated by a 3-bp spacer to initiate replication. Interestingly, 
the repeat at the 3’ end is necessary for replication, while the 
repeat at the 5’ end might enhance the replication efficiency 
of geminiviruses [58]. Similar iterons were also identified 
in the TYLCV genome, and direct interaction with those 
regions has been demonstrated [59]. The Rep protein also 
binds to a hairpin region at the ori site to make a nick at 
the seventh/eighth residue of the conserved nonanucleotide 
sequence (5’TAA​TAT​TAC3’) in the sense strand to initi-
ate replication. After completion of one round of rolling-
circle amplification (RCA), Rep cleaves a phosphodiester 
bond, leading to the ligation of the end of newly formed 
nascent DNA. The N-terminus of TYLCV Rep catalyzes the 
cleavage and ligation of the viral DNA in vitro [60]. Site-
directed mutation in the oligomerization domain of TGMV 
resulted in reduced levels of viral replication. Furthermore, 
a mutation in the oligomerization domain of TGMV Rep 
also inhibited viral replication by tenfold as compared to the 
wild type. This indicates that, in addition to the N-terminal 
DNA binding domain, the central oligomerization domain of 
Rep might play a role in viral DNA replication [61]. Gemi-
niviruses replicate inside the nucleus, and Rep contains a 
nuclear localization signal (NLS). Removal of residues 
1-120 of the Rep protein of tomato chlorotic mottle virus 
(TCMV) results in reduced nuclear accumulation of Rep. 
Similarly, mutation of the N-terminal residues of African 
cassava mosaic virus (ACMV) Rep significantly reduces 
its nuclear import. A recent study has suggested that lysine 
residues K67, K77, and K101 of TYLCV Rep are important 
for its nuclear localization [62]. These lysine residues have 
been shown to interact with E2 SUMO-conjugating enzyme 
1 (SCE1), which mediates the sumoylation of lysine residues 
of the host cell cycle factors PCNA and RBR [63]. This 
study provides insight into how Rep controls the host cell 
machinery to facilitate viral replication.
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The C-terminal portion of Rep possesses DNA helicase 
and ATPase activity, and based on domain homology, Rep 
has been classified as a member of superfamily 3 (SF3). 
However, Rep differs from other SF3 helicases by the 
absence of an arginine finger domain and its oligomerization 
properties [64]. Geminiviral Rep proteins can oligomerize 
to form complexes ranging from hexamers to dodecamers 
[65]. ToLCGV Rep oligomers have been shown to be stable 
even at high salt and low protein concentrations. The muta-
tion K227A at the C-terminus of ToLCGV Rep abolishes its 
ability to bind to ATP and ssDNA [66], which is a further 
indication of the structural and functional similarity of gemi-
niviral Rep proteins to SF3 helicases [66]. A recent study 
has identified conserved amino acids in the B’ motif in the 
C-terminus of ToLCNDV Rep that are necessary for repli-
cation of ToLCNDV. Mutation of these conserved residues 
negatively impacted the replication of the virus in planta. 
Interestingly, the mutant variants of the protein affected the 
helicase activity of Rep without affecting other activities, 
such as ATPase activity and ssDNA binding activity, that are 
associated with the C-terminal region of the protein, stress-
ing the significance of helicase activity in geminiviral DNA 
replication [67].

Role of Rep in geminivirus transcription

Rep is a multifunctional protein that regulates the transcrip-
tion of Rep and BC1 in addition to its principal role in rep-
lication [68]. In TGMV DNA-A, the regulatory rep-binding 
site essential for replication initiation is closely associated 
with a sequence that is important for its own transcrip-
tion. The binding of Rep to this site negatively regulates 
Rep transcription, which could act as a switch that sets 
back the repression of early genes and further activation of 
late genes involved in the cell-to-cell movement. Although 
the BC1 promoters of TGMV DNA-B share homologous 
sequence due to sequence conservation, the BC1 transcrip-
tion remains unaffected [68]. In contrast, Rep represses the 
active transcription of both Rep and BC1 in ACMV. How-
ever, the phenomenon of Rep autoregulation is not observed 
in members of the genus Curtovirus such as beet curly top 
virus (BCTV) and beet severe curly top virus (BSCTV) [69]. 
Interestingly, Rep enhances coat protein expression in the 
mastrevirus wheat dwarf virus (WDV) [70]. The binding site 
for autoregulation of its transcript is in a conserved iteron 
that lies between the transcription start site and the TATA 
box [71]. Interestingly, the CaMV 35S promoter, which con-
tains the sequence of the Rep binding site is also repressed 
by Rep [72]. It has been observed that the ability of Rep to 
function in geminiviral replication and transcript autoregu-
lation are independent events [72]. In the case of TYLCSV 
C1, a highly conserved RGG motif at position 124-126 in the 

N-terminal region has been reported to be associated with 
autoregulation [73]. The significance of autoregulation can 
be attributed to the expression of the AC2 and AC3 genes, 
since the transcription start site lies within the coding region 
of AC1 [69]. It is important to note that AC2 is vital for 
suppressing host defenses and expression of late genes, and 
its role will be discussed further in the following sections.

Role of Rep in stimulation of viral transcription

Chilli leaf curl virus (ChiLCV) forms a minichromosome-
like structure by interacting with histone proteins, and to 
enhance viral gene transcription [74], ChiLCV Rep hijacks 
the host ubiquitin machinery. ChiLCV Rep interacts with 
ubiquitin-conjugating enzyme 2 (NbUBC2), and histone 
monoubiquitination1 (NbHUB1) in the nucleus of the host 
cell [74]. Furthermore, ChiLCV Rep re-localizes NbUBC2 
from the cytoplasm to the nucleoplasm. This results in an 
increase in monoubiquitination of histone 2B (H2B) and 
trimethylation of histone 3 at lysine 4 (H3K4me3) and sub-
sequently stimulates geminivirus transcription [74].

Role of Rep in pathogenesis

Rep also acts as a silencing suppressor. Rep represses the 
expression levels of plant DNA maintenance methyltrans-
ferases such as methyltransferase 1 (MET1) and chromo-
methylase 3 (CMT3), thereby interfering with the plant 
methylation cycle, resulting in a reduction in CG methyla-
tion of both the viral genome and host-defense-related genes 
[75]. Rep is also a target of the plant immune system, as 
ATG8h, which is important for autophagy, interacts with 
tomato leaf curl Yunnan virus (TLCYnV) C1 and translo-
cates it to the cytoplasm from the nucleus via exportin 1 to 
induce autophagy [76]. ChiLCV Rep can also aid in patho-
genesis by relocalizing the positive regulator of pathogenesis 
phosphatidylinositol 4-kinase (PI4K) into the nucleus [77]. 
In a recent study, a 7-amino-acid stretch was identified at the 
C-terminus of Sri Lankan cassava mosaic virus-Columbia 
(SLCMV-Col) that is essential for the accumulation of Rep 
and is a determinant of the higher virulence of SLCMV-Col 
when compared to the weaker SLCMV-HN7 strain. Inter-
estingly, the same 7-amino-acid stretch also enhanced the 
triggering of salicylic acid signaling against SLCMV [78].

AC2/C2

AC2/C2 as transactivator

AC2/C2 encodes a protein referred to as transcriptional acti-
vator protein (TrAP), which acts as a central factor in the 
viral life cycle. TrAP regulates the promoter activity of the 
viral genes AV1, BV1, and BC1 [79–81]. It also interacts 
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with several proteins of geminiviruses, including C3, C4, 
V2, and βC1 [82]. TrAP has an N-terminal region containing 
an NLS, a central DNA-binding domain with a zinc finger, 
and a C-terminal transactivation domain. The transactivation 
activity of AC2 has been mapped to 15 amino acids at its 
C-terminal end [83]. AC2 and C2 are examples of position 
homologs in geminiviruses, because C2, unlike AC2, lacks 
a transactivation domain and transactivation activity [84]. 
Computational analysis of 124 bipartite and 463 monopartite 
begomoviral AC2/C2 proteins has suggested that they have a 
C-terminal α-helix, like many transcriptional activator pro-
teins (acidic activation domain) [85]. Deletion of TGMV 
AC2 resulted in reduced coat protein expression, indicating 
that AC2 is involved in the expression of the coat protein 
(AV1) [80, 86]. In this case, TrAP activates the TGMV CP 
promoter by interacting with the transcription factor PEA-
POD [87]. In the case of mungbean yellow mosaic India 
virus (MYMIV), AC2 and AC1 synergistically activate the 
promoter in DNA-A, driving the expression of CP [88]. C2 
of bhendi yellow vein mosaic virus (BYVMV) has an NLS 
at its N-terminal end comprising amino acids 17-31. The 
NLS of C2 interacts with karyopherin α, which is involved 
in the shuttling of molecules between the nucleus and the 
cytoplasm [89].

AC2/C2 as a silencing suppressor

AC2/C2 from a begomovirus was the first protein reported 
to have silencing suppressor activity [90]. Transgenic plants 
overexpressing AC2/C2 show reduced global cytosine meth-
ylation of the host genome [91]. BSCTV-C2 reduces the 
methylation level of the promoter of the genes studied in the 
plant by reducing the amount of siRNA corresponding to the 
locus of the methylated promoter [92]. The AC2 proteins of 
different geminiviruses exhibit varying strength of silencing 
[93] and employ different mechanisms to suppress the host 
silencing machinery (Table 2).

AC2/C2 as a pathogenicity determinant

AC2/C2 also plays a role in symptom development, suppres-
sion of HR, and inhibition of hormone-mediated defense. 
The 16-amino-acid hypervariable region in the C-terminus 
of C2 of tomato yellow leaf curl Sardinia virus (TYLCSV) 
induces HR [102]. Furthermore, the BYVMV C2 is essential 
for pathogenicity, whereas a virus with a termination codon 
in the C2 ORF caused less symptom development and grew 
to a lower titer. Symptoms were no longer observed when 
the virus was inoculated with a betasatellite [103]. The HR 
induced by proteins of geminiviruses is suppressed by the 
protein encoded by AC2. The HR induced by ToLCNDV 
NSP is inhibited by AC2 of the same virus [104]. Similarly, 

the HR induced by V2 of papaya leaf curl virus (PaLCuV) 
and cotton leaf curl Kokhran virus (CLCuKoV) is countered 
and suppressed by C2 of PaLCuV and cotton leaf curl Mul-
tan virus (CLCuMuV) [105].

Expression of ACMV AC2 in N. tabacum resulted in 
the upregulation of repressors of the jasmonic acid (JA) 
signaling pathway [106]. Tomato yellow leaf curl Sardinia 
virus (TYLCSV) C2 affects JA signaling by interfering 
with the ubiquitin pathway. TYLSCV C2 interacts with 
COP9 signalosome 5 (CSN5) and alters the derubylation 
activity of the CSN complex, which affects downstream 
signaling pathways such as those of auxin, gibberellic acid 
(GA), ethylene (ET), salicylic acid (SA), and JA [107]. 
Transcriptome analysis and challenge inoculation stud-
ies in transgenic A. thaliana plants expressing TYLSCV 
C2 have also suggested that TYLSCV C2 mediates sup-
pression of JA-mediated defense [108]. TYLCV C2, like 
TYLSCV C2, compromises JA-mediated defense by inter-
acting and altering the plant ubiquitin machinery, result-
ing in reduced degradation of jasmonate ZIM-domain 1 
(JAZ1), a repressor of the JA signaling pathway, facilitat-
ing vector infestation in the infected plants [109].

AC3/C3

AC3/C3 encodes a replication enhancer protein (REn). 
Deletion of AC3 results in a reduction in viral DNA repli-
cation and symptom development [86, 110]. This observa-
tion is supported by recent evidence of TYLCV C3 recruit-
ing DNA polymerase α and δ in N. benthamiana [111]. 
Some families of geminiviruses lack C3, and alternative 
mechanisms might be in place for such viruses. Further-
more, the AC3 from one virus can complement the func-
tion of AC3 in a related geminivirus [112]. REn interacts 
with geminivirus Rep and other replication-associated 
host factors to enhance viral DNA replication. In fact, REn 
enhances the ATPase activity of Rep in vitro. In addition, 
REn can form higher-order homo-oligomers through the 
hydrophobic domain in the central region of the protein 
[113, 114]. The hydrophobic region of REn is also essen-
tial for the interaction with PCNA, a DNA clamp essen-
tial for DNA replication. REn also interacts with RBR via 
polar residues in its N-terminal and C-terminal domains 
[114–116] and with the transcription factor NAC1 in 
tomato, leading to increased expression of NAC1. REn 
and NAC1 localize in the nucleus, and amino acids 1-70, 
comprising a putative α-helix of REn, are essential for 
this interaction. Overexpression of NAC1 enhances viral 
replication [117]. AC3 also enhances gene silencing in 
some geminiviruses [118].
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AC4/C4

This ORF also encodes a multifunctional protein, and pro-
teins from different viruses exhibit differences in their sub-
cellular localization and functions, suggesting an incomplete 
functional overlap [84].

Role in symptom development and as an oncogenic protein

Deletion of tomato leaf curl virus (ToLCV) C4 leads to 
reduced symptom development in different hosts, but it 
does not affect the viral titer [119]. Transgenic N. bentha-
miana plants expressing BCTV C4 show tissue distortion 
and development of enations containing a large clustered 
mass of unorganized cellular material [120]. This can be 
suppressed by overexpression of pep receptor 2 (PEPR2), a 
receptor kinase associated with the danger peptide signaling 
pathway [121]. ACMV C4 also induces abnormal develop-
ment in transgenic A. thaliana plants, which could partly be 
attributed to decreased miRNA accumulation [122]. There 
are many possible mechanisms for the induction of unor-
ganized cell growth, which are discussed below. BSCTV 
C4 is S-acylated in planta, and S-acylated C4 interacts with 
CLAVATA1 (CLV1), a receptor kinase, which plays an 
important role in meristem maintenance. As a consequence, 
the expression level of WUSCHEL (WUS) is altered, result-
ing in abnormal development of the plant [123]. Cotyledons 
and hypocotyledons from transgenic A. thaliana expressing 
BSCTV C4 under the control of an inducible promoter show 
extensive cell division with no clear demarcation of vas-
cular bundles [124, 125]. These observations indicate that 
C4 acts as a viral “oncogene” inhibiting the DNA damage 
checkpoint, resulting in cell cycle progression while also 
stimulating DNA replication by preventing programmed cell 
death [126]. BSCTV C4 expression in A. thaliana results in 
elevated levels of cell-cycle-associated proteins such as the 
cyclins cyc1, cyc2, and cyc2b, the cyclin-dependent kinases 
(CDK) cdc2a, cdc2b, and cdc25, and the cyclin-activated 
kinases (CAKs) cak1, cak2, and cak3. Some cell cycle inhib-
itors were also found to be suppressed in transgenic plants 
expressing C4, and upon BSCTV infection as well [127]. 
Furthermore, C4 stabilizes CDKs. BSCTV C4 induces the 
expression of RING finger E3 ligase, which is known to 
interact with the cell cycle inhibitors ICK and KRP and pro-
mote their degradation [128]. Recently, it has been demon-
strated that TLCYnV C4 impairs phosphorylation-dependent 
degradation of CycD1;1 by Shaggy-like kinase (SKη) kinase 
by relocalizing SKη from the nucleus to the plasma mem-
brane. Reduced phosphorylation-dependent degradation of 
CycD1;1 leads to the induction of cell division [129].

Role as silencing suppressor

ACMV AC4 synergistically suppresses host PTGS along 
with EACMCV AC2 and enhances EACMCV DNA accu-
mulation by approximately eightfold [130]. ACMV AC4 
interacts with single-stranded siRNA and miRNA, but 
not with any double-stranded RNA forms, indicating that 
ACMV AC4 blocks PTGS at the mature stage of small RNA 
biogenesis [122]. Specific localization of AC4 seems to be 
essential for its silencing suppressor activity. EACMCV 
AC4 is localized in the plasma membrane, perinucleus, and 
cytoplasm. It has a consensus N-myristoylation site, and 
mutations such as G2A and C3A abolish its plasma mem-
brane localization as well as its silencing suppressor activity 
[131]. Furthermore, C4 interacts with BAM1 (barely any 
meristem 1), which is a receptor-like kinase (RLK) as well 
as a positive regulator of cell-to-cell movement of silenc-
ing, and it blocks systemic silencing in the host [132, 133]. 
MYMV AC4 binds to 21- to 25-nucleotide siRNAs and 
targets them to the plasma membrane via S-palmitoylation 
[134]. Together, this indicates that AC4/C4 exhibits silenc-
ing suppressor activity by blocking the cell-cell movement 
of siRNAs. ToLCV-C4 interacts with SKη from tomato in 
the nucleus region and this interaction has been mapped to 
12 amino acids in the C-terminal portion of C4. Deletion of 
these 12 amino acids abolished this interaction as well as 
the silencing suppressor activity of C4 [135]. C4 proteins 
from different viruses show different affinity towards SKη, 
and interestingly, the symptom-induction property of C4 
appears to correlate with its affinity for SKη [136]. Phos-
phorylation of C4 by SKη and its subsequent myristoylation 
are also essential for the nucleocytoplasmic shuttling and 
pathogenicity of C4 in the case of TLCYnV [137]. Like 
other geminiviral suppressors of RNA silencing (VSRs), 
CLCuMuV C4 interacts with and inhibits the activity of 
the essential methyl cycle enzyme S-adenosyl methionine 
synthetase (SAMS), resulting in suppression of both TGS 
and PTGS [138]. Using another strategy, TLCYnV C4 sup-
presses TGS by disrupting self-interaction of N. benthami-
ana domains rearranged methylase 2 (NbDRM2), a major 
methyltransferase, which catalyzes the addition of methyl 
groups on cytosine of viral DNA. As a result, NbDRM2 
no longer binds to DNA, resulting in suppression of TGS. 
Plants infected with TLCYnV C4 harboring an S43A sub-
stitution mutation (which has impaired ability to disrupt 
NbDRM2 interaction) showed higher recovery [139].

Role in systemic movement

There is evidence that C4 complements the function of 
viral movement. For example, in the case of TYLCV, the 
systemic movement of TYLCV in tomato was completely 
blocked as a result of mutation in C4. However, in N. 
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benthamiana, a mutation in TYLCV C4 did not impair the 
systemic movement of the virus but did result in a reduc-
tion in the severity of the symptoms. Similar observations 
were also made in the case of BSCTV, where a virus with 
two termination codons in the C4 ORF could replicate in 
protoplasts and leaf discs but could not establish symp-
toms in A. thaliana and N. benthamiana plants. The newly 
emerged leaves from the mutant-virus-infected plants 
showed no viral DNA accumulation, while the exogenous 
application of wild-type BSCTV C4 could complement the 
movement function of mutated BSCTV-C4 [140]. Interest-
ingly, TYLCV C4 can provide the function of movement 
in the bipartite begomovirus ToLCNDV [141].

Other functions

In addition to the functions of AC4/C4 discussed above, 
recent reports have demonstrated its ability to suppress 
HR [142] and SA-mediated defense [143] as well as confer 
drought stress tolerance independent of abscisic acid in 
plants [144]. The mechanism of HR suppression involves 
preventing self-association of the hypersensitive-induced 
reaction 1 (HIR1) protein and elevating the level of the 
leucine-rich-repeat (LRR) protein, which promotes deg-
radation of HIR1 [142]. Suppression of SA-mediated 
plant defense occurs by a mechanism that is conserved 
among different phytopathogens. C4 translocates from the 
membrane to the chloroplast, where it suppresses calcium-
sensing signal (CAS)-mediated activation of SA signaling. 
This is supported by the observations that knockout lines 
of CAS or depletion of SA enhances virus accumulation 
and can complement C4-null mutations in the virus [143]. 
The precise mechanism by which C4 confers drought 
stress tolerance is not known. AC4 of ToLCNDV is also 
an avirulent gene in the case of the resistant tomato culti-
var H-88-78-1, which harbors the resistance gene SlSw5a. 
SlSw5a interacts with ToLCNDV AC4 to elicit HR and the 
production of reactive oxygen species to limit the spread 
of the virus. The amino acid motif “RTSK” present in the 
C-terminal portion of AC4 is essential for this interaction 
[145]. The interaction of AC4/C4 with kinases and their 
significance in silencing suppression is discussed above. A 
recent finding suggests that TYLCV C4 can also interact 
with kinases, including NSP-interacting kinase 1 (NIK1), 
which plays various roles in the pathogenesis of bipartite 
begomoviruses. The precise mechanism of pathogenesis 
is described in a later section. The interaction of TYLCV 
C4 with NIK1 raises the question whether C4 perform the 
function of the DNA-B-encoded nuclear shuttle protein in 
monopartite begomovirus, and this will require elaborate 
experimental studies [146].

Despite its multifunctional nature, this ORF is the least 
conserved ORF of geminiviruses. The diversity of AC4/
C4 provides an adaptive advantage to the virus, since it 
does not perform any obligatory function in basic pro-
cesses such as replication, transcription, or encapsidation, 
suggesting that it is dispensable. However, AC4/C4 sup-
ports virus growth by silencing suppression of RNAi, and 
in viruses without AC4/C4, other proteins such as TrAP, 
AV2, or Rep might take over this role.

AC5/C5

The AC5/C5 ORF is located downstream of AC3/C3 and 
overlaps with ORF-AC1 [147–149]. The function of the 
AC5/C5 protein in geminiviruses has not been studied as 
well like other geminivirus ORFs. AC5 was found to be 
essential for DNA replication in the case of MYMIV [150]. 
Deletion of tomato leaf deformation virus (ToLDeV) C5 
has been shown to reduce symptom severity [149]. Further-
more, MYMIV AC5 also acts as a silencing suppressor and 
a pathogenicity determinant. Mutations in MYMIV AC5 
have been shown to result in a decrease in infectivity and 
viral DNA accumulation. AC5 can induce a hypersensitive 
response when carried by a potato virus X (PVX) vector, but 
this phenotype has not been observed in MYMIV-infected 
plants. AC5 also suppresses PTGS, and its N-terminal region 
is essential for PTGS suppressor activity. Interestingly, AC5 
can also suppress TGS by suppressing the expression of 
domain-rearranged methyltransferase 2 (DRM2), a methyl-
transferase responsible for de novo CHH methylation and its 
maintenance. Thirty-three amino acids at the C-terminus of 
the protein have been shown to be essential for TGS suppres-
sor activity as well as symptom development [176].

DNA‑B

After replication, viral DNA must be transported to neigh-
boring cells for successful infection. To achieve this, it must 
cross the nucleus through a nuclear pore to reach the cyto-
plasm, and from the cytoplasm it has to move intracellularly 
to the plasmodesmata to reach uninfected cells. In the case 
of bipartite viruses, these functions are mediated by proteins 
encoded by DNA-B. DNA-B contains two ORFs: one on the 
virion strand, designated as BV1, and one on the comple-
mentary strand, designated as BC1.

BV1

The BV1 ORF of DNA-B of bipartite viruses encodes 
a nuclear shuttle protein (NSP), which is responsible for 
nucleocytoplasmic shuttling of the viral DNA (vDNA). 
The NSP has a strong affinity for nucleic acids [151–154]. 
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The mechanism of nuclear export involves the interaction 
and cooperation of several host factors. For example, NSP 
interacts with histone 3 (H3) to form an H3-NSP-viral DNA 
complex that allows the viral DNA to be exported from the 
nucleus [155]. The NSP possesses a nuclear export signal 
(NES), but the exportin has not been identified. The region 
including amino acids 177-198 in the NSP of SqLCV is 
leucine-rich. It has been shown that the TFIIIA protein of 
Xenopus could complement the NES of NSP [156]. The 
NSP, along with viral DNA, once it reaches the nuclear 
envelope, is released into the cytoplasm with the help of NIG 
(NSP-interacting GTPase), a cytosolic GTPase that accu-
mulates around the nuclear envelope in the cytosol. It acts 
as a cofactor in mediating the intracellular movement of the 
viral genome. NIG interacts with NSP and shuttles from the 
nucleus to the cytoplasm [157, 158]. In the cytoplasm, yet 
another cofactor, NISP (NSP-interacting syntaxin domain-
containing protein), a plant-specific syntaxin-6 protein, 
interacts with the NIG-NSP-vDNA complex and facilitates 
the intracellular movement of the complex from the cytosol 
to endosomes [159].

In addition to its role in viral export, BV1 also acts as a 
pathogenicity determinant. Cabbage leaf curl virus (CaL-
CuV) NSP suppresses host immunity by inducing expres-
sion of the asymmetric leaves 2 (AS2) protein and translo-
cating it out of the nucleus to the cytoplasm. AS2 activates 
the decapping enzyme DCP2 in the cytoplasm, compro-
mising host defense against the virus [160]. Furthermore, 
CaLCuV NSP mimics the transcription factor MYC2 and 
suppresses terpene biosynthesis, making the host more 
attractive to vectors, thereby increasing the chances that 
the virus will be transmitted [161]. A 38-amino-acid 
region close to the NES in CaLCuV NSP interacts with 
the A. thaliana nuclear shuttle protein interactor (NSI), 
which plays a role in histone acetylation. The NSP-AtNSI 
interaction results in acetylation of coat protein bound to 
viral DNA. Then, the NSP-AtNSI complex replaces CP 
in the CP-viral DNA complex and exports the viral DNA 
from the nucleus. Overexpression of AtNSI results in a 
higher viral titer, while the mutation in NSP that abolishes 
NSI-AtNSP interaction results in reduced symptom sever-
ity and delayed systemic spread of the virus [151, 162, 
163]. NSP also interacts with a group of kinases referred 
to as NIKs. NIK1-3 are leucine-rich repeat receptor-like 
kinases (LRR-RLK) that localize to membranes. Interac-
tion between NSP and NIK leads to suppression of the 
kinase activity of NIKs. The loss of function of NIKs sup-
ports the replication of CaLCuV. NIK has an 80-amino-
acid stretch that contains the putative serine-threonine 
kinase active site and activation loop, which are the targets 
of NSP. Loss of NIK1-3 enhances the susceptibility of the 
host [164]. It has been observed that NIK1 activation leads 
to phosphorylation and translocation of ribosomal protein 

10a (RPL10a) from the cytoplasm to the nucleus [165]. 
In the nucleus, RLP10a represses global translation by 
interacting with L10-interacting MYB domain-containing 
protein (LIMYB). The RPL10-LIMYB interaction leads to 
suppression of transcription of ribosomal protein genes, 
resulting in reduced translation of viral proteins [166]. Yet 
another host factor that interacts with CaLCuV NSP is 
NsAK (NSP-associated kinase), which is a proline-rich-
extension-like receptor protein kinase (PERK). NsAK 
phosphorylates NSP, and the loss of NsAK results in a 
decrease in viral titer [167]. ToLCNDV NSP induces a 
hypersensitive response in N. tabacum and tomato through 
the N-terminal region of the protein, whereas in N. bentha-
miana, the same protein induces leaf curling symptoms 
similar to those associated with viral infection [168].

BC1

BC1 codes for the movement protein (MP), which is respon-
sible for the cell-cell movement of viral DNA. MP increases 
the size exclusion limit of plasmodesmata of mesophyll 
cells, thereby facilitating the movement of the virus [152]. 
MP localizes as small punctuate bodies in the cell periph-
ery and around the nucleus. In the sink leaves of the host, 
it forms a disc-like structure in the periphery. When BC1 is 
inoculated with its cognate DNA-A and DNA-B, it forms 
needle-like structures in sink leaves without altering its sub-
cellular localization [169–172]. MP interacts with synap-
totagmin (SYTA), a regulator of recycling of endosomes to 
promote transport of the viral genome to plasmodesmata for 
cell-cell transport through the SYTA-mediated endosomal 
recycling pathway. The role of SYTA in endosome recycling 
is evident by the depletion of plasma-membrane-derived 
endosomes in dominant negative mutant lines [173]. As dis-
cussed in the earlier section pertaining to NSP, NISP recruits 
NSP-NIG-vDNA to endosomes, and from the endosomes, 
the MP facilitates the transport of the vDNA complex to 
uninfected neighboring cells through plasmodesmata [174].

BC1 proteins from different viruses differ in their affin-
ity for different forms of DNA. BC1 from SqLCV and bean 
dwarf mosaic virus (BDMV) has weak affinity for single-
stranded DNA, whereas BC1 from MYMIV has strong affin-
ity for single-stranded DNA [153, 154, 175].

Transgenic plants expressing tomato mottle virus 
(ToMoV) MP and BDMV MP exhibit an abnormal phe-
notype, with symptoms resembling those induced by viral 
infection [176, 177]. In one study, plants expressing a 
mutated form of ToMoV BC1 did not produce viral-like 
symptoms and showed resistance to ToMoV and CaLCuV 
infection, possibly because of a transdominant negative 
effect [177].
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Satellite molecules

Monopartite begomoviruses are often associated with satel-
lite DNA molecules referred to as alphasatellites, betasatel-
lites, or, more recently, deltasatellites. Satellite molecules 
are dependent on helper viruses for their replication and 
movement and are nearly half the size of the helper virus 
genome [178, 179].

Alphasatellites

Alphasatellites are approximately 1375 nt in size, with an 
A-rich region ranging from 150 to 200 nt, a hairpin loop 
containing the conserved nonanucleotide for replication, and 
an ORF encoding a Rep protein, referred to as alpha-rep, of 
approximately 37 kDa in size. Since alphasatellites encode 
their own Rep, they are not strictly considered satellites. 
Alphasatellites have not been shown to play a role in symp-
tom development or pathogenicity [179], but they negatively 
affect the transmission of some helper viruses by whiteflies 
and affect the DNA level of some betasatellites [180, 181]. 
Some Rep proteins encoded by alphasatellites such as those 
of Gossypium darwinii symptomless alphasatellite, Gos-
sypium mustelinum symptomless alphasatellite, and cotton 
leaf curl Multan alphasatellite, have been reported to exhibit 
silencing suppressor activity as well [182, 183].

Betasatellites

Unlike alphasatellites, betasatellites are essential for their 
helper viruses, as they function as pathogenicity determi-
nants. They are known to induce symptoms such as leaf curl-
ing, enations, and yellowing [184, 185]. Betasatellites are 
approximately 1350 nt in size with no sequence similarity 
to the helper virus other than the conserved nonanucleotide. 
Betasatellites have a satellite conserved region (SCR), which 
is highly conserved among betasatellites, an A-rich region, 
and a single ORF on the complementary strand, encoding a 
protein referred to as βC1. βC1 is a multitasking protein that 
plays an essential role during pathogenesis by suppressing 
host TGS and PTGS, suppressing host defense, and promot-
ing symptom development (Fig. 2) [179, 184, 186]. Cover-
ing the work on βC1s merits a separate review, but consider-
ing the space limitations, this review will only touch upon 
its key roles with examples for illustration.

βC1 as a pathogenicity determinant and silencing 
suppressor

βC1 is a pathogenicity determinant that plays a vital role in 
viral pathogenesis. It has evolved multiple strategies to miti-
gate the host defense. It interacts with several host factors to 

evade host defense mechanisms and support helper viruses 
in establishing disease [184]. βC1 induces characteristic 
symptoms in the leaves of the infected host, which is mainly 
due to the interaction of βC1 with the host factors. βC1 
from TYLCCNV interacts with AS1, replacing AS2, and 
interferes with the normal leaf development. The AS1-AS2 
interaction is essential for downregulation of miR165/166 
as well as upregulation of the transcription factor HD-ZIP 
III, which are essential for normal leaf development [187]. 
βC1 also induces vein clearing or yellowing in veins. βC1 
from radish leaf curl betasatellite (RaLCB) has been shown 
to be localized in chloroplasts, where it alters their ultra-
structure as well the expression of chloroplast-encoded 
proteins, resulting in reduced photosynthesis. Furthermore, 
RaLCB βC1 interacts with oxygen-evolving enhancer pro-
tein 2 (encoded by PsbP) and interferes with its binding 
to RaLCB DNA, which is essential for plant immunity to 
the virus, as silencing PsbP transiently increases the viral 
load [188, 189]. A recent study has suggested that βC1 from 
tomato leaf curl Patna betasatellite (ToLCPaB) regulates the 
titer of the helper virus as well as the betasatellite and the 
transcript accumulation of Rep and βC1 through its ATPase 
activity. Interestingly, ATPase activity is conserved in βC1 
from diverse betasatellites. Unlike the Rep protein, βC1 
lacks the canonical Walker A and Walker B motifs that are 
essential for ATPase activity, and they have a non-canonical 
ATPase domain that overlaps with the DNA-binding domain 
[190]. βC1 also interacts with the host ubiquitin system, 
resulting in symptom development. βC1 interacts with the 
ubiquitin-conjugating enzyme SlUBC3 in tomato, resulting 
in reduced polyubiquitination of many target proteins. The 
myristoylation-like motif GMDVNE at the C-terminus of 
βC1 is essential for its interaction with SlUBC3, and muta-
tion in this site results in reduced symptom severity [191]. 
In another example, tomato yellow leaf curl China betasatel-
lite (TYLCCNB) βC1 interacts with a RING-finger protein 
from tobacco (NtRFP1), which is an E3 ubiquitin ligase that 
is involved in polyubiquitination of βC1 to promote degra-
dation of βC1 via the 26S proteasomal pathway [192]. It 
is not clear whether the NtRFP1-βC1 interaction is a sur-
vival mechanism of the plant or the virus, but experimental 
evidence shows that the plant gains immunity against the 
virus by promoting the proteasomal degradation pathway 
through NtRFP1 [192]. A recent report also suggested that 
βC1 undergoes SUMOylation through its SUMO-interacting 
motif to escape from degradation in the host [193].

βC1 nullifies the antiviral defense of plants by suppress-
ing both TGS and PTGS. βC1 of tomato yellow leaf curl 
China betasatellite (TYLCCNB) can complement BCTV C2 
and reverse TGS by directly interacting with S-adenosyl-
homocysteine hydroxylase (SAHH), which is an essential 
component of the methyl cycle, replenishing the methyl-
transferase cofactor S-adenosyl methionine (SAM). The 
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βC1-SAHH interaction leads to a decrease in SAM [194]. 
Tyrosine residues at positions 5 and 110 are essential for the 
reversal of TGS activity [195]. Transgenic plants expressing 
cotton leaf curl Multan betasatellite (CLCuMuB) βC1 were 
shown to have elevated levels of both AGO1 and DCL1 gene 
expression, and the CLCuMuB βC1 protein was found to 
physically interact with AGO1 [196]. In another mechanism, 
βC1 suppresses host silencing by upregulating a silencing 
suppressor. One such silencing suppressor is the calmodulin-
like protein rgs-Cam, which is an endogenous suppressor of 
the gene silencing pathway that suppresses the expression 
of RDR6. Overexpression of Nbrgs-Cam has been shown 
to produce a phenotype similar to that caused by βC1 in 
plants [197].

The TYLCCNB βC1 protein interacts with sucrose non-
fermenting-1-related kinase from Solanum lycopersicum 
(SlSnRK1). SlSnRK1 inactivates βC1-mediated pathogenic-
ity by phosphorylating βC1 at serine 33 and threonine 78. 
Expression of βC1 with phosphomimic mutants and over-
expression of SlSnRK1 result in a delay in viral symptoms 
as well as a decrease in the viral titer [198]. SlSnRK1 also 
phosphorylates tyrosine at positions 5 and 110 resulting in 
milder disease symptoms, a weakened reversal of TGS, and 
a lack of interaction with AS1 [195].

TYLCCNV, together with TYLCCNB βC1, induces 
upregulation of NbCaM and NbCaM, which in turn interact 
with SGS3, resulting in degradation of SGS3, mediated by 
the phosphatidylinositol 3-kinase complex. This suggests a 
role in the βC1-dependent autophagy in geminivirus infec-
tion [199]. ATG8, an autophagy-related protein, interacts 
with CLCuMB βC1 in a manner involving a valine residue at 
position 32. A V32A mutation in βC1 was found to enhance 
symptom severity and accumulation of viral DNA. Interest-
ingly, silencing of other autophagy-related proteins, ATG5 
and ATG7, made plants susceptible to different viruses 
[200]. A recent study suggested a novel role of TYLCNNB 
βC1 in which it interferes with the mitogen-activated pro-
tein kinase (MAPK or MPK) pathway to mitigate the host 
defense. It selectively inhibits the activity of MAPK pathway 
members such as MPK4 and MAPK kinase 2 (MKK2) to 
suppress the host defense [201].

βC1 in systemic movement

In infections with monopartite begomoviruses, βC1 can also 
complement functions associated with DNA-B of bipartite 
viruses. ToLCNDV-A alone can induce local movement but 
is impaired in the systemic movement of the virus. However, 
ToLCNDV-A inoculated with CLCuMuB betasatellite can 
induce both local and systemic movement. Interestingly, 
ToLCNDV-A, when inoculated with a CLCuMuB betasat-
ellite with a disrupted βC1 gene failed to exhibit systemic 

movement. Similar observations were made in the case of 
ageratum yellow vein virus [141, 202]. βC1 possesses an 
NES or NLS and interacts with the CP of BYVMV and the 
host nuclear import protein karyopherin α. The failure of 
βC1 to localize in the nucleus results in a lack of symptom 
development [203, 204].

Host‑vector‑virus tripartite interaction

The βC1 protein promotes host-vector-virus tripartite inter-
action [184] by suppressing JA signaling and promoting 
emission of the volatile compound linalool [205]. The βC1 
protein interferes with AS1/AS2 complex formation [187] 
as well as interfering with dimerization of the transcription 
factor MYC2 [161]. Both of these interactions suppress JA-
mediated synthesis of terpenes and other metabolites (which 
repel insects), resulting in the attraction of more insects to 
infected plants. Apart from increasing the vector activity on 
infected plants, βC1 can also deter infestation of infected 
plants by non-vector insects. Such observations have been 
reported in the case of CLCuMuV and its associated beta-
satellite, in which βC1 binds to the transcription factor 
WRKY20 in the phloem to modulate chemical immunity in 
the host to support propagation of its vector (i.e., whitefly) 
and deter non-vectors such as cotton bollworms and aphids 
[206].

Satellite- and DNA-B-encoded proteins share functional 
homology in several aspects. For instance, both βC1 and 
DNA-B-encoded-proteins assist in the movement of the viral 
genome, and βC1 and BV1 mimic other proteins to suppress 
JA acid signaling to attract whiteflies for transmission. This 
clearly demonstrates that although they diverged in the pro-
cess of evolution, these proteins still retain properties that 
are essential for pathogenesis.

βV1 and other small ORFs

βV1 is a novel ORF discovered very recently encoded on the 
viral-sense strand of the betasatellite genome. This ORF is 
conserved in position and sequence in nearly 40% of betasat-
ellite sequences. Intriguingly, it positively affects viral infec-
tion by triggering HR in leaves of N. benthamiana [207]. 
Exploration of genome sequences for small ORFs encoding 
microproteins has led to the discovery of possible functional 
roles for small ORFs. An important and interesting study 
by Gong et al. revealed the presence of six small ORFs in 
the TYLCV genome. One of these, ORF6, also designated 
as V3, is conserved among begomoviruses. Interestingly, a 
TYLCV variant with a mutated V3 exhibited an impaired 
ability to induce symptoms in the host and was also found to 
silence both TGS and PTGS suppressors [208].
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Conclusions and future directions

Over the past few years, studies have established the mul-
tifarious nature of geminivirus proteins and the complex-
ity of their interaction with host factors. These studies have 
identified interactions that are essential for infection and 
provided insight into how geminiviruses redirect plant pro-
cesses and counteract host defense responses [209, 210]. 
However, structural studies of these viral proteins could 
shed more light on the mechanism involved in their interac-
tion with host factors. It would also help to identify the pro-
tein domains required for the various functions performed 
by geminivirus proteins. With the recent identification of 
positional homologs with incomplete functional overlap 
in proteins such as AC2/C2 and AC4/C4 suggesting that 
novel functions of these proteins remain to be discovered, 
one needs to be cautious when predicting the function of an 
ORF based on its position [84]. Furthermore, the discovery 
of novel ORFs encoding small proteins such as βV1 and V3 
might suggest additional complexity in host-virus interac-
tions. Application of new and emerging techniques in the 
fields of cell biology, molecular biology, and biochemis-
try, especially systems biology and CRISPR-Cas9-related 
techniques, will provide a new dimension and improve our 
understanding of one of the largest families of plant viruses.
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