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Abstract
During 2009–2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating 
strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human 
viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were 
identified during 2012–2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, 
NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone 
multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and 
Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the 
UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds 
played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and 
PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions 
between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of 
genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, 
which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and 
amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses 
and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance 
of their molecular evolution.

Introduction

Influenza A virus is widely distributed throughout the world 
[1] and is characterized by a high degree of genetic diversity. 
It is divided into several subtypes based on the combination 
of the two major viral glycoproteins: hemagglutinin (HA) 
and the neuraminidase (NA). Avian influenza virus (AIV) 
has a segmented RNA genome that evolves rapidly and con-
tinuously. Site mutations and reassortments are the main 
mechanisms of AIV evolution, which promote viral escape 
from immune system, resistance to antivirals, and crossing 
of species barriers [2].

Among the identified subtypes, AIV H9N2 is the most 
common subtype infecting poultry, especially in Asian and 
North African countries [3]. The natural reservoir of this 
virus is aquatic birds, which migrate long distances all over 
the world and spread the virus to other avian species [4].

H9N2 virus was first detected in 1966 in turkeys in the 
USA [5]. During the 1970s, the first Asian cases of H9N2 
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virus infection in poultry were reported in Hong Kong [6]. 
From 1994 to 1999, many H9N2 virus outbreaks affected 
domestic poultry in South Korea, China, Germany, Italy, 
Ireland, South Africa, the USA, Pakistan, and Iran [7–9]. 
This period also witnessed the appearance of three major 
Eurasian H9N2 lineages, notably, the Korean lineage, the 
G1 lineage, and the Y280 lineage [7, 9, 10]. Subsequently, 
the H9N2 viruses became enzootic in many areas of Asia, 
the Middle East, and some African countries [11, 12]. The 
history of H9N2 outbreaks was also marked by interspe-
cies transmissions between birds and mammals. In the late 
1990s, the first cases of mammalian infection with H9N2 
viruses were recorded in swine and humans in China and 
Hong Kong [9, 13, 14]. Furthermore, the susceptibility of 
other mammals such as mice [15], ferrets [16], minks, foxes, 
raccoon dogs [17], cats and dogs to the H9N2 subtype was 
demonstrated [18].

Several studies highlighted a number of molecular deter-
minants required for H9N2 viruses to break the host species 
barrier. The hemagglutinin human-like marker 226L (H3 
numbering) is one of the most important mammalian host 
restriction factors [19]. H9N2 viruses containing this marker 
are able to bind α2,6 sialic acid receptors on human epi-
thelial cells [20] and have the potential to become the next 
pandemic avian influenza virus [21]. Continuous epidemio-
logical surveillance of this subtype is highly recommended 
to limit its zoonotic threat.

Tunisia is one of the northern African countries that are 
concerned about H9N2 outbreaks. Since 2006, a national 
program of AIV surveillance has been established to monitor 
virus circulation on commercial poultry farms in northern, 
central, and southern Tunisia [22]. At the end of 2009, the 
H9N2 subtype was identified to be the major cause of eco-
nomic losses in poultry production in Tunisia. The first iso-
lations of H9N2 strains were in 2010 from chickens, turkeys 
and migratory birds [22, 23]. Other H9N2 outbreaks were 
reported in 2011 and 2012 in chickens [22, 24]. Molecular 
analysis showed that the Tunisian H9N2 strains circulat-
ing in poultry flocks belong to the Eurasian G1-like line-
age and that their hemagglutinin has the human-like marker 
226L, which could represent a potential public-health risk 
in Tunisia.

The evolutionary history of the Tunisian H9N2 viruses 
is still not fully understood. Therefore, investigating the 
geographic and epidemiological origins of Tunisian H9N2 
viruses could contribute to better preparation for and con-
trol of future outbreaks. Moreover, no Tunisian H9N2 
strains have been molecularly characterized since Janu-
ary 2012. Continuous monitoring of the molecular evolu-
tion of such zoonotic viruses is extremely important. The 
present study provides insights into the historical origins 
of the Tunisian H9N2 viruses through Bayesian analy-
sis. This approach allows the geographic source of the 

virus, the spatiotemporal dynamics of viral spread, hosts 
involved in viral transmission, and reassortant subtypes 
of Tunisian viruses to be determined. By analyzing viral 
protein sequences, this study also highlights the genetic 
and zoonotic evolution of five recent H9N2 strains isolated 
in Tunisia from April 2012 to January 2016.

Materials and methods

Virus isolation

As part of a national program of AIV surveillance, tra-
cheal/cloacal swabs and respiratory organs (trachea and 
lungs) were collected (n = 660) during 2012-2016 from 
commercial poultry flocks raised in 23 governorates situ-
ated in the northern, central and southern regions of Tuni-
sia. To detect AIV, all samples were analyzed using an 
ELISA IDScreen® Influenza A Antigen Capture Kit. A 
sample is considered positive when its optical density is 
higher than the cutoff calculated according to manufac-
turer’s instructions. We screened five positive samples 
that originated from different regions of Tunisia and were 
collected from April 2012 to January 2016 (Table 1 and 
Supplementary File 1). These avian influenza viruses were 
isolated and propagated in specific-pathogen-free embryo-
nated chicken eggs. After incubation of the eggs for 96 h 
at 37°C, allantoic fluid was harvested, and the viral titer 
was determined by hemagglutination assay [25]. The virus 
stock was aliquoted and stored at -80°C until use.

Virus subtyping

Viral RNA was extracted from allantoic fluid using TRI-
zol® Reagent (Invitrogen, USA). In order to confirm the 
presence of AIV and identify the hemagglutinin subtype, 
the M, H5 and H9 genes [22, 26] were targeted for real-
time RT-PCR (rRT-PCR) using AgPath-ID™ One-Step 
RT-PCR (Applied Biosystems, UK). The rRT-PCR pro-
gram was as follows: a single cycle of 45°C for 10 min and 
one of 95°C for 15 min, followed by 40 cycles of 95°C for 
15 s and 60°C for 1 min. The M and H9 genes of the five 
viruses were detected by rRT-PCR. The N2 subtype was 
determined by conventional RT-PCR using a SuperScript 
III One-Step RT-PCR System Kit (Invitrogen, USA) and 
using the following temperature profile: a single cycle for 
30 min at 55°C and one for 2 min at 94°C, followed by 40 
cycles of 15 s at 94°C, 1 min at 58°C, and 1 min at 68°C 
and one final cycle of 5 min at 68°C.
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Genome amplification and sequencing

The whole genome was amplified by multisegment RT-
PCR (MRT-PCR) [27] using a SuperScript III One-Step 
RT-PCR System Kit (Invitrogen, USA). The MRT-PCR 
products were purified by the eCube PCR Purification kit 
(Phile Korea, Korea). The quality and quantity of genomic 
dsDNA were determined using a Qubit® 3.0 Fluorometer 
(Invitrogen, USA). A sequencing library was prepared from 
1 ng of dsDNA using a Nextera XT DNA Library Prepara-
tion Kit (Illumina, USA) according to the manufacturer’s 
instructions. The quality and length of the library was evalu-
ated using an Agilent 2100 Bioanalyzer System (Agilent, 
USA) employing a High Sensitivity DNA Kit (Agilent, 
USA). Paired-end sequencing was performed using an Illu-
mina Miseq sequencer (Illumina, USA) and a Miseq Rea-
gent Kit V2 (Illumina, USA). Read quality was assessed 
using the FastQC program [28]. De novo assembly and 
mapping of reads was carried out using the IVA program 
[29]. The mapping was performed using the H9N2 refer-
ence strain A/chicken/Jinan/3925/2013 (GenBank accession 
numbers KP415257 to KP415264). The genomic nucleotide 
sequences of the Tunisian H9N2 strains were submitted to 
GenBank, and the accession numbers are provided in Sup-
plementary File 1.

Dataset preparation

In order to select nucleotide sequences of other influenza 
virus strains to be included in this study, we used the genome 
sequences of the Tunisian H9N2 viruses to perform a simi-
larity search in the online BLAST suite at NCBI (https ://
blast .ncbi.nlm.nih.gov). We compiled a subset of AIV 
nucleotide sequences that varied in their isolation year, 
geographic origin, host, and subtype. The prototype strains 

of different Eurasian H9N2 lineages (G1-like, Y280-like 
and Korean-like) and the nucleotide sequences of the H9N2 
strains previously isolated in Tunisia, during the 2010-2012 
outbreaks (Table 1), were also included. Supplementary 
File 1 contains information about the 106 to 219 selected 
sequences that were compiled per genome segment.

A multiple nucleotide sequence alignment and nucleo-
tide sequence identity calculations were performed using 
the BioEdit v7.0.9 program [30]. Maximum-likelihood 
(ML) phylogenetic trees were constructed for each segment 
in PhyML v3.0 [31], using the evolution model GTR + Γ4 
+ I, which was selected as the best-fit model by the online 
program SMS (http://www.atgc-montp ellie r.fr/sms/). The 
ML trees were analyzed using TempEST v1.5.4 to discard 
outlier sequences that not fit to the clock-likeness [32].

Bayesian analysis

The BEAST v1.8.4 package [33] was employed to con-
struct Bayesian maximum-clade-credibility (MCC) phy-
logenetic trees for each genomic segment. To investigate 
the geographic and ecological origins of Tunisian H9N2 
viruses, location, host and subtype traits were analyzed as 
discrete trait diffusion models. The locations were organized 
by country, and the hosts were categorized into 10 groups: 
chicken, quail, turkey, duck, swan, goose, other avian spe-
cies, unspecified avian species, environment, and mamma-
lian hosts. To estimate the transition rates between different 
locations, hosts and subtypes, a Bayesian stochastic search 
variable selection (BSSVS) was applied for each model, 
employing a symmetrical discrete trait substitution model 
with a strict clock assumption.

In order to select the best-fit nucleotide substitution and 
clock models, we used path sampling (PS) and stepping-
stone sampling (SS) [34] to compare the following four 

Table 1  Tunisian H9N2 strains used in this study

Strain Isolation date Genome data availability Reference

A/chicken/Tunisia/12/2010 January 2010 Full genome [23]
A/migratory bird/Tunisia/51/2010 January 2010
A/chicken/Tunisia/2019/2010 March 2010 Partial sequences of HA and NA segments [22]
A/turkey/Tunisia/2068/2010 December 2010
A/chicken/Tunisia/345/2011  January 2011
A/chicken/Tunisia/848/2011 January 2011
A/chicken/Tunisia/145/2012 January 2012 Partial sequences of HA, NA, PB2, NS, M and NP 

segments
[24]

A/chicken/Tunisia/812/2012 April 2012 Full genome This study
A/chicken/Tunisia/478/2013 September 2013
A/chicken/Tunisia/56/2014 January 2014
A/chicken/Tunisia/803/2015 May 2015
A/chicken/Tunisia/40/2016 April 2016

https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
http://www.atgc-montpellier.fr/sms/


1530 M. Arbi et al.

1 3

model combinations: GTR (Γ4) model/strict clock model, 
GTR (Γ4) model/uncorrelated lognormal relaxed clock 
model, HKY model/strict clock model, and HKY model/
uncorrelated lognormal relaxed clock model. According to 
the Bayes factor (BF), the GTR (Γ4) model and the uncor-
related lognormal relaxed clock model were selected as the 
best-fit models for all genomic segments. A Bayesian skyline 
tree model was used in this analysis because it is considered 
as the best demographic model that can describe the com-
plexity of AIV population evolution dynamics [35]. Each 
Markov chain Monte Carlo (MCMC) was run for 100 mil-
lion generations, sampling every 10,000 states to achieve 
a good effective sample size (ESS > 200) for the impor-
tant parameter estimates. The ESS values were evaluated 
in TRACER v1.8.4 [36]. The generation of the MCC trees 
was performed using TreeAnnotator v1.8.4 after remov-
ing 10% burn-in. The MCC trees were visualized using the 
FigTree v1.4.3 program, which allowed the estimation of the 
time of the most recent common ancestor (tMRCA) and the 
95% highest posterior density (HPD) for the Tunisian H9N2 
viruses. A posterior probability (pp) > 0.95 indicates good 
statistical support for the tree node.

To study the spatiotemporal dynamics of each genomic 
segment, KML files (Supplementary File 2) were created 
from the MCC tree files using the SpreaD3 program [37] 
and visualized using Google Earth Pro. We employed a 2D 
map (https ://geojs on-maps.ash.ms/) to present only the tran-
sitions involved in the evolutionary history of the Tunisian 
H9N2 viruses.

Bayes factors (BF) and posterior probabilities (pp) were 
calculated for the transition rates determined for each model 
(location, host and subtype) using SpreaD3. A transition rate 
is considered statistically well supported when BF > 3 and 
pp > 0.5. The BF was evaluated using the following sup-
port levels: BF > 3, substantial support; BF > 10, strong 
support; BF > 30, very strong support; BF > 100, decisive 
support [38].

Sampling bias

Sensitivity analysis was carried out using a ‘randomized 
tip swap’ approach to assess the influence of sampling bias 
for each discrete trait diffusion model (location, host and 
subtype) [38]. After being generated with BEAST 1.8.4, 
the XML files were modified by adding the tip swap opera-
tor in the block of operators, and each MCMC was run for 
100 million iterations, sampling every 10,000 states. This 
approach allows the randomization of location, host and 
subtype tip assignments throughout the MCMC simulation 
process. The sample is considered unbiased when the dis-
tribution of root state probabilities is different between the 
main and ‘randomized tip swap’ analyses. In addition, the 
transition rates should be similar in both types of analysis.

Protein sequence analysis

From the aligned nucleotide sequences of HA, NA, PB1, 
PB2, PA, M, NP and NS segments, the protein sequences 
were deduced using BioEdit v7.0.9.0 [30]. A 3D structure 
model of neuraminidase NA was generated online using 
Swiss model (https ://swiss model .expas y.org) and visualized 
using the PyMOL program [39].

Results

Phylogenetic analysis

The HA, NA, M and NP Bayesian clock trees showed that 
the Tunisian H9N2 viruses (Table 1) were derived from the 
G1 lineage (Figs. 1-2 and S1). However, the PB1, PB2, PA 
and NS segments were unrelated to the Eurasian lineages: 
G1-like, Y280-like and Korean-like (Fig. 4 and Fig. S1). All 
Tunisian H9N2 viruses clustered in a well-supported clade 
(pp = 0.99-1) including strains from the United Arab Emir-
ates (UAE), Saudi Arabia, Libya, Morocco and the United 
States of America (USA) (Fig. 1 and Fig. S1). The HA seg-
ment of recent Tunisian H9N2 viruses (isolated in 2012-
2016) is very similar to those of the Libyan H9N2 strains, 
with up to 97% sequence identity. The other segments have 
high similarity (93 to 97% identity) to those of the Middle 
Eastern H9N2 strains isolated in the UAE and Saudi Arabia.

An estimation of tMRCA for each segment of the Tuni-
sian H9N2 viruses gave different values. This could mean 
that multiple reassortment events have occurred between the 
Tunisian strains and others of different origin. The mean 
tMRCA values indicated divergence dates ranging from 
2000 to 2008, suggesting that the Tunisian H9N2 strains 
emerged in 2008 (Table 2).

MCC tree analysis of location traits 
and spatiotemporal dynamics

As indicated by the MCC trees expressing location traits, all 
genomic segments shared a recent common ancestor with an 
H9N2 strains from the UAE, which could be the origin of 
H9N2 virus introduction in Tunisia.

In order to provide more details about the evolutionary 
history of the Tunisian H9N2 viruses, the origins of their 
eight genomic segments were investigated through spati-
otemporal dynamics analysis. As illustrated in Fig. 2, PB2 
is the oldest segment. Indeed, the avian influenza strains 
carrying this segment circulated in Russia before being 
transferred to Germany during the 1960s. The analysis also 
showed that the PA segment originated from AIVs circulat-
ing in China and Sweden during the 1970s (Fig. 2). The 
1980s period witnessed the transmission of PA, NS and NP 

https://geojson-maps.ash.ms/
https://swissmodel.expasy.org
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segments from their ancestral locations in Hong Kong and 
Russia to Sweden and China (Fig. 2). Since the 1990s, the 
virus has spread rapidly from China to many other regions 
of East Asia (Hong Kong and Japan) and the Middle East 
(Iran, Pakistan and the UAE) via multiple segment reassort-
ments (Fig. 2). Over the same period, the UAE became an 
accumulation region for many avian influenza strains, and 
their eight segments have been transferred to Tunisia since 

the mid-2000s. Furthermore, the analysis highlighted that, 
in this period, H9N2 viruses originating in Tunisia spread 
to Libya (in 2016 and 2013) and the UAE (in 2011) through 
HA and NP reassortments (Fig. 2).

When the viral diffusion pathways identified by spati-
otemporal dynamics analysis were quantified, a large number 
of transitions were found to be statistically well supported 
(BF > 3; pp > 0.5) (Fig. 2), with BF = 8.68-868367.16 and 

Fig. 1  Bayesian MCC trees of 
the location trait for the (A) HA 
and (B) NA segments. Branches 
are colored according to the 
location of the most probable 
ancestor of the branch. Groups 
composed of Tunisian H9N2 
strains are highlighted in grey. 
Circles indicate pp > 0.95,. 
The MCC trees were generated 
using FigTree v1.4.3
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pp = 0.54-1 (Table S1). The highest BF values providing 
decisive support for transition rates were recorded in HA, 
PB1, PA, NS, M and NP phylodynamics (Table S1).

We also found that the transition rates of three path-
ways in HA, PB1 and M phylodynamics were not statisti-
cally supported by posterior probability (pp < 0.5), but 
were substantially supported by the Bayes factor (BF > 
3) (Table S1). These included Japan – Pakistan (median 
= 0.70 transitions per year; 95% HPD = 0-2.65; BF = 
7.71; pp = 0.44 for HA), China – Sweden (median = 0.99 

transitions per year; 95% HPD = 0-2.75; BF = 11.36; pp 
= 0.48 for PB1), and the UAE – Tunisia (median = 0.68 
transitions per year; 95% HPD = 0-2.57; BF = 4.83; pp 
= 0.42 for M).

Statistically insignificant transition rates (BF < 3; pp < 
0.5) were identified in the phylodynamics of the HA, NA, 
PB1 and NS segments corresponding to the routes con-
necting Hong Kong to Japan, China to the UAE, Sweden 
to Saudi Arabia, Hong Kong to Sweden, and Sweden to 
the UAE (Table S1).

Fig. 2  Spatiotemporal dynamics 
for all AIV genomic segments, 
describing the geographic 
origins of the Tunisian H9N2 
viruses. The eight segments are 
indicated by different colors. 
Supported transitions are 
indicated by continuous lines 
(BF >3), while unsupported 
transitions are indicated by 
discontinuous lines (BF < 3)
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Host and subtype phylodynamics

We also investigated the contribution of ancestral hosts and 
subtypes in the evolutionary history reconstruction of the 
Tunisian H9N2 viruses. The host phylodynamics analysis 
showed that the chicken category dominated the MCC tree 

nodes of the HA, NA and M segments, suggesting that these 
viral segments were transmitted to Tunisia after long-term 
adaptation in poultry (Fig. S2). The first tree nodes of the 
other segments (PB1, PB2, PA, NP and NS) were labeled 
by duck category (Fig. 3A and Fig. S2). This could indi-
cate that these aquatic birds contributed to the evolutionary 
history of these internal genes at the early stages of viral 
spread, before the virus transmission to poultry in Tuni-
sia. For these segments, all transitions between ducks and 
chickens were statistically valid (BF = 24.30-327737.17; 
pp = 0.86-1) (Table S2). The MCC tree of the NP segment 
showed that other avian species (terrestrial birds) were the 
hosts of the most recent common ancestor of the viruses of 
the chicken category that defines the clade containing the 
Tunisian H9N2 strains (Fig. 3B). This transition was highly 
supported by Bayes factor and posterior probability values 
(BF = 3109.34; pp = 0.99).

The subtype phylodynamics analysis revealed that the 
HA, NA, M, NP, NS and PA segments of Tunisian H9N2 
viruses originated through intra-subtype reassortments with 

Table 2  Estimated tMRCA for the genomic segments of all the Tuni-
sian H9N2 viruses isolated from 2010 to 2016

Segment Mean tMRCA (95% HPD)

HA 2006 (2004-2008)
NA 2006 (2004-2008)
PB1 2000 (1998-2002)
PB2 2007 (2005-2009)
PA 2001 (1999-2002)
NS 2004 (2002-2007)
M 2008 (2006-2009)
NP 2002 (2000-2005)

Fig. 3  Bayesian MCC trees of 
the host trait for the (A) NS and 
(B) NP segments. Branches are 
colored according to the host of 
the most probable ancestor of 
the branch. Groups composed of 
Tunisian H9N2 strains are high-
lighted in grey. Circles indicate 
pp > 0.95. The MCC trees were 
generated using FigTree v1.4.3
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other H9N2 strains (Fig. S3). The MCC tree of the PB2 
segment provided evidence of intersubtype reassortments 
with other subtypes of H2N2 and H10N4 with the H9N2 
strains that belong to the clade where the Tunisian viruses 
are found (Fig. 4A). However, the transitions between these 
subtypes were not statistically supported, as they had low 
Bayes factors (BF < 3) (Table S3). We also observed that the 
PA segment of the Tunisian H9N2 viruses appears to have 
originated from reassortment with H4N6 (Fig. 4B). This 

transition had high statistical support (BF = 20386.07; pp 
= 1) (Table S3).

Sampling bias

Concerning the location model, the comparison of root state 
probabilities between the main and randomization analyses 
showed that only the ancestral state reconstruction of the HA 
segment was influenced by sample selection bias. Indeed, 

Fig. 4  Bayesian MCC trees 
of the subtype trait for the (A) 
PB2 and (B) PB1 segments. 
Branches are colored accord-
ing to the subtype of the most 
probable ancestor of the branch. 
Groups composed of Tunisian 
H9N2 strains are highlighted in 
grey. Circles indicate pp > 0.95. 
The MCC trees were generated 
using FigTree v1.4.3
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China was the same ancestral root state for this segment 
(main, pp = 0.66; tip swap, pp = 0.18) (Table S4). Only 
eight transitions identified in the spatiotemporal dynamics of 
the HA, PA, NS and M segments appeared to be affected by 
the sampling scheme, as they were characterized by a large 
variation of rates between the observed analysis and the tip 
randomization (Table S5). These biased transitions included 
the virus diffusion event between the UAE and Tunisia via 
PA reassortment (main, 2.10 transitions per year, 95% HPD 
0.06-5.28; tip randomization, 0.83 transitions per year, 95% 
HPD 0.06-2.12) (Table S5).

In host phylodynamics, chicken and duck categories had 
the same ancestral root state in both types of analysis for 
HA, NA, PB2, PB1 and NS segments, providing evidence 
for sampling bias (Table S6). Except for PA and PB2 seg-
ments, none of the transitions from ducks or other avian spe-
cies to chickens were biased by sample selection. Indeed, the 
rates of main analysis were very similar to those estimated 
by the ‘randomized tip swap’ approach (Table S7).

In subtype phylodynamics, the ancestral reconstruction 
for the HA, NA and M segments was affected by sample 
bias, because the root state probability distribution was the 
same between the main and the tip randomization analyses 
(Table S8). For the PB2 segment, the sensitivity analysis 
showed that the statistically unsupported intersubtype reas-
sortments (BF < 3) between H2N2, H10N4 and H9N2 did 
not exhibit sampling bias, as their transition rates were not 
largely different from those of the tip swap (Table S9). This 
suggests that these subtypes could not be directly connected, 
and their relationships could be better explained by reassort-
ments with other unsampled virus subtypes. For the PB1 
segment, the transition rates of the reassortment between 
H4N6 and H9N2 subtypes were similar in both types of 
analysis, also indicating sampling bias for this transition 
event (median = 1.02 transitions per year, 95% HPD 0.06-
2.97 in main analysis; median = 1.16 transitions per year, 
95% HPD 0.26-3.02 in randomization analysis) (Table S9).

Molecular analysis

Hemagglutinin (HA)

Molecular analysis showed that the hemagglutinins of the 
recent Tunisian H9N2 (isolated from April 2012 to 2016) 
viruses carry a monobasic cleavage site at position 333-341 
(H9 numbering), indicating their low-pathogenic nature. The 
strains isolated in 2012 and 2016 have a serine (S) residue 
at position 334, making their cleavage site pattern different 
from those found among strains from 2010-2011 and 2013-
2015 (Table 3).

The receptor-binding site (RBS) of the five recent H9N2 
strains contains the marker 234L (226L in H3 numbering) 
which gives the virus the ability to bind α2,6 receptors on 

human epithelial cells [20]. Since 2010, this molecular 
marker has been conserved among all the Tunisian H9N2 
viruses with exception of the strain A/migratory bird/Tuni-
sia/51/2010, which has the avian-like marker 234Q (Table 3). 
The only variation detected in the RBS was observed in a 
2016 isolate (A/chicken/Tunisia/40/2016), where the amino 
acid substitution A198T was found (Table 3).

Neuraminidase (NA)

The neuraminidase sequences of the five Tunisian strains 
contain the residues 72T, 370L, 392I and 427I, which give 
the H9N2 viruses the ability to replicate in mouse cells [40]. 
These amino acids were also observed in the neuraminidase 
sequences of the other Tunisian strains isolated from January 
2010 to January 2012 (Table 3). Moreover, the recent Tuni-
sian H9N2 strains have two potential glycosylation sites that 
are situated near and inside the hemadsorbing site (HBS) 
and create variation between the Tunisian strains. The strains 
from 2010 have only one potential glycosylation site, 402 
NWS 404, inside the HBS. In 2011, this site disappeared but 
was restored again among the viruses of 2012-2016, with 
the creation of the new glycosylation site 331 NSS 333 near 
the HBS (Fig. S4).

Subunits of the polymerase complex (PB1, PB2 and PA)

The PB1 subunit of the recent Tunisian H9N2 strains con-
tains the conserved residues 13P, 207K and 436Y, which 
are associated with adaptation of AIV to mammals [41, 42] 
(Table 3). Molecular analysis showed that the cap-binding 
region of the PB2 protein had undergone point mutations: 
E249A (strains isolated from April 2012 to 2016) and 
K339Q (isolates of 2013-2015). These amino acid substi-
tutions have never been studied before (Table 3). The PA 
protein of the recent Tunisian viruses was characterized by 
the appearance of the substitution S409N, which has been 
found in several highly pathogenic AIVs, such as H5N1, 
H7N9, H1N1, H2N2 and H3N2, suggesting its ability to 
enhance the fitness of the virus in humans (Table 3) [43, 44].

M1, M2 and NP proteins

Many conserved molecular markers associated with mam-
malian host restriction were present in the M1, M2 and NP 
proteins of the Tunisian H9N2 strains, including: 15I (M1), 
30D (M1), 215A (M1), 55F (M2) and 136M (NP) (Table 3). 
In addition, the human-like marker E372D was acquired by 
the NP protein of the Tunisian viruses collected between 
April 2012 and 2015 [45, 46] (Table 3). Interestingly, we 
also observed that the ion channel M2 in the Tunisian H9N2 
strain from 2016 (A/chicken/Tunisia/40/2016) carries the 
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amino acid substitution A30S, which provides viral resist-
ance to amantadine [47] (Table 3).

Nonstructural protein NS1

Sequence analysis of the NS1 protein revealed that all 
Tunisian H9N2 strains have the residues 42S, 103L and 
184G, which increase virulence and replication efficiency 
in mice affecting interferon induction [48–50] (Table 3). 
In the C-terminal part of the protein, the Tunisian viruses 
possessed the motif 227GSEV230, which represents the PDZ 
ligand-binding domain. This motif causes the virus to have 
low pathogenicity in mice [51, 52].

Accessory proteins (PB1‑F2 and PA‑X)

The genome of the Tunisian H9N2 viruses encodes a trun-
cated protein, PB1-F2 (52 amino acids). This accessory pro-
tein is considered one of the virulence factors of AIVs [53]. 
Furthermore, a full-length PA-X protein (252 amino acids) 
was expressed in the Tunisian strains. PA-X expression has 
been reported to increase the pathogenicity of H9N2 virus 
in mice [54].

Discussion

This is the first comprehensive study that investigates the 
historical origins and evolutionary traits of Tunisian H9N2 
viruses based on Bayesian phylodynamic analysis and full 
genome characterization.

In this study, phylogenetic analysis showed that the 
HA, NA, M and NP segments belong to the G1 lineage, 
whose members are able to infect humans, suggesting that 
the Tunisian strains have zoonotic potential [55]. The other 
segments were distantly related to those of the Eurasian line-
ages. These segments were probably obtained from Middle 
Eastern strains that underwent multiple intersubtype reas-
sortments, making the determination of their internal gene 
origins difficult, as discussed by Fusaro et al. [25].

Bayesian analysis gave evidence that there was an 
exchange of H9N2 strains between Tunisia and the UAE, 
which could indicate that the virus was carried between 
these countries by migratory birds. Furthermore, simi-
larities have already been found between a H9N2 isolate 
from migratory bird in Tunisia and those from the Middle 
East, highlighting the contribution of wild-bird migration 
in intercontinental viral transmission [23]. Spatiotemporal 
dynamics analysis revealed that the H9N2 virus was trans-
mitted from Tunisia to Libya in 2006 and 2013. The spread 
of virus between these two neighboring countries could be 
explained by active poultry exportation at the border [56]. 
Both tMRCA estimation and spatiotemporal phylodynamics 

showed that the H9N2 virus emerged in Tunisia after the 
mid-2000s. At the same time, the infection zone extended 
from Tunisia to other countries, notably the UAE and Libya. 
Interestingly, this period witnessed great progress in poul-
try production in Tunisia [56], suggesting that the growing 
activities of this sector contributed in the spread of the Tuni-
sian H9N2 viruses due to neglect of biosecurity measures 
on poultry farms.

The host phylodynamics highlighted the contribution 
of ducks and terrestrial birds in the evolutionary history of 
the Tunisian H9N2 viruses. Waterfowl were found to be the 
ancestral source of global H9N2 viruses, suggesting their 
important role in virus spread and persistence in poultry 
[57]. In addition, wild terrestrial birds showed the ability to 
transmit H9N2 virus efficiently to domestic poultry, which 
makes them a risk factor for interspecies virus spread [58]. 
The subtype phylodynamics showed that the Tunisian H9N2 
viruses were characterized by low susceptibility to intersub-
type reassortment. These findings could be explained by the 
high prevalence of the H9N2 subtype in domestic poultry 
populations, as suggested by Lu et al. [59]. However, the 
Tunisian H9N2 viruses underwent an intersubtype reassort-
ment event with the H4N6 subtype, the evidence for which 
was supported by statistical analysis. This reassortment 
could increase the virulence of H9N2 viruses in mammals, 
as demonstrated by Li et al. [60].

As indicated by root state probability analysis, although 
there was possible sample selection bias in our analysis, this 
did not influence most of the transition events identified in 
the evolutionary history of the Tunisian H9N2 viruses. Most 
of the uncertain transitions were described in the first epi-
sodes of virus spread history, which could be explained by 
the lack of H9N2 isolates before 1995, as suggested by Yang 
et al. [57].

Molecular characterization of recent Tunisian H9N2 
viruses has demonstrated the conservation of many mam-
malian-adaptive mutations, including the hemagglutinin 
human-like marker 234L (226 in H3 numbering), which 
allow virus binding to the sialic acid receptors of human 
cells [20]. In this context, Jegde et al. [61] provided evi-
dence for positive selection of the 234L marker during serial 
passage of the virus in chickens, suggesting that the H9N2 
viruses acquired the mammalian adaptation while circulat-
ing in poultry.

The recent Tunisian H9N2 viruses isolated from poultry 
in 2012-2016 were characterized by the accumulation of new 
adaptive mutations in M2, PA and NP, which were previ-
ously shown to contribute to viral fitness and adaptation to 
mammalian hosts. Interestingly, the HA evolved consider-
ably over this period by acquiring two mutations, A198T 
and A334S, in the RBS and the cleavage site, respectively. 
Position 198 is known to be a modulator of the affinity of 
HA for α2,6 sialic acid receptors. The presence of A, T or 
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V at this position indicates low, moderate or high avidity, 
respectively [62–64], suggesting that the Tunisian H9N2 
virus increased its affinity for the α2,6 receptors of human 
epithelial cells. Furthermore, the A334S substitution has 
been shown to cause an increase in the virulence of H9N2 
viruses in chickens and mice [65]. The polymerase PB2 of 
the recent Tunisian H9N2 viruses has two new mutations, 
E249A and K339Q, in its cap-binding site. Although the 
effects of these mutations on the properties of the protein 
are still unknown, their positions are considered important 
for viral replication in human cells [66].

The new mutations in neuraminidase created two poten-
tial glycosylation sites near and inside the HB site, which 
could prevent antibodies from recognizing this important 
antigenic site [67]. On the other hand, glycosylation in the 
HB site could weaken the affinity of NA for cell receptors 
[68]. In this context, Mitnaul et al. reported that reduced 
NA activity could be compensated by mutations near the 
RBS of H9N2 viruses [69]. Thus, we speculate that the 
new mutations in the RBS and the cleavage site (A198T 
and A334S) of HA were created to compensate for the 
altered affinity of the NA and to maintain the balance 
between the HA and NA activities.

This study provides a comprehensive overview of the 
historical origins and zoonotic potential of Tunisian H9N2 
avian influenza viruses. Given the growing potential threat 
of the H9N2 virus to public health, surveillance of viral 
molecular evolution should be continued, and biosecurity 
should be enhanced on the poultry farms in Tunisia. For a 
better understanding of the ecological aspects of the H9N2 
virus, its circulation in migratory birds and mammals, 
including wild mice and humans, should be investigated. 
The present study also highlights the evolution of hemag-
glutinin in the H9N2 strains in Tunisia. This protein could 
be a perfect target for developing new vaccines or drugs 
against circulating H9N2 viruses in Tunisia.
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