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Abstract
We present the complete genome sequences of Caribbean watersnake bornavirus (CWBV) and Mexican black-tailed rat-
tlesnake bornavirus (MRBV), which we identified in archived raw transcriptomic read data of a Caribbean watersnake 
(Tretanorhinus variabilis) and a Mexican black-tailed rattlesnake (Crotalus molossus nigrescens), respectively. The genomes 
of CWBV and MRBV have a length of about 8,900 nucleotides and comprise the complete coding regions and the untrans-
lated regions. The overall genomic makeup and predicted gene content is typical for members of the genus Orthobornavirus 
within the family Bornaviridae. Alternative splicing was detected for the L and M genes. Based on a phylogenetic analysis 
of all viral proteins, we consider both viruses to be members of a single novel species within the genus Orthobornavirus. 
Both viruses form a distinct outgroup to all currently known orthobornaviruses. Based on the novel virus genomes, we 
furthermore identified closely related endogenous bornavirus-like nucleoprotein sequences in transcriptomic data of veiled 
chameleons (Chamaeleo calyptratus) and a common lancehead (Bothrops atrox).

The family Bornaviridae belongs to the order Mononegavi-
rales [1] and comprises viruses with a monopartite single-
stranded RNA(-) genome that form enveloped and spherical 
virions with a diameter of 70-130 nm. Their genomes are 
about 8.9 kb in length and encode the nucleoprotein (N), 
the accessory protein X, the phosphoprotein (P), the matrix 
protein (M), the glycoprotein (G), and the large protein (L), 
which contains the RNA-directed RNA polymerase. The 
organization of the respective open reading frames varies 
among the different bornaviruses, and additional protein 
isotypes produced by alternative splicing [2] or start codon 
skipping [3] have been reported. Bornaviruses are divided 
into the three taxonomic genera: Orthobornavirus, Carbo-
virus, and Cultervirus [1, 4].

Currently, orthobornaviruses have the widest known host 
spectrum within the family Bornaviridae, ranging from 
mammals and birds to reptiles, whereas carbo- and culter-
viruses have so far only been identified in reptiles [5, 6] 
and fish [7], respectively. Mammalian orthobornaviruses are 
known to be zoonotic agents and may be transmitted from 

reservoirs, such as shrews or squirrels, to humans, sheep and 
horses [8–10]. Reptilian carbo- and orthobornaviruses have 
so far been identified in Australian carpet pythons (Morelia 
spilota (Lacépède, 1804)) with neurological disease [5] and 
in a wild-caught Loveridge’s garter snake (Elapsoidea lov-
eridgei (Parker, 1949)) [6], respectively. Furthermore, partial 
sequences of exogenous orthobornavirus-like N, X, and P 
genes identified in a Gaboon viper (Bitis gabonica (Duméril, 
Bibron & Duméril, 1854)) [11] suggested a wider distribu-
tion of orthobornaviruses among snakes.

In this study, we used data mining of transcriptomic and 
metagenomic raw RNA read archives in order to identify 
hitherto undetected bornaviruses of reptiles. As a result, we 
determined the full genome sequence of two bornaviruses 
in datasets from colubrid and viperid snakes.

In detail, we initially employed the Serratus website 
[12] in order to identify datasets within the Sequence Read 
Archive (SRA) that potentially contain bornavirus-like 
sequences. We then downloaded promising SRA datasets 
(SRR5440420 and SRR9693197), trimmed them with 
respect to quality and adapter contamination using Trim 
Galore (v0.6.6), and subsequently used rnaSPAdes (v3.13.0) 
for de novo assembly. The resulting contigs were then 
screened for bornavirus-like sequences using DIAMOND 
BLASTX (v0.9.21.122) with a representative database 
of bornavirus proteins. For both SRA datasets, the initial 
assembly yielded a single contig representing the complete 
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viral genome. These initial contigs were then further pol-
ished using an iterative mapping and assembly strategy [13]. 
The full genomes were annotated with respect to known bor-
naviruses using Geneious Prime (v2021.0.1). Furthermore, 
we predicted introns and splice sites using STAR (v2.7.7a) 
running in basic two-pass mode. The splice sites deduced 
from raw reads were further evaluated by in silico prediction 
using NNSPLICE (v0.9). Transcription termination sites 
were predicted using sequence similarity [14] and manual 
inspection of raw reads showing transition to polyA at the 
respective termination position.

SRR5440420 contains raw reads from the Harderian 
gland transcriptome of a wild-caught adult Caribbean 
watersnake (Tretanorhinus variabilis (Duméril, Bibron 
& Duméril, 1854); family Colubridae) from Santa Fe, La 
Habana, Cuba [15]. SRR9693197 contains raw reads from 
the venom gland transcriptome of a wild-caught juvenile 
Mexican black-tailed rattlesnake (Crotalus molossus nigre-
scens (Gloyd, 1936); family Viperidae) from Nuevo León, 
Mexico. The bornaviruses identified and characterised in 
these datasets were named Caribbean watersnake bornavirus 
(CWBV) and Mexican black-tailed rattlesnake bornavirus 
(MRBV), respectively. The genomes of CWBV and MRBV 
are of similar length, with MRBV (8907 nt) being three 
nucleotides longer at the 5’ end than CWBV (8904 nt). The 
overall genomic makeup of the two viruses is very similar.

In detail, we predicted six protein coding open reading 
frames, encoding N, X, P, M, G, and L (Fig. 1). The gene 
order N-X/P-M-G-L is consistent with the genome organiza-
tion of members of the genus Orthobornavirus but different 
from that of members of the genera Carbovirus and Cul-
tervirus, which share the order N-X/P-G-M-L [5, 7]. Fur-
thermore, we identified three conserved transcription initia-
tion sites and four transcription termination sites, as well as 
alternative splicing for the M and L genes (Fig. 1). A third 
potential intron, located in the L gene, was identified only 
for MRBV. All predicted splicing events were supported by 
several reads missing the intron sequence in both datasets. 
All predicted transcription start sites (S1-3) correlated well 

with a steep increase in read coverage, while all predicted 
transcription termination sites (T1-4) correlated with an 
steep drop in read coverage and reads showing a transition to 
polyA at the respective termination site. When compared to 
representative orthobornaviruses, the 5’ and 3’ untranslated 
region of CWBV and MRBV can be considered complete, 
although further experiments need to be performed using 
molecular methods such as rapid amplification of cDNA 
ends (RACE) PCR.

A phylogenetic analysis of a concatenated alignment 
of N-P-M-G-L amino acid sequences from both viruses 
along with representative bornavirus sequences showed 
that both viruses were distantly related to other members 
of the genus Orthobornavirus (Fig. 2a). Pairwise sequence 
comparison (PASC [16]) of complete genome sequences 
revealed 76.6% pairwise nucleotide sequence identity 
between CWBV and MRBV and 56.6-57.3% identity to the 
most closely related orthobornaviruses. Based on phyloge-
netic analysis and the conserved genome organisation, and 
in line with the species demarcation cutoff of 72 to 75% 
pairwise nucleotide sequence identity [1], we suggest that 
both viruses be assigned to a single new species within the 
genus Orthobornavirus.

Finally, we used the CWBV and MRBV protein 
sequences to further search the SRA. For this purpose, we 
downloaded 2-8 million reads of all available transcriptom-
ics or metagenomics datasets related to members of the taxo-
nomic order Squamata and used DIAMOND BLASTX to 
match sequences. Datasets with promising hits were then 
assembled as described. As a result, we identified three 
endogenous bornavirus-like nucleoprotein (EBLN) sequence 
elements in veiled chameleons (Chamaeleo calyptratus 
(Duméril & Bibron, 1851); SRR6662597) [17] and one 
EBLN in a common lancehead (Bothrops atrox (Linnaeus, 
1758); SRR1953004) [18] (Fig. 2b). The chameleon EBLNs 
exhibited 68.8-75.1% pairwise nucleotide sequence identity 
to each other and 65.2-66.3% to the CWBV and MRBV N 
genes, whereas the common lancehead EBLN was more dis-
tantly related. A phylogenetic comparison of EBLNs and 

Fig. 1   The overall genome organization of Caribbean watersnake 
bornavirus (CWBV) and Mexican black-tailed rattlesnake bornavirus 
(MRBV) is highly conserved and comprises the canonical bornavi-
ral gene order N-X/P-M-G-L (pink arrows) flanked by untranslated 

regions (UTR – blue arrows). Introns were detected for the M and L 
genes (grey arrows). Three transcription initiation sites (S1-3) and 
four transcription termination sites (T1-4) were predicted.
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circulating bornaviruses based on the frameshift-corrected 
protein alignment of Hyndman et al. [5] showed that a com-
mon ancestor of both novel bornaviruses left its genetic 
fingerprint in the genomes of non-avian reptiles. Currently, 
there is no evidence that these viruses cause any disease 
in the sampled snakes, and further screening is needed to 
evaluate their distribution and clinical relevance. However, 
these sequences will improve bornavirus diagnostic proce-
dures and help researchers to understand the evolutionary 
origins of these viruses.
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Fig. 2   Maximum-likelihood phylogenetic analysis of orthobornavi-
ruses (a) and endogenous bornavirus-like nucleoproteins (b). (a) An 
unrooted phylogenetic tree based on the concatenated amino acid 
sequence alignments of N-P-M-G-L of the novel snake bornaviruses 
(highlighted in red) together with all available complete genome 
sequences of members of the genus Orthobornavirus. (b) Phyloge-
netic relationship between endogenous bornavirus-like nucleoprotein 
amino acid sequences (grey) and those of members of the bornavirus 

genera Carbovirus (blue), Orthobornavirus (orange) and Cultervi-
rus (purple). Sequences determined in this study are indicated by red 
dots. Trees were calculated using IQ-TREE (version 2.1.2; 1 million 
ultrafast bootstraps; optimal substitution model for each alignment/
alignment partition). The bars represent amino acid substitutions per 
site, and numbers in italics indicate bootstrap support for the major 
branches.
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