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Abstract
Traditional veterinary virus vaccines, such as inactivated and live-attenuated vaccines, have achieved tremendous success 
in controlling many viral diseases of livestock and chickens worldwide. However, many recent viral outbreaks caused by 
different emerging and re-emerging viruses continue to be reported annually worldwide. It is therefore necessary to develop 
new control regimens. Nanoparticle research has received considerable attention in the last two decades as a promising 
platform with significant success in veterinary medicine, replacing traditional viral vector vaccines. However, the field of 
nanoparticle applications is still in its initial phase of growth. Here, we discuss various preparation methods, characteristics, 
physical properties, antiviral effects, and pharmacokinetics of well-developed nanoparticles and the potential of nanoparticles 
or nano-vaccines as a promising antiviral platform for veterinary medicine.

Introduction

Nanotechnology is a rapidly growing field that dates back 
to 1974 and has led to the development of many novel nan-
oparticles with average diameters ranging from 1 to 100 
nanometers (nm) [77, 79]. The prefix nano is derived from 
the Latin word “nanus” which means "very small", as 1 nm 
corresponds to 10-9 meter (m) [77]. Currently, nanotechnol-
ogy is being applied in different fields, including agriculture, 
infection control [80], and biomedicine [10, 69]. Nanopar-
ticles have several physical and biological characteristics, 

such as a large surface area, improved reactive properties, 
an enormous size-to-volume ratio, durability, bioactivity, 
bioavailability, regulated particle length, managed phar-
maceutical release, site-specific targeting, and regulated 
delivery of medications [49]. Moreover, nanoparticles can 
penetrate cells, tissues, and organs, making them effective 
drug delivery tools [18]. Different medicinal products can 
also be attached to the surface of nanoparticles [57, 69]. In 
order to overcome difficult problems, traditional treatments 
may not be sufficient, and novel approaches need to be con-
sidered, which can inform future findings and criteria for 
existing problems [88]. The economies of many countries 
rely on animal-based industries, and with the emergence of 
many viral diseases, novel disease control and prevention 
regimens are urgently needed [67]. Nanotechnology has 
shown incredible potential for enhancing the delivery of 
medicines and vaccines in the field of veterinary medicine 
[10]. The increasing growth of the nanoparticle field will 
lead to the development of new therapeutics to cure viral 
or bacterial infections, as well as to enhance the healing of 
deep wounds. In addition, these newly developed nanopar-
ticles could successfully transfer medicines to different cells 
to treat diseases [15, 50]. Another amazing development in 
nanotechnology is nano-theranostics, a medical technique 
that integrates medicines and diagnostics with the aim of 
improving the effectiveness of currently used medicines. 
Furthermore, this integration provides a great opportunity to 
improve and design these agents, which enable therapeutic 
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delivery as well as a method of detection before and during 
the treatment process [47, 66]. One of the most encouraging 
and positive sectors of nanotechnology is nanopharmaceuti-
cal products, which have several advantages in veterinary 
medicine [59, 100].

Additionally, nanomaterials have been used as antiviral 
agents in many studies, with about 27% of total publications 
relating to nanoparticle applications in medical and health 
sciences, according to the dimensions database http://​www.​
dimen​sions.​ai/. Due to the importance of nanoparticles, this 
review aims to address the topic of antiviral nanoparticles 
as novel and promising treatments in veterinary medicine.

Classification of nanoparticles

Nanoparticles are classified into one-dimensional nanoparti-
cles, two-dimensional nanoparticles, and three-dimensional 
nanoparticles [27, 77]. The differences between these types 
are summarized in Table 1.

One-dimensional nanoparticles (1D-nanoparticles) are 
thin-film manufactured surfaces with sizes ranging from 
1–100 nanometers (nm). They are commonly used in vari-
ous technological applications such as solar cells, biological 
and chemical sensors, magneto-optic and optical information 
storage systems, and fiber optic systems [55].

Carbon nanotubes are an example of two-dimensional 
nanoparticles (2D-nanoparticles) that fold into a cylindri-
cal shape. They have different properties, such as strength, 
hardness, and electrical conductivity [55]. They are made of 
either organic material, such as carbon, or inorganic mate-
rial, such as metal oxide. However, metal oxide tubes are 
heavier and weaker than carbon tubes [2].

Three-dimensional nanoparticles (3D-nanoparticles), 
such as dendrimers, quantum dots (QDs), and fullerenes, 
are three-dimensional and semi-conductive colloidal nano-
materials. They have a core and shell with diameters rang-
ing from 2 to 10 nm. The physical and chemical properties 
of QDs depend mainly on their size. Moreover, QDs pro-
vide sufficient space for delivery of therapeutic agents in a 
variety of applications, such as simultaneous drug delivery 
and in vivo imaging and tissue engineering. Dendrimers are 

branched molecules that got their name from the Greek word 
"dendron", which means "tree" [77]. Dendrimers are used 
to deliver drugs and have average diameters ranging from 
10 to100 nm, with multiple surface functional groups. They 
have various reactive groups (nanostructures) suitable for 
the conjugation of organic structures to their surface, such as 
DNA. They are regarded as essential tools for the large-for-
mat synthesis of inorganic and organic nanostructures with 
dimensions of 1-100 nm [77]. Dendrimers are used in the 
pharmaceutical industry to produce high-performance drug 
discovery products, such as non-steroidal anti-inflammatory 
formulas, antivirals, and antimicrobial medications [65]. 
However, dendrimers may damage cellular membranes due 
to their positively charged surface [63]. Fullerenes are car-
bon-based molecules made entirely of carbon atoms. They 
form a hollow ball that is sometimes called a "buckyball". 
Fullerenes are prepared by heating graphite in helium until 
evaporation. The atoms are finally arranged in an icosahedral 
shape similar to that of the football [52]. They may also be 
combined with a variety of medically useful products [9].

Characterization of nanoparticles

Characterization of nanoparticles depends on measur-
ing parameters such as morphology, particle size, surface 
hydrophobicity, and surface charge. Advanced techniques, 
such as transmission electron microscopy (TEM), atomic 
force microscopy (AFM), and scanning electron micros-
copy (SEM), can be used for measurement of particle size, 
morphology, and particle size distribution, respectively. The 
common nanoparticle characterization methods are summa-
rized and listed in Table 2. The surface charge of nanopar-
ticles has a significant impact on the physical stability and 
efficiency of the polymer. Therefore, the zeta potential tech-
nique is widely used as a tool for indirect measurement of a 
nanoparticle’s surface charge. It also can be used to evalu-
ate the surface hydrophobicity and the nature of materials 
encapsulated inside nanocapsules or coated onto their sur-
face [74]. On the other hand, several techniques have been 
used in the last decade to measure the surface hydropho-
bicity of nanoparticles, including hydrophobic interaction 

Table 1   Classification of 
nanomaterials according to 
dimensions

Classification Examples Dimensions

0D nanomaterials Spheres or clusters, which are considered 
point-like particles

All dimensions at the nanoscale

1D nanomaterials Nanofibers, wires, rods Two dimensions at the nanoscale
One dimension at the macroscale

2D nanomaterials Films, plates, multilayers, or networks One dimension at the nanoscale
Two dimensions at the macroscale

3D nanomaterials Nanophase materials consisting of equiaxed 
nanometer-sized grains

No dimensions at the nanoscale
All dimensions at the macroscale

http://www.dimensions.ai/
http://www.dimensions.ai/
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chromatography. Modern techniques such as X-ray photon 
correlation spectroscopy allow the identification of specific 
chemical groups on the surface of nanoparticles, as well as 
the determination of the hydrophobicity of nanoparticles 
[101].

In addition, several techniques have been used to deter-
mine drug loading and drug release, such as high-perfor-
mance liquid chromatography (HPLC) or ultraviolet (UV) 
spectroscopy. The HPLC method is used to measure the 
loading capacity of the nanoparticle conjugated drug, which 
can be expressed as moles of drug per mg of polymer, mg 
of drug per mg of polymer, or as a percentage relative to the 
polymer [25, 48, 77].

Preparation of nanoparticles

Preparation of nanoparticles is usually based on the chemi-
cal and physical characteristics of the drug and the poly-
mer. Nanoparticles can be made from a variety of materials, 
including synthetic polymers, polysaccharides, and proteins. 
However, several factors should be considered during the 
selection of polymers to be used for drug delivery, such as 
toxicity, nanoparticle size, antigenicity of the final product, 
surface charge, hydrophobicity, biocompatibility, and bio-
degradability [5, 83]. As discussed below, nanoparticles are 
usually prepared by emulsion, ionic gelation, and polymeri-
zation methods.

Emulsion method

The dispersion of a synthetic polymer with the drug under 
investigation is the basis of this process [17]. The size of 
the nanoparticles is affected by the polymer concentration, 
the type and concentration of stabilizers, and the stirring 
speed during the preparation process [93]. This method can 
be used for preparing lipophilic drugs with the flexibility 
to be combined with different modification methods to pre-
pare them. This method can be modified to alter the proper-
ties of the nanoparticles or to create suitable conditions for 
hydrophilic drugs [4]. These different modification methods 
can include spontaneous emulsification to form an oil-in-
water-in-oil emulsion [35] or double emulsion combined 
with evaporation methods [58]. Another method, known as 
salting-out, involves dissolving the drug and the polymer in 
an aqueous miscible solvent. This procedure can be carried 
out at room temperature and is particularly useful for the 
preparation of heat-sensitive materials.

Ionic gelation or coacervation method

This method is based on the preparation of nanoparticles by 
mixing oppositely charged particles [99]. It is also suitable 

for hydrophilic polymer-based nanoparticle preparation. 
Moreover, strong electrostatic interactions between the two 
aqueous phases contribute to creating coacervates using this 
method [72].

Polymerization method

In this method, nanoparticle molecules are generated chemi-
cally in the presence of an aqueous medium. The candi-
date drug is then added to the polymerization medium 
or adsorbed onto the nanoparticles after completion of 
the polymerization process. The polymerization process 
uses various stabilizers and surfactants, which are usually 
removed in an ultracentrifugation step, followed by resus-
pension of particles in a surfactant-free medium. The desired 
nanocapsule sizes can be achieved by optimizing the sur-
factant concentration and stabilizers [33, 96].

Nano‑vaccines and antiviral nanoparticles 
in veterinary medicine

Efficacy of nanoparticles against livestock viruses

Foot‑and‑mouth disease virus (FMDV)

Foot-and-mouth disease (FMD) is a highly contagious viral 
disease caused by foot-and-mouth disease virus (FMDV), a 
positive-sense RNA virus that belongs to the family Picor-
naviridae. FMDV causes illness in cows, sheep, goats, pigs, 
deer, and other animals with divided hooves [11, 24, 43, 
68, 70]. Inactivated FMDV vaccines have been shown to be 
part of the best practices for prevention and control since 
the 1990s. However, a possible escape of the virus from 
manufacturing facilities could cause unanticipated spread 
of the disease [86].

Many studies have shown that gold nanoparticles can be 
an excellent adjuvant when conjugated with current FMDV 
vaccines because they can stimulate both the nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-
κB) signaling pathway and the production of cytokines 
and specific cytotoxic T cells [98]. According to a recent 
study, the combination of synthetic gold-star nanoparticles 
(AuSNs) with FMDV-like particles (VLPs) resulted in the 
formation of a VLP-AuSNs complex that was not toxic in 
various cell lines tested. Moreover, a detailed mechanistic 
analysis showed that AuSNs can effectively promote the 
entry of FMDV VLPs into cells and improve macrophage 
activation when compared to FMD VLPs alone [98]. Fur-
thermore, the protection rate in an AuSN-adjuvanted group 
was found to be significantly higher post-virus-challenge 
than that in a group adjuvanted with traditional mineral oil 
(ISA206). This is very promising, as we may in the future 
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be able to use lower doses of nanovaccines against FMDV, 
thus lowering production costs and facilitating rapid and 
broad distribution to different countries.

Another group reported that injection of gold nanopar-
ticles conjugated to a synthetic peptide VP1 corresponding 
to the capsid protein of FMDV with complete Freund’s 
adjuvant resulted in maximum production of antibodies in 
guinea pigs, increased gamma interferon (IFN-γ) produc-
tion, and enhanced the activity of peritoneal macrophages. 
Interestingly, in the same study, the use of gold nanopar-
ticles as a hapten carrier augmented the immune response 
even when complete Freund’s adjuvant was not used [26].

Rift Valley fever virus (RVFV)

Rift Valley fever virus (RVFV) is a mosquito-borne virus 
that causes devastating disease in ruminants and can be 
transmitted to humans. In humans, RVFV induces an influ-
enza-like illness, but it can also lead to a more complicated 
scenario with elevated morbidity and mortality [44]. Cur-
rently, there is no licensed RVFV vaccine available for 
human use. Therefore, effective therapeutics are urgently 
needed. Silver nanoparticles have long been reported to 
have potent antiviral activity against many viruses belong-
ing to different families [82].

A recent report showed a potential application of silver 
nanoparticles to control RVFV in which silver nanopar-
ticles were formulated as Argovit™ [13]. The antiviral 
activity of Argovit was evaluated in two ways: in vitro 
on Vero cells and in vivo in type-I-interferon-receptor-
deficient mice. First, different concentrations of Argovit 
were added to previously RVFV-infected-cells or given 
to animals infected with a lethal dose of RVFV. Second, 
RVFV was pre-incubated with different concentrations of 
Argovit before inoculation of mice and/or Vero cells. The 
ability of Argovit to control the RVFV infection was lim-
ited. However, incubation of the virus with Argovit before 
infection resulted in a significant reduction in RVFV infec-
tivity in both in vivo and in vitro experiments [13].

Bovine herpesviruses

Infectious bovine rhinotracheitis/infectious pustular bala-
noposthitis (IBR/IPB) is a highly contagious viral disease 
caused by bovine herpesvirus type 1 (BoHV-1), a dou-
ble-strand DNA virus that belongs to the family Herpes-
viridae. The virus infects cattle and buffaloes worldwide, 
resulting in significant economic losses [56]. A recent 
study showed that silver nanoparticles (Ag-NPs) at a dose 
of 24 μg/mL in medium inhibited virus infection in MDBK 
cells [28].

Peste des petits ruminants virus (PPRV)

Peste des petits ruminants (PPR) is a highly contagious 
transboundary viral disease that mainly affects sheep and 
goats. PPR is endemic in Egypt, causing major economic 
losses and high morbidity and mortality (up to 100%) in 
the affected flocks [30]. The disease is caused by PPRV, a 
negative-sense single-stranded RNA virus that belongs to 
the genus Morbillivirus, subfamily Orthoparamyxovirinae, 
family Paramyxoviridae [85]. The current PPRV vaccine on 
the market is a live-attenuated cell culture vaccine that did 
not show success in the control of the disease worldwide 
due to insufficient coverage, vaccine instability (especially 
in subtropical countries), low protection during epidemics, 
and poor cross-protection between circulating PPRV strains 
in the field and vaccine strains [64]. A study reported in 
vitro activity of silver nanoparticles (SNPs) on PPRV infec-
tion in Vero cells, where SNPs significantly inhibited virus 
entry at a minimum inhibitory concentration of 11.11 µg/
ml by interacting with the virion surface and core, but they 
did not have a direct viricidal effect on cell-free virions. 
The SNPs showed greater stability after storage at 37°C for 
seven days [61].

Efficacy of nanoparticles against avian viruses

Avian influenza virus

Avian influenza virus (AIV) is a highly contagious virus that 
causes substantial morbidity and mortality in poultry popu-
lations, and some strains pose a possible pandemic threat to 
humans [34, 94]. Despite the wide use of several inactivated 
AIV vaccines, they have proven ineffective, necessitating 
the development of new technology to improve their immu-
nogenicity and enhance their effectiveness. A recent study 
showed that H5 mosaic (H5M) vaccine antigen conjugated 
with polyanhydride nanoparticles (PAN) provided continued 
release of the encapsulated antigens [62]. Moreover, this 
vaccine candidate was immunogenic when encapsulated in 
PAN and/or delivered using the modified vaccinia Ankara 
(MVA) vector. Interestingly, both platforms (MVA vec-
tor and PAN encapsulation) elicited humoral and cellular 
immunity in specific-pathogen-free (SPF) and commercial 
chicks. In addition, protective levels of antibodies were 
elicited against highly pathogenic avian influenza (HPAI) 
caused by the homologous H5N1 and heterologous H5N2 
strains. However, little is known about the toxicology pro-
files of silver nanoparticles in vivo, either in avian species 
and/or livestock. The biological effects may vary depending 
on the animal species studied, age, gender, and other factors, 
including the physical properties of the silver nanoparticles 
administered, but also the dosage, route, and time of delivery 
[7, 103].
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Newcastle disease virus (NDV)

Newcastle disease (ND) is one of the most important viral 
diseases of poultry in terms of global distribution and dev-
astating economic losses. ND is caused by NDV, which 
belongs to the genus Orthoavulavirus, subfamily Avulaviri-
nae, and family Paramyxoviridae [85]. An intensive NDV 
vaccination programs in Egypt using traditional inactivated 
and live-attenuated NDV vaccines, has not been successful, 
and outbreaks continue to be reported, caused by velogenic 
and emergent virulent virus strains [45].

One earlier report showed that polyrhodanine nanoparti-
cles have potent anti-NDV activity in ovo, suggesting that 
this non-toxic material could be used in the control of NDV 
in chickens, as it reduced the egg infective dose 50 (EID50) 
of the NDV strains isolated from outbreaks in Tehran, Iran, 
in 2009 [75]. Interestingly, egg embryos inoculated with 0.1, 
1, 10, and 100 parts per million (ppm) of polyrhodanine had 
no pathological tissue lesions, abnormalities, or deformities, 
and there were also no changes in blood serum biochemical 
parameters [75].

Another interesting study showed that microalgae-
mediated silver nanoparticles (AgNPs) had significant in 
vitro antiviral activity against NDV infection in Huh7 cells 
[60]. Moreover, microalgae extracts had significant activity 
against NDV with an unclear mode of action, but it appears 
to be through inhibition of virus penetration into the infected 
cells, as AgNPs interacted directly with the NDV envelope 
glycoprotein. In another study, nanoparticles and polymer-
adjuvanted mucosal inactivated vaccines were developed 
for ND and avian influenza (H9N2), which were adminis-
tered to SPF chickens either by spray or by the intranasal 
route. These vaccines induced a significant increase in the 
phagocytic index, interleukin-6 (IL-6) levels, and IFN-γ 
responses, and they protected chickens against challenge 
with both viruses. The authors recommended mass applica-
tion of such vaccines in vaccination strategies against avian 
influenza subtype H9N2 and NDV [29].

Since mucosal immunity plays a key role in protection 
against NDV [105, 106], a DNA vaccine that contained the 
NDV fusion (F) gene encapsulated in either Ag@SiO2 hol-
low nanoparticles (pFDNA-Ag@SiO2-NPs) or chitosan-
coated polymeric (PLGA) nanoparticles showed low toxicity 
and high stability and did not destroy the bioactivity of the 
plasmid DNA in vitro. Moreover, intranasal vaccination of 
chickens with pFDNA-Ag@SiO2-NPs elicited higher anti-
NDV IgG and serum IgA levels, enhanced lymphocyte pro-
liferation, and promoted IL-2, IL-4, and IFN-γ expression 
[108]. Further studies are required to develop NDV mucosal 
vaccines incorporated in nanoparticles, as they are consid-
ered safe and effective carriers for the NDV-DNA vaccine.

In other studies, the efficacy, stability, and safety of live 
NDV vaccine (LaSota strain) encapsulated in chitosan 

nanoparticles has been evaluated [19, 104]. The encapsu-
lated vaccine was found to be safe and highly stable, and 
after virus challenge, vaccinated chickens that received oral 
and/or intranasal immunization with the nanoparticle vac-
cine were completely protected, whereas only partial protec-
tion was observed in chickens vaccinated with live LaSota 
or inactivated NDV vaccine alone [19, 104]. Moreover, a 
comparison of commercially combined NDV and IBV live-
attenuated vaccines to NDV-IBV live-attenuated vaccines 
encapsulated in two types of chitosan nanoparticles revealed 
that the chitosan-adjuvanted vaccines had higher safety, sta-
bility, and efficacy and elicited robust cellular and mucosal 
immune responses that protected the chickens against chal-
lenge with virulent NDV and IBV [107]. This is very prom-
ising, because the majority of currently approved NDV and 
IBV vaccines elicit partial protection due to an inadequate 
cellular immune response. Inadequate protection could 
facilitate the emergence of new viral variants causing many 
outbreaks, subsequently leading to a shortage in the animal 
protein supply. Using these newly developed nano-vaccines 
could help in minimizing the emergence of new viral vari-
ants and lowering the cost of animal protein production.

Infectious bursal disease virus (IBDV)

Infectious bursal disease (IBD) is a highly contagious 
immunosuppressive viral disease affecting 3- to 6-week old 
chicks with significant economic impact worldwide [89]. 
The disease is caused by IBDV, a non-enveloped, double-
stranded RNA virus that belongs to the genus Avibirnavirus 
of the family Birnaviridae [84]. The current commercial 
IBDV vaccines are either inactivated or live attenuated and 
cause some side effects. On the other hand, IBDV peptide 
and subunit vaccines are extremely safe but poorly immu-
nogenic [92]. Therefore, there is an urgent need to develop 
new, more-potent vaccines to control IBDV infection. Inter-
estingly, a research group recorded a significant increase 
in both humoral and cellular immune responses in broiler 
chickens vaccinated with a PLGA nanoparticle vaccine 
when compared to chickens vaccinated with the traditional 
IBDV vaccine [3]. Another study showed that graphene 
oxide (GO) sheets and silver nanoparticle-anchored gra-
phene oxide (GO-Ag) sheets have antiviral effects against 
non-enveloped IBDV and enveloped feline coronavirus 
(FCoV) [16]. Interestingly, they found that while GO had 
no antiviral activity against IBDV, it did reduce FCoV infec-
tion by 16%, whereas GO-Ag inhibited IBDV and FCoV 
infection by 23% and 25%, respectively [16].

Another study also showed that AgNPs had a preventive 
and therapeutic effect on IBDV in vivo using an enzyme-
linked immunosorbent assay (ELISA) [78]. The study tested 
the preventive effect of AgNPs against IBDV by mixing IBDV 
with AgNPs two hours before inoculating the mixture into 
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embryonated eggs, whereas for testing the therapeutic effect, 
AgNPs were injected 48 hours after virus inoculation into 
embryonated eggs. Interestingly, AgNPs, especially at a con-
centration of 20 ppm, were effective against IBDV using both 
methods, with no significant differences [78].

Other veterinary viruses

Feline coronavirus (FCoV) is the causative agent of feline 
infectious peritonitis (FIP), and there is currently no effec-
tive vaccine. Diphyllin (a nanoparticulate vacuolar ATPase 
blocker) was previously tested as an antiviral agent against 
FCoV type II. Interestingly, diphyllin interfered with FCoV 
replication in fcwf-4 cells by inhibiting endosomal acidifi-
cation. Diphyllin also showed in vivo efficacy against FCoV 
when administrated intravenously (I/V) to mice and demon-
strated a high safety profile [53]. Another interesting study 
showed the antiviral effects of both CulNPs and AgNPs on 
feline calicivirus (FCV), a surrogate for human norovirus [12, 
95]. In addition, polymeric nanoparticles such as PLGA stimu-
lated significant IgA secretion in dairy calves when compared 
to the commercial modified live bovine parainfluenza 3 virus 
(BPI3V) virus vaccine [14, 71].

Several studies have shown that aluminum-magnesium sili-
cate (AMS) nanoparticles have high in vitro antiviral activ-
ity against PPRV [36], canine parvovirus [41], AIV [39], 
NDV [40], egg drop syndrome 76 virus [38], IBDV [37], and 
fowlpox virus (FPV). In the last case, no hemagglutination 
activity was observed after treatment of the virus with AMS 
NPs [42]. Several other nano-vaccines have been developed 
successfully against different veterinary viruses, including a 
polyanhydride-NP-enclosed mucosal vaccine against bovine 
respiratory syncytial virus (BRSV) [73] and swine influenza 
virus vaccine encapsulated in polyanhydride NPs for intrana-
sal vaccination of pigs [21], PLGA NPs [22], or CS-polymer-
based NPs [23] that enhanced both the humoral and cellular 
immune responses and protected vaccinated pigs from swine 
influenza virus challenge. Furthermore, pseudorabies virus (a 
herpesvirus of swine) has also been shown to be inhibited by 
several nanoparticles [8, 46, 102]. Further studies are needed 
to evaluate the efficacy of previously described antiviral nano-
particles against severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), which was first described in December 
2019 in the city of Wuhan, Hubei province, China. As of 16 
May 2021, over 136 million cases and 3.38 million deaths 
have been reported in more than 220 countries and territories 
worldwide [31, 32, 51, 97].

Conclusion

Previous studies regarding the development and use of nan-
oparticles and nano-vaccines in veterinary medicine have 
shown significant success in the last decade when compared 
to traditional vaccines. However, further field studies are 
needed to investigate the effect of nano-vaccines on immu-
nosuppressed animals, and to determine the optimum appli-
cation for different animal species.
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