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Abstract
The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, 
proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including 
the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The 
PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of 
this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five 
different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, sup-
pression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can 
be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates 
this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new 
data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem 
to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its 
replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the 
development of antiviral therapies.

Abbreviations
BAD  Bcl-2-associated death promoter 
FOXO  Forkhead box O1 protein 
GSK3  Glycogen synthase kinase 3 
INPP4B  Inositol polyphosphate 4-phosphatase 

type II
mTORC2  Mammalian target of rapamycin com-

plex 2
PDK-1  Phosphoinositide-dependent kinase 1
PH  Pleckstrin homology

PHLPP  PH domain leucine-rich repeat protein 
phosphatase

PI3K  Phosphoinositide 3-kinase
PI(3,4)P2=PIP2  Phosphatidylinositol 3,4-bisphosphate
PI(3,4,5)P3=PIP3  Phosphatidylinositol 

3,4,5-trisphosphate
PKB  Protein kinase B
PP2A  Protein phosphatase 2A
PTEN  Phosphatase and tensin homologue 

deleted on chromosome 10
SHIP  Src homology 2 (SH2)-containing 

inositol 5-phosphatase
ssRNA  Single-stranded RNA

The PI3K/Akt signalling pathway

The PI3K/Akt signalling pathway is a ubiquitous pathway 
involved in many cellular processes, such as cell survival 
and apoptosis, autophagy, cell growth, cellular metabolism, 
RNA processing, and translation. The PI3K-Akt signal-
ling cascade is triggered by activation of phosphoinositide 
3-kinases (PI3Ks). Class I PI3Ks are the best-studied of 
all PI3Ks. They are heterodimeric proteins comprising a 
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regulatory subunit that contains a Src homology domain 
SH2, p85, and the catalytic subunit p110. PI3K is activated 
by the stimulation of receptor tyrosine kinases, G-protein-
coupled receptors, or Ras [1, 2]. After stimulation by certain 
effectors (cytokines, hormones, grow factors, viruses), the 
activation of PI3K leads to an increase in the membrane 
phosphoinositides phosphatidylinositol-3,4,5-trisphosphate 
(PI(3,4,5)P3) and phosphatidylinositol-3,4-bisphosphate 
(PI(3,4)P2) [3] (Fig. 1A). PI(3,4,5)P3 is directly synthetized 
by the catalytic action of PI3K on the substrate PI(4,5)P2, 
whereas PI(3,4)P2 is mainly generated after dephosphoryla-
tion of PI(3,4,5)P3 by SHIP (Src homology 2 [SH2]-con-
taining inositol 5-phosphatase) and other phosphatases [4]. 

Both phosphoinositides, PI(3,4,5)P3 and PI(3,4)P2, recruit 
different proteins to the plasma membrane by interacting 
with the pleckstrin homology (PH) domains of their targets 
[5, 6]. Akt [7, 8] and PDK-1 (phosphoinositide-dependent 
kinase 1) [9] are among these target proteins (Fig. 1B). 
Although the different functions of these phosphoinositides 
in PI3K/Akt signalling still need to be determined [4, 10], it 
has been shown that PI(3,4)P2 can exert an inhibitory effect 
on PI3K [11].

Akt, also known as protein kinase B PKB, is a serine/
threonine kinase present in all mammalian cell types. The 
protein contains three different domains: a PH domain 
at its N-terminus, a catalytic domain, and a regulatory 

Fig. 1  (A) Chemical structure 
of phosphoinositides. Phos-
phoinositides are synthesized 
by PI3K and controlled by 
the lipid phosphatases PTEN, 
SHIP, PIPP and INPP4. (B) The 
PI3K/Akt signalling pathway. 
Stimulation of RTKs or GPCRs 
leads to activation of PI3K, 
resulting in PIP3 production at 
the plasma membrane. Akt is 
recruited to the membrane by 
interacting with the phos-
phoinositides PIP3 and PIP2 
through its PH domain. Signal 
termination is achieved by the 
action of SHIP, INPP4, PP2A 
and PHLPP phosphatases. Upon 
activation, Akt phosphoryl-
ates many downstream targets 
to control different cellular 
processes
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domain [12, 13]. After activation of PI3K, Akt is recruited 
to the membrane and activated by double phosphorylation 
at Thr308 and Ser473 (Fig. 1B). PDK-1 is also recruited 
and phosphorylates Thr308, which is located in a segment 
at the entrance to the active site known as the activation 
loop [9]. In turn, mTORC2 (mammalian target of rapamy-
cin complex 2) phosphorylates Ser473 in the hydrophobic 
motif [14]; reviewed in references 3 and 15.

The levels of PI(3,4,5)P3 and PI(4,5)P2 are regulated 
by phosphoinositide phosphatases such as PTEN and 
SHIP (Fig. 1A). PTEN (phosphatase and tensin homo-
logue deleted on chromosome 10) is the major controller 
of PI(3,4,5)P3 levels and interrupts PI3K/Akt signalling 
by PI(3,4,5)P3 dephosphorylation at the 3-position of 
the inositol head [16]. PTEN is a tumour suppressor that 
is altered in many cancers, leading to PI3K activation. 
PI(3,4,5)P3 is also dephosphorylated at the 5-position of 
the inositol ring by inositol 5-phosphatases such as SHIP 
and PIPP (proline-rich inositol polyphosphate 5-phos-
phatase) [reviewed in reference 17]. Moreover, the INPP4 
phosphatases (inositol polyphosphate 4-phosphatase type 
II, INPP4A, and INPP4B) are highly specific for PI(3,4)
P2, which is degraded to PI(3)P (Fig. 1A) [10, 18]. Addi-
tionally, the activity of Akt signalling can be decreased 
through direct dephosphorylation of Akt by phosphatases 
such as PHLPP (PH domain leucine-rich repeat protein 
phosphatase), which dephosphorylates Ser473 [19], and 
PP2A (protein phosphatase 2A), which dephosphorylates 
Thr308 [20].

Upon activation, Akt can phosphorylate many down-
stream targets that control different cellular functions [for 
a detailed review, see references 3 and 15]. This suggests 
that the PI3K/Akt pathway plays a role in several different 
cellular functions (Fig. 1B). Upon Akt phosphorylation, 
the substrates can either be activated or, more commonly, 
inactivated. Some examples of Akt downstream substrates 
and associated functions are the forkhead box O (FOXO) 
transcription factors (inhibition of apoptosis and induc-
tion of cell survival), the pro-apoptotic factor BAD, p27 
and p21 (proliferation), mTORC1 (protein translation, 
cell growth, proliferation), and GSK3 (glycogen syn-
thase kinase 3; glucose and lipid metabolism, cell sur-
vival, proliferation). The PI3K/Akt signalling pathway 
is also involved in the regulation of the cellular splicing 
machinery [see references in reference 21].

It is also reported that PI3K signalling interacts with 
other cellular pathways. For example, Akt signalling can 
activate the transcription factor NF-κB or block both Erk 
signalling and the MAPK/JNK and p38 proapoptotic 
pathways [see references in reference 15].

Modulation of the PI3K/Akt pathway 
by viruses

During viral infection, viruses exploit a variety of cellular 
pathways for their own benefit, such as the PI3K/Akt sig-
nalling pathway. The PI3K/Akt pathway is manipulated by 
a number of viruses, including DNA and RNA viruses and 
retroviruses [reviewed in references 21–25]. A growing 
body of evidence has revealed that the PI3K/Akt signalling 
pathway can be used for many functions during viral infec-
tion, including the suppression of apoptosis, synthesis of 
RNA, alternative splicing, endocytosis, and remodelling of 
actin. Moreover, the cell triggers this pathway in response 
to viral infections.

This review summarizes the many different strategies 
that negative-stranded ssRNA viruses use to hijack the 
PI3K-Akt pathway to ensure their replication. In par-
ticular, we focus on the viral families Orthomyxoviridae, 
Paramyxoviridae, Pneumoviridae, Rhabdoviridae and 
Filoviridae (Table 1).

Orthomyxoviruses

Members of the family Orthomyxoviridae have a negative-
sense, single-stranded, segmented RNA genome, and they 
enter the host cell through endocytosis [26]. Among these, 
influenza A viruses comprise a major class of human res-
piratory pathogens. There is a large volume of research 
highlighting the different roles of the PI3K/Akt signal-
ling pathway in influenza virus A infection. In a complex 
scenario, influenza A viruses interact with the PI3K/Akt 
signalling pathway at different stages of their viral life 
cycle with pro- or antiviral consequences depending on 
the stage [reviewed in references 25 and 27].

Early on in the viral cycle, the PI3K/Akt signalling 
pathway is hijacked by influenza virus to promote virus 
entry [28]. It has been suggested that this virus binds to the 
cell surface leading to the activation of Akt [29] through 
the clustering of different receptor tyrosine kinases, 
RTKs, at the cell surface. Accordingly, it has been sug-
gested that peptides inhibiting Akt would block influenza 
virus entry in a virus-subtype-specific manner [30, 31]. 
More specifically, the PI3K/Akt signalling pathway could 
be hijacked by the virus to stimulate viral entry through 
clathrin-independent endocytosis [32]. As a result, a pep-
tide derived from PI3K has been described as having the 
ability to inhibit endocytic uptake of the virus and infec-
tion [33]. In addition to the role of the PI3K/Akt signalling 
pathway in early internalization events and endocytosis, 
PI3K signalling together with the ERK pathway seem to 
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be involved in regulating the endosome acidification that 
triggers fusion between the viral and endosomal mem-
branes [34], specifically through interaction of PI3K with 
the vacuolar ATPase.

Midway through the viral life cycle, the mTOR complex 
1 (mTORC1) is activated to promote optimal viral protein 
expression and replication, using a mechanism that relies 
on Akt activation and the influenza virus HA protein [35]. 

Table 1  Interplay between negative-strand ssRNA viruses and the PI3K/Akt signalling pathway

Family of viruses General effect 
of PI3K/Akt
Signalling on 
viral cycle

Viral signalling 
inducer

PI3K/Akt
Signalling and 
targets

Viral target Relevance to virus 
infection

References

Orthomyxoviridae
Influenza A virus

Supportive Binding to cell 
surface; clustering 
of RTKs

+
Akt

Virus entry [28, 29]

Supportive +
Akt

Endocytosis; endo-
some acidification

[33, 34]

Supportive NS1 +
PI3K p85
Akt

Suppression of pre-
mature apoptosis

[27, 31, 36–40, 42]

Supportive HA +
Akt/mTORC1

Viral protein synthe-
sis and replication

[35]

Supportive NP, M2 +
Akt-mTOR

Autophagy [45, 46]

Antiviral vRNA +
PI3K/Akt

Production of IFN, 
IL-8 and RANTES 
cytokines

[28, 47, 48]

Paramyxoviridae
Sendai virus, PIV3, 

NDV
PIV5, Mumps virus
Measles virus
Sendai virus

Supportive +
XIAP stabilization

Suppression of pre-
mature apoptosis

[50–53]

Supportive RNA P poly-
merase; V 
protein

Viral RNA synthesis [54]

Supportive Contact of envelope 
viral proteins with 
lipid rafts

-
AKT

Immunoregulation [58–60]

Antiviral L F protein IFN β and NFkB 
production

Fusion inhibition

[55–57]

Pneumoviridae
RSV

Supportive NS1, NS2 +
Shingosine kinase, 

p85 regulatory 
subunit of PI3K; 
Akt, GS3K, NFkB 
(+), p53 (-)

Suppression of pre-
mature apoptosis

[61–64, 66, 67]

Antiviral NETosis [68]
Rhabdoviridae
VSV
Rabies
BEFV

Supportive M -
Akt downregulation

IFN-downregulation [73]

Antiviral G -
Akt downregulation

Autophagy upregula-
tion

[75]

Antiviral +
Akt

IFN-upregulation [74]

Supportive P +
PI3K/Akt/mTOR (+)

Incomplete 
autophagy

[76]

Supportive +
PI3K/ Akt, clathrin 

and dynamin 2

Endocytosis [72]

Filoviridae
Ebola virus

Supportive GP +
PI3K/Akt

Macropinocytosis; 
vesicular traffick-
ing

[71, 78]
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Moreover, activation of the PI3K/Akt signalling pathway 
leads to suppression of premature apoptosis. Treatment of 
influenza-virus-infected cells with the classical PI3K inhibi-
tor LY294002 accelerates apoptosis and impairs viral repli-
cation [31, 36, 37]. The viral non-structural protein 1 (NS1) 
has been implicated in the regulation of apoptosis [27, 36, 
38, 39] through its interaction with the p85 regulatory subu-
nit of PI3K, which results in activation of Akt [39–41]. Akt 
seems to be differentially phosphorylated by influenza virus 
to yield different outcomes related to viral protein expression 
and cell death at T308 and S473, respectively [35]. Direct 
interaction of NS1 with phosphorylated Akt has also been 
reported, suggesting that NS1 can enhance Akt kinase activ-
ity [42]. Conversely, using a panel of NS1-mutant viruses, it 
has been shown that the activation of the PI3K/Akt signal-
ling pathway is not required to prevent apoptosis [43]. NS1 
activation of the PI3K signalling pathway seems to be strain 
dependent [44].

Autophagy also may be induced in influenza-A-virus-
infected cells at different stages of viral infection in which 
the PI3K-Akt pathway has been suggested to be crucial [45, 
46]. It has been proposed that some influenza virus strains 
such as H5N1 may induce autophagic cell death by inhibit-
ing the Akt-mTOR pathway [45] in a mechanism in which 
NP and M2 proteins would be involved [46].

In addition to the supporting functions of the PI3K/Akt 
signalling pathway summarized above, this pathway is also 
known to have an antiviral function in influenza virus infec-
tion. Accumulated viral RNA in the cytoplasm of infected 
cells activates PI3K signalling at late stages of the infection 
cycle to induce a type I interferon IFN response [28, 47]. 
Moreover, production of the cytokines IL-8 and RANTES 
in influenza-virus-infected cells is dependent on the PI3K/
Akt signalling pathway [48].

Paramyxoviruses

Members of the family Paramyxoviridae are closely related 
to members of the family Orthomyxoviridae. This family 
comprises enveloped negative-stranded RNA viruses with 
a non-segmented genome and includes a large number of 
pathogens that infect humans and animals, such as measles 
virus (one of the most infectious viruses known), parain-
fluenza viruses, mumps virus, Sendai virus, and Newcastle 
disease virus (NDV, one of the biggest threats to the poultry 
industry) [49].

Inhibition of the PI3K/Akt signalling by LY294002 
accelerates apoptosis in cells infected with Sendai virus 
(mouse parainfluenza virus type 1, SeV) and human 
parainfluenza virus type 3 (hPIV3) [50], suggesting that 
the PI3K/Akt pathway plays a role in preventing early 
apoptosis in infected cells. It has been shown that the 

activation of the PI3K-Akt pathway in SeV-infected cells 
leads to the stabilization of the antiapoptotic protein XIAP 
(X-linked inhibitor of apoptosis protein), which in turn 
blocks caspase 9 activation [51]. For NDV, which is an 
avian paramyxovirus that has oncolytic properties, we have 
seen that treatment of HeLa cells with the PI3K inhibitor 
LY294002 accelerates cell death after NDV infection and 
enhances the DNA “ladder” pattern typical of apoptotic 
fragmentation (Fig. 2). These results are in agreement with 
those of a recent report that shows an increase in apoptosis 
in chicken cells infected with NDV after preincubation 
with LY294002 [52], indicating that NDV activates the 
PI3K/Akt pathway early on during infection. Moreover, 
NDV infection enhances cancer cell apoptosis by sup-
pressing Akt signalling [53]. Nevertheless, pre-treatment 
of HeLa cells with LY294002 does not impair infectivity 
or the expression of viral proteins (Fig. 3). These data 
seem to indicate that NDV can manipulate the PI3K/Akt 
pathway to suppress premature apoptosis, although the 
pathway might be dispensable for virus replication.

Akt seems to be critical for the replication of other pro-
totypical paramyxovirus such as parainfluenza virus type 5 
(PIV5, formerly known as simian virus 5), mumps virus, 
and measles virus [54]. Inhibition of Akt by either siRNA or 
specific drug treatments results in a significant inhibition of 
PIV5 protein expression and replication. Akt might regulate 
viral RNA synthesis through phosphorylation of a compo-
nent of the viral RNA polymerase P protein. Moreover, the 
effect of Akt on PIV5 might be exerted through interaction 
with the V protein, a non-structural protein that regulates 
viral RNA synthesis [54].

Like in the case of influenza virus, the PI3K/Akt signal-
ling pathway may be activated in paramyxovirus-infected 
cells to promote antiviral immune responses. The produc-
tion of IFN-κβ in SeV-infected cells relies on PI3K and Akt 
activation [55]. Likewise, the PIV5 L protein (the catalytic 
component of the viral RNA polymerase) activates the 
expression of NF-κB in an Akt-dependent manner [56]. The 
findings of a study using reconstituted SeV envelopes bear-
ing the viral fusion (F) protein suggest that Akt negatively 
regulates membrane fusion through phosphorylation and 
inactivation of the F protein [57].

In contrast to many paramyxoviruses, measles virus 
infecting T cells targets the PI3K/Akt pathway and down-
regulates Akt as a part of the viral immunomodulatory strat-
egy [58, 59]. Disruption of the Akt pathway seems to be trig-
gered when envelope viral proteins are in contact with lipid 
raft domains in the membrane before virus internalization 
[58, 60]. This prevents membrane recruitment of the PI3K 
regulatory subunit p85 and, consequently, the activation of 
Akt [60]. This effect seems to be cell-type dependent, as an 
Akt inhibitor impairs virus release, and to a lesser extent, 
virus production, in the Vero fibroblastoid cell line [54, 59]. 
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By contrast, the number of virus progeny released is not 
affected by overexpression of Akt [59].

Pneumoviruses

Pneumoviridae is a family of large enveloped negative-strand 
RNA viruses. It was formerly included as a subfamily of 
the family Paramyxoviridae, but in 2016 it was reclassified 
(ICTV International Committee on Taxonomy of Viruses 
website: http://www.ictvo nline .org). Human respiratory 
syncytial virus (RSV) is the most relevant member of this 
family. RSV is the main cause of severe lower respiratory 
tract infections in infants, in the elderly, and in immunocom-
promised adults. To date, no effective anti-RSV vaccines are 
available; however, the monoclonal antibody palivizumab is 
being used for prophylaxis in high-risk infants.

RSV activates the PI3K/Akt signalling pathway at early 
stages of infection to block premature apoptosis [61–63]. 
Inhibition of PI3K by LY294002 reduces virus growth and 
accelerated apoptosis in RSV-infected airway epithelial 

infected cells [61, 64] and in infected human granulo-
cytes [63]. Conversely, it has been reported that treatment 
of a fibroblast cell line (BHK-21) with LY294002 does 
not impair RSV protein expression [65]. The antiapop-
totic effect of RSV seems to be dependent on both PI3K 
activity and NF-κB activation [61, 63, 66]. Many efforts 
have been made to identify the mechanism involved in the 
prosurvival effect in RSV-infected cells at early stages of 
viral infection and have revealed different upstream tar-
gets, such as sphingosine kinase [62], and downstream 
targets, such as NFκB [61, 63, 64], GS3K [61, 64] and p53 
[66, 67]. The viral non-structural proteins NS1 and NS2 
seem to be essential for the activation of the PI3K/Akt and 
NF-κB pathways [64, 66]. However, the contribution of the 
PI3K/Akt and NF-κB in the regulation of the expression 
of several proinflammatory cytokines and chemokines in 
RSV-infected cells will need further investigation [66]. 
In a recent report, Muraro et al. showed that preincuba-
tion of neutrophils with LY294002 abolished neutrophil 
extracellular trap (NET) formation induced by the virus. 
As a result, it was concluded that NETosis stimulation by 
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Fig. 2  LY294002 treatment prior to NDV infection increases virus-
induced cell death. (A) Light microscopy photographs taken at dif-
ferent times after infection of HeLa cell monolayers that had been 
incubated with 20 μM LY294002 (LY) for 1 h and then infected with 
NDV at an MOI of 1. At 14 h postinfection (pi), a cytopathic effect 
started to be seen in cells that were infected and pretreated with the 
drug, whereas the cytopathic effect induced by viral infection was 
evident at 38 h pi. Magnification bars (500 μm) are shown in pictures 
taken at 38  h pi. (B) DNA fragmentation analysis of NDV-infected 
cells. At 12 h pi, total cellular DNA was extracted from HeLa cells 

infected with NDV at an MOI of 1 in the presence or absence of 
LY294002. DNA was resolved by electrophoresis in a 1.5% agarose 
gel, stained with ethidium bromide, and visualized using UV transil-
lumination. A molecular size marker was run in the left lane. Treat-
ment with LY294002 did not induce apoptosis, as evidenced by 
the lack of DNA fragmentation (lane LY). NDV infection resulted 
in smearing of high-molecular-weight DNA. Preincubation with 
LY294002 increased the rate of DNA smearing in NDV-infected cells 
(lane NDV + LY). Experimental details are given in Online Resource 
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RSV is dependent on the PI3K/Akt signalling pathway, 
among others [68].

Rhabdoviruses

The family Rhabdoviridae includes plant and animal patho-
gens that are similar to members of the family Paramyxo-
viridae in the organization and expression of their non-
segmented genomes [49]. Among these viruses, vesicular 
stomatitis virus (VSV) has been widely studied as a proto-
type of nonsegmented, negative-strand RNA viruses [69]. 
The role of the PI3K/Akt signalling pathway in VSV infec-
tion is controversial. Due to the inhibitory effect of the Akt 
inhibitor AKT-IV on VSV replication and the reduction of 
the viral cytopathic effect, it has been suggested that VSV 
exploits Akt signalling for replication [54]. However, the 
results of a different study established that Akt-IV does not 
alter Akt phosphorylation, suggesting that AKT-IV inhibits 
viral replication by an Akt-independent mechanism [65]. 
Moreover, it has been shown that constitutively active 
Akt enhances VSV replication in a rat fibroblast cell line 
through activation of the mTOR pathway [70]. Nevertheless, 
research involving the treatment of target cells with several 

inhibitors of the pathway, including direct inhibition of Akt 
phosphorylation by Akt-V (triciribine) and Akt-VIII, sug-
gests that VSV does not rely on the PI3K/Akt pathway [65, 
71]. The participation of PI3K/Akt signalling in rhabdovi-
rus entry has been demonstrated for bovine ephemeral fever 
virus (BEFV), a rhabdovirus that enters the cell through 
clathrin-mediated endocytosis. BEFV simultaneously acti-
vates PI3K-Akt-NF-κB and the Src-JNK-AP1signalling 
pathways to induce expression of clathrin and dynamin 2, 
which leads to an enhancement of viral entry [72].

On the other hand, infection of cultured cells by VSV 
results in the early inactivation of the signalling pathway 
by inhibiting Akt phosphorylation in a mechanism depend-
ent on the viral matrix protein M [73]. It has been sug-
gested that Akt inactivation is a viral mechanism to reduce 
the IFN response [73]. Conversely, Akt phosphorylation 
is stimulated in VSV-infected macrophages as an antiviral 
mechanism that leads to the synthesis of the IFN I [74]. 
Additionally, making the relationships even more complex, 
some reports have shown that the PI3K/Akt signalling path-
way is downregulated in VSV-infected cells as a cellular 
defence against viral infection. This is the case with VSV 
infection of Drosophila melanogaster cells, which results in 
the inhibition of the PI3K/Akt signalling pathway, which, in 
turn, activates autophagy and inhibits VSV replication [75]. 
For this to occur, the viral G protein seems to be sufficient 
for inducing autophagy. Likewise, it has been shown in a 
recent report that another rhabdovirus, rabies virus, induces 
the upregulation of the PI3K catalytic subunit and Akt and 
mTOR phosphorylation, leading to autophagosome accumu-
lation and incomplete autophagy pathways in order to favour 
viral replication [76].

Filoviruses

The family Filoviridae of the order Mononegavirales 
includes emerging non-segmented, negative-strand RNA 
viruses such as Marburg virus and Ebola virus [77]. These 
viruses cause severe haemorrhagic fever in humans and 
nonhuman primates, with mortality rates of up to 90% 
[78]. Unlike other negative-strand RNA viruses, not much 
research has been carried out addressing the role of the PI3K 
pathway in the replication cycle of filoviruses. By contrast, 
several studies have shown that Ebola virus infection leads 
to an increase in Akt phosphorylation early after infection. 
Also, treatment of cells with LY294002, or with an Akt 
inhibitor, significantly reduces viral infection [71, 78] and 
causes virus particles to accumulate aberrantly within the 
cell cytoplasm without leading to membrane fusion [71]. 
These data indicate that the PI3K/Akt signalling pathway 
plays a role in the entry of Ebola virus by receptor-mediated 
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Fig. 3  (A) Pretreatment of HeLa cells with LY294002 does not 
impair the expression of viral proteins. At different times postinfec-
tion, the expression of the enveloped proteins HN and F in NDV-
infected cells (control and LY294002-treated cells) was analysed by 
western blot using polyclonal anti-NDV antibodies as the probe. The 
expression of the HN and F proteins was similar in untreated and 
treated infected cells. (B) LY294002 does not inhibit viral infection. 
Monolayers of HeLa cells pre-treated with LY294002 (LY) at differ-
ent concentrations were infected with recombinant NDVrNDV-F3aa-
mRFP to expresses a monomeric red fluorescent protein. After 24 h 
at 37  °C, the cells were observed under an Olympus IX51 inverted 
fluorescence microscope with a 10x objective. Experimental details 
are given in Online Resource 1
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micropinocytosis [78] and trafficking by the endosomal route 
[71].

The PI3K/Akt signalling pathway as a target 
for antiviral therapies

The development of viral inhibitors targeting host factors 
such as cellular signalling pathways constitutes a promising 
novel strategy for controlling viral infections. In particular, 
targeting the PI3K/Akt pathway may represent a viable strat-
egy for the development of broad antiviral agents against 
different negative-stranded RNA viruses. Moreover, inhibi-
tors of the PI3K/Akt pathway are under investigation as 
anti-cancer and anti-inflammatory therapies [79]. Therefore, 
the use of already-approved cancer drugs would facilitate 
the approval of these new antiviral therapies. For influenza 
virus, a growing body of research has revealed that this strat-
egy might be applied successfully using several promising 
anti-influenza candidate drugs. Inhibition of the PI3K cata-
lytic subunit p110 by PI-103, a compound that has also been 
studied in relation to cancer therapy, has been shown to be 
effective against influenza virus infection [80]. IC87114, a 
selective inhibitor of the δ isoform of class I PI3K, has been 
shown to reduce the replication of human metapneumovi-
rus, a pneumovirus related to RSV, in cell culture assays 
[81]. Additionally, Fujioka et al. [33] have identified a PI3K 
sequence that seems to be essential for endocytosis. The 
overexpression or the application of a peptide derived from 
this sequence has been shown to inhibit influenza virus 
infection, suggesting that a peptide-based therapy could be 
applied against infections with influenza virus and other 
viruses that enter the cell through endocytosis [33].

Antiviral drugs targeting viral proteins involved in mod-
ulating PI3K/Akt signalling have also shown promising 
results. This is the case of the flavonoid baicalin,whose anti-
influenza activity has been assayed in vitro and in vivo [82]. 
Baicalin seems to interfere with the viral activation of PI3K/
Akt signalling by inhibiting the interaction of viral NS1 pro-
tein with the p85 regulatory subunit of PI3K [39–41]. More-
over, the development of viral strains with mutations in the 
proteins that are essential for upregulating the pathway may 
facilitate the production of efficient vaccines, as suggested 
for the influenza virus [23].

Several Akt inhibitors, such as the benzimidazole deriv-
ative Akt inhibitor IV, might be used as general antiviral 
drugs inhibiting the infection of viruses belonging to differ-
ent families, such as the paramyxovirus PIV5 and the rhab-
dovirus VSV [54, 83]. Sun et al. [83] have synthesized 21 
analogues of Akt-IV and demonstrated their antiviral activ-
ity against the paramyxovirus PIV5 in cell culture assays. 
Nevertheless, the effects of these inhibitors on the PI3K/Akt 
pathway are not well understood [65, 83]. Two peptides that 

inhibit Akt activity efficiently reduced influenza A infec-
tion in cultured cells without inhibiting the production of 
inflammatory cytokines [31]. Moreover, MK2206, an allos-
teric Akt inhibitor that is in phase I/II clinical trials against 
cancer, has been shown to inhibit influenza virus infection 
in a virus-subtype-specific manner [30].

It has also been shown that everolimus, an FDA-approved 
hydroxyethyl derivative of rapamycin known to inhibit 
mTOR, is effective against different viruses in vivo, includ-
ing influenza A virus and RSV [84]. Interestingly, the use of 
the PI3K/mTOR inhibitor BEZ235 to disrupt glucose metab-
olism results in a reduction in influenza A virus titres in both 
in vitro and in vivo assays [85]. The antiviral activity of a 
coumarin derivative on a fish rhabdovirus, spring viraemia 
of carp virus, has been evaluated [86]. The coumarin deriva-
tive is able to inhibit both virus binding to the cell surface 
and viral-induced autophagy, the latter by activation of the 
Akt/mTor pathway for blocking autophagy and inhibiting 
viral replication. The polyphenolic compound monoacetyl-
curcumin, a curcumin analogue, has been shown to inhibit 
influenza virus infection by reducing the level of Akt phos-
phorylation [87]. Natural compounds, some of them used 
in traditional Chinese medicine (TCM), have been shown 
to inhibit influenza virus infection. For instance, patchouli 
alcohol, a tricyclic sesquiterpene that is a used in TCM 
for therapy of inflammatory diseases, has been reported to 
be effective against influenza A virus in both, in vitro and 
in vivo assays [88, 89]. The treatment of infected cells with 
patchouli alcohol significantly reduced the levels of phos-
phorylated PI3K and Akt, indicating that the PI3K/Akt sig-
nalling pathway might be involved in the anti-influenza A 
mechanisms of this drug [89]. Ko-ken tang (KKT), which is 
also used in TCM, is made up of seven medicinal herbs and 
is used in the treatment of several viral infections. It has been 
shown to inhibit influenza replication in vitro by downregu-
lating Akt phosphorylation [90]. Rhein is an anthraquinone 
compound present in many traditional herbal medicines that 
inhibits influenza A virus replication in vitro by inhibiting 
the activation of Akt, among other signalling pathways [91].

The results summarized above, in particular those related 
to influenza virus, show that the PI3K/Akt signalling path-
way is a promising target for antiviral therapies. As such, 
attacking viral infections through this pathway may be a 
novel therapeutic strategy against influenza virus in particu-
lar and negative-strand RNA viruses in general.

Concluding remarks

Negative-sense ssRNA viruses can manipulate the PI3K/Akt 
signalling pathway by either stimulating or downregulating 
this pathway (Table 1). Suppression of premature apoptosis 
by viral activation of the pathway seems to be critical for 
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the efficient replication of many types of orthomyxoviruses, 
paramyxoviruses, and pneumoviruses. PI3K/Akt signalling 
also promotes viral entry in the case of influenza A virus 
and some rhabdoviruses. The endocytic uptake of influenza 
virus, rhabdoviruses, and Ebola virus also depends on the 
activation of this pathway. Viral protein expression and rep-
lication exploit the control of PI3K/Akt signalling in the 
case of influenza virus and the paramyxovirus PIV5. Some 
viruses, such as measles virus and VSV, downregulate the 
pathway as a viral immunoregulatory strategy, which may 
also be manipulated to regulate autophagy. The PI3K/Akt 
signalling pathway is also activated by the cell as an anti-
viral mechanism against negative-sense ssRNA viruses for 
the production of IFN and other cytokines. These examples 
underline the importance of the PI3K/Akt signalling in the 
interaction of negative-sense ssRNA virus with cells and its 
potential role as a target for antiviral treatments. Neverthe-
less, deciphering the role of viral proteins in the manipula-
tion of this pathway requires additional research, although 
some progress has been made. Viral envelope proteins, such 
as influenza virus HA and the VSV G protein, seem to have a 
function in both viral replication and induction of autophagy. 
Furthermore, the non-structural proteins NS1 and NS2 of 
influenza A virus and RSV appear to be involved in the 
antiapoptotic mechanism triggered by these viruses. Also, 
the influenza A virus NP and M2 proteins might be involved 
in the induction of autophagy. In the case of VSV, the M 
protein might inhibit Akt to reduce an IFN response, but 
more research is needed to determine the viral targets when 
this pathway is activated and linked to antiviral activities. 
The F protein of SeV has been described as being one of 
these potential targets. Targeting the PI3K/Akt pathway to 
inhibit viral replication might be a general strategy against 
negative-sense ssRNA viruses, as is the case with influenza 
virus, where different anti-Akt peptides block viral entry. 
Building on what is already known about the mechanisms 
that underlie viral manipulation or activation of this path-
way is important if new targets for developing new antiviral 
strategies are to be identified.
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