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Abstract
Here, we report the complete genome sequence of chrysanthemum mosaic-associated virus (ChMaV), a putative new mem-
ber of the genus Emaravirus. The ChMaV genome comprises seven negative-sense RNA segments (RNAs 1, 2, 3a, 3b, 4, 
5, and 6), and the amino acid sequences of its RNA-dependent RNA polymerase (RNA1), glycoprotein precursor (RNA2), 
nucleocapsid protein (RNA3), and movement protein (RNA4) showed the closest relationship to pear chlorotic leaf spot-
associated virus. Phylogenetic analysis showed that it clusters with emaraviruses whose host plants originate from East Asia.

The viruses of the genus Emaravirus have multipartite RNA 
genomes, each of which encodes a single protein. Of these, 
RNA1, RNA2, RNA3, and RNA4 encode RNA-dependent 
RNA polymerase (RdRp), glycoprotein precursor (GP), 
nucleocapsid protein (NP), and movement protein (MP), 
respectively [1]. Since 2007, more than 20 emaraviruses 
have been identified [2–4], and some of these viruses are 
known to be transmitted by a specific eriophyid mite [5–7]. 
Chrysanthemum is one of the most important ornamental 
crops worldwide. In Japan, flowers are produced not only 
for ornamental purposes but also as food. It is believed that 

domestic chrysanthemum cultivars were introduced into 
Japan from China in the fifth to eighth centuries.

The occurrence of leaf chlorotic ringspot or mosaic symp-
toms of chrysanthemum, known as “Mon-mon” disease, has 
been observed since the 1960s. It has long been believed 
that the symptoms are a kind of physiological abnormal-
ity caused by infestation with an eriophyid mite, Paraphy-
toptus kikus [8–10]. However, using reverse transcription 
polymerase chain reaction (RT-PCR) with newly developed 
emaravirus-specific degenerate primers in combination with 
a high-throughput sequencing (HTS) approach (see below), 
we obtained a partial nucleotide sequence from sympto-
matic leaves showing sequence similarity to the RNA1 of 
emaraviruses and found a correlation between the symptoms 
and detection of the emaravirus-like sequence. The putative 
emaravirus was tentatively named "chrysanthemum mosaic-
associated virus" (ChMaV) [11].

To determine the complete nucleotide sequence of 
ChMaV, symptomatic leaves of chrysanthemum (cv. Kin-
nishiki, an edible flower variety) were collected from a 
greenhouse in Toyohashi, Aichi, in 2018. Total RNA was 
extracted from one leaf sample exhibiting representative 
mosaic symptoms, using the rapid CTAB method [12], 
and this sample was subjected to HTS as described pre-
viously [7]. Out of a total of 127,707 contigs (maximum 
length, 14,620 nt; minimum length, 125 nt; mean length, 
409 nt) derived from 33,954,546 paired-end, 150-bp reads, 
sequences containing open reading frames (ORFs) encoding 
proteins with amino acid sequence similarity to emaravirus 
proteins were identified by BLASTx and DELTA-BLAST 
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searches [13, 14]. Both searches detected seven contigs 
whose length and amino acid sequences showed the highest 
similarity to the following emaravirus proteins: 7,144 nt, 
2,054 nt, 1,307 nt, 911 nt, 1,353 nt, 1,164 nt, and 1,761 nt; 
44.4% to pear chlorotic leaf spot-associated virus (PCLSaV) 
P1 [15], 33.0% to PCLSaV P2, 40.4% to PCLSaV P3, 38.9% 
to PCLSaV P3, 59.3% to PCLSaV P4, 24.8% to perilla 
mosaic virus (PerMV) P5 [7], and 28.6% to rose rosette 
virus (RRV) P5 [16], respectively. The complete nucleo-
tide sequences of these RNAs were determined via direct 
sequencing using specific primers designed based on the 
sequences of the contigs (Supplementary Table S1), and 
the terminal sequences were determined by 5′ and 3′ rapid 
amplification of cDNA ends using 5′ or 3′ full RACE Core 
Sets, (Takara Bio). The seven RNAs contained conserved 
13- and 11- nt sequences at the 5′ and 3′ terminus (5′-AGU 
AGU GUU CUC C......AAC ACA CUACU-3′), respectively, 
which is a common feature of the RNA segments of emara-
viruses [1]. Based on the standard nomenclature for emara-
virus RNAs and protein homologs, these seven RNAs were 
named RNA1, RNA2, RNA3a, RNA3b, RNA4, RNA5, 
and RNA6 (Fig. 1). To identify other possible segments, 
RT-PCR was performed with the primers BamHI-ChMaV-
5′ter-11mer-fw and BamHI-ChMaV-3′ter-11mer-rv (Supple-
mentary Table S1), which contain a BamHI site followed 
by the conserved 11-nt sequence at the 5′- and 3′-terminus, 
respectively, and the amplification products were cloned and 
sequenced. Of the 48 clones sequenced, 44 were from previ-
ously determined RNA segments (30 from RNA3a, seven 
from RNA3b, three from RNA4, two from RNA5, one from 

RNA6, and one that included sequences from both RNA5 
and RNA6), and the others did not encode proteins; thus, no 
other emaravirus-like segments were found.

We previously reported that a partial nucleotide sequence 
of RNA1 was specifically detected in five symptomatic 
leaves, but not in five asymptomatic leaves, by RT-PCR 
[11]. Primer sets targeting RNAs 2, 3a, 3b, 4, 5, and 6 were 
designed and used for diagnosis (Supplementary Table S1). 
All of these RNAs were specifically detected in the five 
symptomatic leaves, whereas no RNAs were detected in the 
five asymptomatic leaf samples (data not shown), indicating 
that all of the segments identified are indeed associated with 
the mosaic symptoms.

RNA1 is 7,093 nt long and contains an ORF (nt positions 
7,029 to 121) that encodes P1, a putative RdRp of 2,302 aa. 
The presence of the seven amino acid sequence motifs (Pre-
A, F, and A–E) that are conserved in emaravirus RdRps was 
confirmed, as reported previously [11]. RNA2 is 2,054 nt 
long and contains an ORF (nt 1,984 to 83) that encodes P2, 
a putative GP of 633 aa. As with the P2 of other emaravi-
ruses, ChMaV P2 contains a phlebovirus glycoprotein motif 
 (G490CYSCTQG).

Like some other emaraviruses, the genome of ChMaV 
contains two derivatives of RNA3: RNA3a and RNA3b. 
RNA3a and RNA3b are 1,390 and 1,215 nt long, respec-
tively, and each encodes an NP: P3a (ORF at nt 1,316 to 
525) and P3b (nt 1,148 to 357), both of which are 263 amino 
acids in length. The amino acid sequence identity between 
ChMaV P3a and P3b is 48.3%, which is much lower than 
that between the P3s of High Plains wheat mosaic virus 

Fig. 1  Schematic representation 
of the organization of chry-
santhemum mosaic-associated 
virus (ChMaV) genomic RNAs. 
Open reading frames are 
represented by rectangles, and 
those with amino acid sequence 
similarity to one another have 
the same color. The 13- and 
11-nucleotide-conserved 
sequences at the 5′ and 3′ 
terminus on each segment are 
represented by blue and yellow 
boxes, respectively. Drawings 
are not to scale.
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Fig. 2  Phylogenetic relationships of chrysanthemum mosaic-asso-
ciated virus (ChMaV), emaraviruses, and selected viruses of the 
order Bunyavirales. Analyses were performed using the amino acid 
sequence alignments for a RNA-dependent RNA polymerase (RdRp), 
b glycoprotein precursor (GP), c nucleocapsid protein (NP), and d 
movement protein (MP). The numbers at each node represent boot-
strap values in percent, and those < 60% were omitted. The scale bars 
represent the number of residue substitutions per site. The GenBank 
accession numbers of the proteins used for phylogenetic analysis are 
shown. Sequences of maize mosaic virus (MMV), a member of the 
genus Alphanucleorhabdovirus, order Mononegavirales, rice stripe 
virus (RSV, genus Tenuivirus, family Phenuiviridae), and tomato 
spotted wilt virus (TSWV, genus Orthotospovirus, family Tospoviri-
dae), of the order Bunyavirales, were used as outgroups. The mem-
bers of the genus Emaravirus included actinidia chlorotic ringspot-
associated virus (AcCRaV), actinidia emaravirus 2 (AcEV-2), aspen 

mosaic-associated virus (AsMaV), alfalfa ringspot-associated virus 
(ARaV), blackberry leaf mottle-associated virus (BLMaV), Camelia 
japonica-associated emaravirus (CjaEV) 1 and CjaEV2, European 
mountain ash ringspot-associated virus (EMARaV), fig mosaic virus 
(FMV), High Plains wheat mosaic virus (HPWMoV), lilac chlorotic 
ringspot-associated virus (LiCRaV), jujube yellow mottle-associated 
virus (JYMaV), pear chlorotic leaf spot-associated virus (PCLSaV), 
perilla mosaic virus (PerMV), pistacia virus B (PiVB), blue palo 
verde broom virus (PVBV), pigeonpea sterility mosaic virus 
(PPSMV-1), pigeonpea sterility mosaic virus 2 (PPSMV-2), rasp-
berry leaf blotch virus (RLBV), rose rosette virus (RRV), redbud yel-
low ringspot-associated virus (RYRSaV), and ti ringspot-associated 
virus (TiRSaV). The subgroups of emaraviruses based on the trees for 
NP and MP are indicated by solid lines. The proteins of ChMaV are 
indicated by arrowheads.
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(HPWMoV) (88.9%) and PerMV (83.0%) [7, 17] (Fig. 2C). 
Of the three conserved motifs in P3 of emaraviruses [18], 
ChMaV P3a and P3b contain “N148RLA” and “G169XEX”, 
but “NX2SXNX3A” is missing. The lack of  NX2SXNX3A is 
also observed in the P3s of PCLSaV, PerMV, CjaEV1, and 
CjaEV2 [7, 15, 19].

RNA4 is 1,303 nt long and contains an ORF (nt 1,233 to 
310) that encodes the P4 of 307 amino acids with a predicted 
molecular mass of 35.4 kDa, a putative MP. ChMaV P4 con-
tains a conserved  D110XR motif, which is present in the MPs 
of other emaraviruses [20]. However, the most conserved 
WKT motif is substituted by  Y174KV, which is similar to 
YKT in the P4 of PCLSaV [15].

RNA5 is 1,154 nt long and contains an ORF (nt 1,098 to 
574) that encodes P5, a 174-amino acid protein of 20.1 kDa. 
ChMaV P5 exhibits amino acid sequence similarity to the P5 
protein of PerMV and the P7 protein of HPWMoV, a sup-
pressor of RNA silencing [21, 22]. RNA6 is 1,707 nt long 
and contains an ORF (nt 1,624 to 164) that encodes P6, a 
486-amino-acid protein of 57.1 kDa. ChMaV P6 exhibits 
amino acid sequence similarity to raspberry leaf blotch virus 
(RLBV) P5 and RRV P7, whose functions are unknown [16, 
23].

The ranges of amino acid sequence identity of P1 to P4 
of ChMaV to the corresponding proteins of other emaravi-
ruses, calculated by SDT v.1.2 [24], were as follows: P1, 
31.3% (PerMV) to 45.0% (PCLSaV); P2, 22.4% (TiRSaV) 
to 32.6% (PCLSaV); P3a, 21.6% (PPSMV-1) to 39.8% 
(PCLSaV); P3b, 21.0% (PPSMV-1) to 36.4% (PCLSaV); 
and P4, 19.3% (EMARaV) to 59.6% (PCLSaV). ChMaV P5 
shared the highest sequence identity (30.4%) with PerMV 
P5 (BBM96182), followed by P7 of Camellia japonica-
associated emaravirus 1 (CjaEV1) (QHG11079) (29.1%), 
HPWMoV P7 (AIK23038) (27.8%), and PCLSaV P5 
(QKY77007) and CjaEV1 P8 (QHG11080) (26.5%). ChMaV 
P6 shared the highest identity with RRV P7 (QJR96844) 
(28.4%), followed by its orthologous proteins [16] RRV 
P5 (QIB98227) (25.4%), HPWMoV P6 (AIK23037) 
(24.8%), HPWMoV P5 (AIK23036) (24.7%), PPSMV-1 P5 
(CCW28369) (23.7%), and RLBV P5 (CBZ42028) (22.5%). 
Following the demarcation criterion for the genus Emara-
virus that the amino acid sequences of the relevant gene 
products of RNA1 (RdRp), RNA2 (GP), and RNA3 (NP) 
differ by >25% [1], we concluded that ChMaV is a member 
of a distinct species of the genus.

The amino acid sequences of proteins P1 to P4 of ChMaV, 
known emaraviruses, and viruses belonging to the order 
Bunyavirales were aligned using MAFFT [24], and phy-
logenetic trees were reconstructed by the neighbor-joining 
method implemented in MEGA X [25] with 1,000 bootstrap 
replicates (Fig. 2). P1 to P4 of ChMaV consistently segre-
gated together with those of PCLSaV and formed a cluster, 
namely, subgroup III, with PerMV, CjaEV1, and CjaEV2 

(Fig. 2). Interestingly, these viruses were found in Japan or 
China [7, 15, 27, 28], and their host plants (Chrysanthemum 
morifolium, Pyrus pyrifolia, Perilla frutescens, and Camelia 
japonica) also originate from or are widely distributed in 
East Asia [29–32]. These observations indicate that sub-
group III represents a unique genetic cluster of known and 
unknown emaraviruses of East Asian origin.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s0070 5-021-04979 -2.
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