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Abstract
Influenza virus infection is a public health problem, causing significant morbidity and mortality. Currently, zanamivir and 
oseltamivir are in common use, and there are already reports of antiviral resistance. Several studies have shown the antiviral 
potential of a wide variety of plant-based natural compounds, among them those of the quinone type. In this study, we evalu-
ated the antiviral activity of naphthoquinones isolated from the stem bark of Diospyros anisandra, and we selected zeylanone 
epoxide (ZEP) to study its effects on influenza A and B viruses. Our results indicated that ZEP inhibits the replication of 
influenza A and B viruses, at early and middle stages of the replication cycle. Confined nuclear localization of the viral NP 
indicated that ZEP affects its intracellular distribution and reduces viral yield. This is the first report on the antiviral properties 
and possible mechanism of action of ZEP in vitro, showing its broad-spectrum activity against influenza A and B viruses.

Introduction

Influenza viruses belong to the family Orthomyxoviridae 
and are characterized by a segmented negative-strand RNA 
genome. These enveloped viruses are divided into four 
types: A, B, C and D. Types A and B have eight genomic 
segments and three membrane proteins: neuraminidase 
(NA), hemagglutinin (HA) and matrix (M2), while influ-
enza C and D viruses have seven genomic segments and two 
surface proteins: HEF and M2 [4, 6, 33].

Influenza virus treatment is currently limited to a small 
number of neuraminidase inhibitors whose effectiveness is 
threatened by the emergence of antiviral resistance [5, 21, 
25]. The search for compounds with novel structures and 
antiviral properties has long included the screening of natu
ral products [27]. Within this class of compounds, naphtho-
quinones represent an excellent group for study, exhibiting a 
diverse range of reported activities, including antibacterial, 
antifungal, antiparasitic, anticancer and antiviral activity 
[14, 26]. Previous studies focused on the antiviral effect of 
natural and synthetic quinones have shown fusion-inhibition 
properties towards the HA of influenza H3N2 viruses [2] or 
anti-NA activity [37]. Similarly, in silico studies of natural 
naphthoquinones, such as plumbagin and juglone, have iden-
tified these compounds as potential drugs capable of inter-
acting with NA and HA proteins of influenza virus [10, 38].

As part of a search for natural active compounds from the 
native flora of the Yucatan Peninsula, we selected Diospyros 
anisandra, a native species rich in quinone compounds. We 
purified a series of quinones, together with terpenoids, from 
the stem bark of this plant [3, 35]. Some of the quinone com-
pounds showed anti-mycobacterial properties against resist-
ant strains of Mycobacterium tuberculosis and displayed low 
cytotoxicity in peripheral human cells [34]. In this study, we 
investigated the antiviral activity of naphthoquinones iso-
lated from D. anisandra, and identified zeylanone epoxide 
(ZEP) as a compound with promising activity (Fig. 1). It 
was determined that influenza A and B virus replication is 
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inhibited by interfering with the early and middle stages of 
the virus life cycle by affecting the intracellular distribution 
of viral NP protein and reducing viral titres.

Materials and methods

Cells and viruses

Madin-Darby canine kidney (MDCK) cells (donated by 
Instituto de Diagnostico y Referencia Epidemiologico 
InDRE/IRR FR-58) were maintained in 1X Dulbecco´s 
modified Eagle’s medium (DMEM, GIBCO) supplemented 
with 10% fetal bovine serum (GIBCO) and 100 U of penicil-
lin and 100 µg of streptomycin (GIBCO) per mL. Cells were 
grown at 37 °C with 5% CO2.

Influenza virus strains were provided by the Virology 
Laboratory of the Regional Research Center “Dr. Hideyo 
Noguchi” from the Universidad Autonoma de Yucatan. 
Viruses identified as A/Yucatan/2370/09 (H1N1) pdm, 
B/Yucatan/286/2010 (Victoria lineage), A/Mexico/
InDRE797/10 (H1N1-H275Y) pdm and A/Sydney/5/97 
(H3N2) were propagated in MDCK cells in the presence of 
1 µg of TPCK-trypsin (SIGMA) per mL and stored at -70 °C 
until use. The viral titre was determined in MDCK cells by 
a standard plaque assay protocol.

Identification and isolation of ZEP

ZEP and other naphthoquinones were isolated from a hex-
anic extract of stem bark (Online Resource 1) as described 
previously by our group [3, 35]. Briefly, powdered stem bark 
(951 g) from D. anisandra (voucher specimen deposited at 
the herbarium “Roger Orellana” under collection number 23) 
was extracted by static maceration at ambient temperature 
with n-hexane (5 L) for 24 h. Three extractions were per-
formed to obtain 7.03 g (0.74%) of crude n-hexanic extract. 
This extract was subjected to vacuum liquid chromatography 
on silica gel and eluted with a gradient of increasing polarity 
consisting of n-hexane, acetone and methanol to produce 

11 fractions. Fraction 4 (4.94 g) was suspended in an aque-
ous solution of 5% KOH and extracted seven times with 
CH2Cl2. The organic phase was evaporated, and the aque-
ous solution was acidified with 10% hydrochloric acid and 
extracted with CH2Cl2 to produce the quinone fraction (QF: 
818.9 mg). The QF was subjected to normal-phase column 
chromatography (CC) on silica gel (eluted with an n-hexane-
ethyl acetate gradient with increasing polarity) to produce 11 
fractions. QF-7 was purified by normal-phase CC on silica 
gel (eluted with isocratic CH2Cl2) to yield ZEP (4.3 mg). 
ZEP and other naphthoquinones were dissolved in dimethyl 
sulfoxide (DMSO) and diluted with culture medium for the 
following assays.

Cytotoxicity assay

The cytotoxicity of each metabolite was evaluated in MDCK 
cells as described previously [24]. Briefly, MDCK cells 
were seeded in 96-well plates at a cell density of 5 × 104 
cells/well and incubated for 24 h at 37 °C with 5% CO2. 
Cells were washed twice with phosphate-buffered saline 
(PBS) and incubated with 100 µL of six different dilutions 
of each compound (100-1.56 µM) in quadruplicate. Cells 
were incubated with the compounds at 37 °C for 72 h. Cell 
viability was determined by staining with 0.4% crystal violet 
in methanol and then reading the absorbance at 490 nm in 
a Multilabel Plate Reader (Victor 3x, Perkin Elmer 2030). 
Cell viability was determined by comparing optical density 
(OD) from treated cells with OD of control cells, which were 
arbitrarily considered 100% viable. The mean cytotoxic con-
centration (CC50) was determined by plotting percent cell 
viability against compound concentration (µM), followed 
by nonlinear regression analysis using GraphPad Prism 6.01 
software (San Diego, CA). For each compound tested, a cell 
control with only DMEM and 1% DMSO was included.

Antiviral assay

MDCK cells were seeded at a density of 5 × 104 cells/well 
and incubated for 24 h at 37 °C with 5% CO2. To measure 
the antiviral activity, cells were infected with viruses at an 
MOI of 0.01 in the presence of various concentrations of 
each compound diluted in 1X DMEM supplemented with 
1 µg of TPCK-trypsin per mL and incubated at 37 °C in 5% 
CO2 for 72 h. After this, CPE was observed microscopically, 
and the supernatant of each compound at each concentra-
tion was recovered and stored at -80 °C to be assessed in a 
plaque assay.

The 50% inhibitory concentration (IC50) was defined 
as the concentration of compound required to inhibit viral 
infection of 50% of the cells and was determined by nonlin
ear regression analysis using the GraphPad Prism Version 
6.01 program (San Diego, CA).

Fig. 1   Chemical structure of ZEP isolated from D. anisandra 
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Plaque assay

MDCK cells were seeded at a density of 5 × 105 cells/
well in 12-well plates for 24 h at 37 °C with 5% CO2. Cells 
were infected with serial dilutions (1 × 10-1 to 1 × 10-6) 
of supernatants harvested from each concentration of ZEP 
and incubated for 1 h at room temperature. Then, the viral 
inoculum was removed and the cells were incubated with 
overlay medium in 3% agarose for 72 h at 37 °C in 5% CO2. 
Cells were stained with 0.4% crystal violet in methanol. The 
plaques were counted by visual examination.

Time‑of‑addition experiments

Time-of-addition experiments were performed to evaluate 
whether ZEP affects entry, replication, or release of the virus 
during one or multiple cycles of replication.

The first assay was performed for one cycle of replica-
tion [13]. Briefly, confluent monolayers of MDCK cells in 
24-well tissue culture plates were inoculated with virus at 
an MOI of 1. After adsorption for 60 min, the monolayers 
were incubated in DMEM containing 1 µg of TPCK-trypsin 
per mL with 100% humidity and 5% CO2 at 37 °C (time 
zero). Test medium containing 12.5 µM ZEP was applied 
to the cells from 0 to 2, 2 to 4, 4 to 6, 6 to 8, 8 to 10 or 0 
to 10 h. After incubation, the cells were incubated in fresh 
medium without ZEP. At 10 h postinfection (p.i.), culture 
supernatants were collected and virus production was meas-
ured using a plaque assay.

In the second assay, MDCK cells were seeded at a cell 
density of 5 × 104 cells/well and infected with influenza A 
virus at an MOI of 0.01 and treated with ZEP (12.5 µM) 
before, during and after viral infection [20, 22]. After a 72-h 
incubation, cells were stained with 50 µL of 0.4% of crystal 
violet in methanol. Absorbance was measured at a wave-
length of 490 nm. The percentage of viral inhibition was 
calculated by the formula [(A-B) / (C-B)] × 100, where A is 
the OD of the infected cells treated with the compounds, B is 
the OD of the virus control, and C is OD of the control cells.

Hemagglutination inhibition assay (HAI)

An HAI assay was performed to assess whether ZEP inhibits 
hemagglutination activity. HAI assays were performed in 
96-well U-bottom plates. ZEP was serially diluted in PBS 
(50-3.125 µM), mixed with 4 HA units of virus and incu-
bated for 1 h at 4 °C. Then, 50 µL of a 1% suspension of 
turkey red blood cells (RBC) was added and incubated for 1 
h at 4 °C. The HAI titre corresponded to the last dilution of 
ZEP that inhibited virus hemagglutination. Controls for the 
assay included virus + RBC, ZEP + RBC, and RBC alone.

Neuraminidase inhibition assay (NAI)

An NAI assay was performed to evaluate whether ZEP 
affects the neuraminidase activity of influenza virus. Viruses 
were titrated to a standard NA enzyme activity and mixed 
with tenfold serial dilutions of either ZEP or oseltamivir 
carboxylate (OC) according to WHO/CDC protocols [36]. 
The relative neuraminidase activity was calculated as fol-
lows: % relative activity of NA = (NAt / NAv) × 100, where 
NAt is the activity of virus in the presence of the compound 
and NAv is virus activity [31]. OC was kindly donated by 
Hoffmann, La Roche Ltd. (Basel, Switzerland).

Quantification of the influenza A virus NP genome 
segment by real‑time RT‑PCR

To assess whether ZEP had an effect on the early synthesis 
and replication of the virus, a standard curve for quantifica-
tion of the NP segment was performed as follows: MDCK 
cells were seeded at 1.5 × 105 cells/well in 24-well plates 
until confluence. Cells were infected with virus at an MOI of 
0.01 for 1 h at room temperature, the inoculum was removed, 
and the cells were incubated with 12.5 µM ZEP in DMEM 
supplemented with 1 µg of TPCK-trypsin per mL. At 8, 12 
and 36 h p.i., cells were harvested, and total viral RNA was 
extracted using a QIAamp viral RNA Mini Kit (QIAGEN) 
according to manufacturer’s instructions. To quantify viral 
NP, total RNA was reverse transcribed with random hexam-
ers using M-MLV reverse transcriptase (Promega). cDNA 
was amplified by real-time RT-PCR using a QuantiFast 
probe RT-PCR Kit (QIAGEN) according to the manufac-
turer’s instructions, using a StepOnePlus Real-Time PCR 
System (Applied Biosystems). The sequences of the primers 
used for detection and quantification of NP were as follows: 
forward, 5′-TTG TAG CAA CAG GTG GGC ATG A-3′; 
reverse; 5′-GAG CTG TGT TCT GGT TTG TTT CAT-3′; 
probe, 5’-TGA GGT ATG CCA C’’T’’A TCC GTG AGT 
CGA AC-3′. PCR conditions were as follows: one cycle at 
95 °C for 5 min, followed by 40 cycles at 95 °C for 10 s and 
60 °C for 30 s. For the standard curve, the plasmid PDZ-NP, 
containing NP from A/Yucatan/2370/09 (H1N1), was used: 
(R2 = 0.98 between 1 × 103 and 1 × 109 copies). Serial dilu-
tions in duplicate from an initial concentration of 747.8 ng 
DNA/µL were performed.

Indirect immunofluorescence assay

MDCK cells were grown on glass coverslips, infected with 
virus (MOI = 1) and treated with 12.5 µM ZEP after infec
tion. At 4, 6 or 8 h p.i., cells were fixed and permeabilized 
with methanol/acetone. Cells were blocked overnight with 
3% bovine serum albumin (BSA)/PBS at 4 °C. After wash-
ing, cells were then incubated with anti-IAV NP antibody 
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(NR-19868 BEI Resources for H1N1; MCA400 AbD Sero-
tec for H3N2) and FITC-conjugated secondary antibody 
(3105 Millipore). Nuclei were stained with DAPI (Sigma) 
according to the manufacturer´s instructions. Cells were 
observed directly using a fluorescence microscope (DM4000 
B LED; Leica, Germany) equipped with a CCD camera.

Statistical analysis

Data are presented as the mean ± standard deviation of 
three independent experiments. Statistical significance was 
calculated in GraphPad Prism 6.01 software using one-way 
ANOVA analysis with Dunnett´s test, with P-values <0.05 
considered significant.

Results

Cytotoxicity of quinones

Six natural naphthoquinones, plumbagin, zeylanone epox-
ide, 3,3-biplumbagin, droserone, 2,3-epoxiplumbagin, and 
cis-isoshinanolone, were all isolated from a hexanic extract 
of Diospyros anisandra with a purity of >95% [35]. Prior 
to antiviral analysis, the effect of quinones (in the range 
of 100-1.56 µM) on MDCK cell viability was evaluated. 
3,3’-Biplumbagin was the most cytotoxic quinone, followed 
by plumbagin, zeylanone epoxide and 2,3-epoxiplumbagin, 
with CC50 values in the range of 2.80 to 30 µM. Droserone 
(>100 µM) and cis-isoshinanolone (>100 µM) displayed 
higher CC50 values, indicating 100% cell viability at all 
concentrations tested (Online Resource 1). No significant 
cytotoxicity was observed when ZEP was used at ≤ 12.5 µM. 
These results were used to determine the range of concentra-
tions of quinones to be used in the subsequent experiment.

Inhibition of influenza A and B virus multiplication 
by ZEP

The antiviral activity of all of the compounds against influ
enza A virus was evaluated in vitro. Briefly, MDCK cells 
were infected with influenza A (H1N1) pdm09 virus (MOI: 
0.01) and treated with compounds at the indicated concen-
trations. After 72 h, virus titres were determined by plaque 
assay. ZEP was the most active, with an IC50 value of 0.65 
µM and a selective index of 33.3, suggesting that ZEP pos-
sesses anti-IAV activity, as shown in Fig. 2a. The other 
naphthoquinones did not show activity against influenza A 
viruses (Online Resource 1).

To evaluate whether ZEP is effective against a broad 
spectrum of viral strains, the same experiment described 
above was performed using other influenza viruses: an H1N1 
strain resistant to oseltamivir (A/Mexico/InDRE797/10), an 

H3N2 strain (A/Sydney/5/97) and an influenza B virus strain 
(B/Yucatan/286/2010). As shown in Fig. 2b-d, ZEP signifi-
cantly inhibited plaque formation by all three viruses at con-
centrations of 3.125-12.5 µM. The level of plaque reduction 
was almost 100% at concentrations of 12.5 and 6.25 µM. 
These results show that ZEP has activity against a broad 
spectrum of influenza A and B viruses (Table 1).

Effect of ZEP on influenza virus infection 
under different treatment conditions

In order to investigate the stage(s) at which ZEP inhibits 
influenza virus replication in vitro, time-of-addition experi-
ments were performed.

First, to determine at which step of the replication cycle 
after adsorption ZEP exerts its effect, we performed a single-
cycle replication assay. Briefly, MDCK cells were infected 
(MOI: 1) and treated with 12.5 µM ZEP for different lengths 
of time, and at 10 h p.i., the virus yield was measured by 
plaque assay. The results showed that ZEP treatment sig-
nificantly reduced the virus yield, with its greatest effect 
between 0 and 6 h p.i., irrespective of the virus strain 
(Fig. 3a-d). No infectious progeny were detected when the 
treatment was constantly maintained for 10 h, probably 
due to inhibition of different stages of the influenza virus 
infectious cycle. The maximum inhibitory activity was also 
observed during the first 4 h of infection, suggesting that 
ZEP acts at the early (internalization, fusion or uncoating) 
and/or middle (nuclear transport/replication) stages, with a 
consequent reduction in the number of released infectious 
particles.

The second experiment was performed to evaluate the 
effect on multiple cycles of replication. Briefly, MDCK cells 
were treated with 12.5 µM of ZEP before, during, and after 
infection with the virus at an MOI of 0.01. This allowed 
us to assess, first, whether ZEP interacts with sialic acid 
receptors on the host cell or inhibits the virus-cell binding 
step (pre-treatment of cells before virus infection), second, 
whether it affects virus entry into cells (co-treatment during 
virus infection) or has a virucidal effect (pre-treatment of 
virus before infection), and third, whether the compound 
inhibits viral replication or virus release (post-treatment of 
cells) [1, 11]. As shown in Fig. 3e, pre-treatment of cells 
with ZEP did not prevent infection, suggesting that there is 
no direct interaction with the cell surface. However, when 
cells were infected with viruses in the presence of ZEP, an 
inhibitory effect of 50% was observed. Interestingly, this 
effect increased proportionally with the length of time that 
the virus was exposed to the compound, increasing 100% of 
inhibition. This suggests that ZEP may act either by direct 
binding to the virus particle (virucidal activity by pre-treat-
ment of virus) or by blocking at a post-adsorption stage, as 
we showed during the single-cycle assay (Fig. 3a-d).
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A direct interaction of ZEP with the surface proteins 
HA and NA can be ruled out because neither inhibition of 
hemagglutination (Table 2) nor of neuraminidase activity 
(Fig. 4a) was observed. However, as shown in Fig. 4b, 
in the presence of 12.5 µM ZEP, there is a significant 
decrease (p < 0.0001) in the number copies of the genome 
segment NP compared to the viral control, with an inhibi-
tory effect greater than 90% even after four replication 
cycles (36 h), suggesting that ZEP inhibits viral RNA syn-
thesis or possibly an even earlier step.

Next, we used indirect immunofluorescence to investi-
gate the effect of ZEP on the intracellular trafficking of the 
viral NP protein at 4, 6 and 8 h p.i. As shown in Fig. 5, in 
the virus control, at 4 h p.i., NP protein was mainly local
ized in the nucleus, showing a strong green fluorescence 
in infected cells, and then, by 8 h p.i., NP was translocated 
to the cytoplasm, as indicated by green fluorescence both 
in the cell body and the nucleus (Fig. 5, panels a1-c3). In 
contrast, in ZEP-treated cells, NP was hardly detectable 
at 4 h p.i. (Fig. 5 panels d1-d3), and at 6 and 8 h p.i. it 

Fig. 2   Inhibitory effect of 
ZEP on influenza virus titres. 
MDCK cells were infected 
with a) A/Yucatán/2370/09 
(H1N1) pdm, b) A/México/
InDRE797/10 (H1N1) pdm, c) 
A/Sydney/5/97 (H3N2), or d) 
B/Yucatán/286/10 (MOI: 0.01) 
and treated with serial twofold 
dilutions of ZEP. Culture super-
natants were harvested at 72 h, 
and virus titers were determined 
by plaque assay. Data represent 
mean values from three inde-
pendent replicates. A signifi-
cant difference was observed 
between ZEP-treated cells and 
the untreated virus control. 
****, p < 0.0001

Table 1   Cytotoxicity and 
antiviral activity of ZEP 
against influenza virus. Values 
represent the mean ± standard 
deviation of three independent 
experiments. IC50 values were 
determined by plaque assay

CC50: mean (50%) value of cytotoxic concentration
IC50: mean (50%) value of effective concentration
SI: selective index, CC50/IC50

Virus
MOI: 0.01

CC50 (µM) IC50 (µM) SI

A/Yucatan/2370/09 (H1N1) pdm 21.70 ± 1.70 0.65 ± 0.01 33.30
A/Mexico/InDre797/10 (H1N1-H275Y) pdm 2.77 ± 0.24 7.80
A/Sydney/5/97 (H3N2) 1.6 ± 0.09 13.60
B/Yucatan/186/10 2.22 ± 0.37 9.80
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was still retained in the nucleus, as indicated by a strong 
fluorescence signal (Fig. 5, panels d1-d3). The same effect 
was observed with H3N2 viruses, although the number 
of infected cells was higher than was observed for H1N1 

(Fig. 6). These results suggest that ZEP might affect trans-
port from the nucleus during the middle and late stages 
of the replication cycle, which would not only affect the 

Fig. 3   Effect of different treatment conditions on the inhibitory effect 
of ZEP on influenza virus infection. Single-cycle assay with a) A/
Yucatán/2370/09 (H1N1) pdm, b) A/México/InDRE797/10 (H1N1) 
pdm, c) A/Sydney/5/97 (H3N2) and d) B/Yucatán/286/10) at an MOI 
of 1. Cells were treated with 12.5 µM ZEP for the specified time 
period after adsorption: 0-2, 2-4, 4-6, 6-8, 8-10, 0-10 h. Viral yields 
were determined at 10 h p.i. by plaque assay. Multiple-cycle assay for 

e) A/Yucatán/2370/09 (H1N1) pdm at an MOI of 0.01 under different 
treatment conditions with 12.5 µM ZEP. After a 72-h incubation, cells 
were stained and the absorbance was read. Data are expressed as the 
mean ± standard deviation of three independent replicates. Asterisks 
represent significant differences between treatment and the control. 
***, P < 0.001; ****, P < 0.0001

Table 2   Inhibitory effects of 
ZEP on hemagglutination

+: hemagglutination -: no hemagglutination
Negative control: without virus
Positive control: with virus

Strain Positive 
control

Negative 
control

Virus + ZEP (µM)

50 25 12.5 6.25 3.125

A/Yucatan/2370/09 
(H1N1) pdm

+ - + + + + +

B/Yucatan/186/10 + - + + + + +
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number of cells infected but would also reduce the number 
of infectious particles released.

Discussion

In this study, we report the antiviral activity of natural 
quinones from Diospyros anisandra, including zeylanone 
epoxide (ZEP), which was previously described for the first 

time by our group [35]. Studies have shown that quinones 
have two main mechanisms of toxicity: either by forming 
reactive oxygen species (ROS) or by behaving as electro
philes capable of forming covalent bonds with nucleophilic 
groups in biological molecules such as glutathione (GSH) 
[18, 19]. All compounds evaluated in our study differed in 
their cytotoxicity depending on their chemical structure. 
Therefore, and based on the chemical structure of the naph-
thoquinones evaluated (Online Resource 1), we suggest that 

Fig. 4   Measurement of antiviral activity of ZEP by NA assay and 
qRT-PCR. a) Effect of ZEP on the NA activity of influenza A and 
B viruses. b) Effect of ZEP on the synthesis of viral RNA. The NP 
segment of the virus was amplified by real-time qRT-PCR using total 

RNA extracted from MDCK cells at 8, 12 and 36 h after the inocula-
tion. The results are shown as the mean of two replicates ± standard 
deviation. Significant differences between the virus control and ZEP-
treated cells were observed. ****, P < 0.0001

Fig. 5   Effect of ZEP on the intracellular distribution of the viral NP 
protein of influenza A (H1N1) pdm virus. MDCK cells were infected 
with A/Yucatán/2370/09 (H1N1) pdm (MOI: 1) and treated with 12.5 

µM ZEP. At 4, 6 and 8 h p.i., cells were labeled with anti-IAV NP. 
Scale of images, 200 µm
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the cytotoxicity we observed was probably attributable to a 
redox effect [18, 30].

An initial screening to detect antiviral activity indicated 
that, of the six naphthoquinones, only ZEP inhibited the 
replication of influenza A (H1N1) pdm virus. Importantly, 
it was found that ZEP was also effective against H1N1 pdm-
H275Y, H3N2 and influenza B viruses, suggesting broad-
spectrum anti-influenza activity, resulting in a significant 
reduction in virus yield in MDCK cells, as determined by 
plaque assays. Reduced release of viral particles of some 
strains of influenza virus was confirmed by 1) reduction in 
the amount of viral genomic RNA, as determined by quan-
titative RT-PCR, and 2) inhibition of nuclear NP export, as 
determined by indirect immunofluorescence. In an attempt 
to determine its possible mode of action, ZEP activity was 
assessed using a series of assays that demonstrated that in 
assays involving either one cycle of replication or multiple 
cycles of replication, influenza A and B viruses were sig-
nificantly inhibited. Some of our results indicate a possible 
virucidal effect by direct interaction of ZEP with the virus 
that does not affect HA or NA activity. In this regard, it has 
been reported that quinone compounds such as the anth-
raquinone aloe-emodin are capable of affecting the integrity 
of the viral envelope, preventing absorption [32].

Immunofluorescence ZEP-treated infected cells sug-
gested that this compound inhibits the nuclear export of 
the NP protein, thereby reducing the number of viral par-
ticles. The NP protein of influenza virus, encoded on seg-
ment five of the viral genome, is one of the most abundant 
viral proteins in infected cells. Among its main functions 
is to bind stoichiometrically to the viral RNA, stabiliz-
ing the ribonucleoprotein (RNP) complex, but there is 

also evidence of its involvement in nuclear trafficking and 
vRNA transcription and replication [7, 15, 23]. The traf-
fic of the RNP is reflected in the distribution of its major 
protein component, NP. At early times postinfection, NP is 
found predominantly in the nucleus of infected cells, but at 
later times postinfection, substantial amounts accumulate 
in the cytoplasm [29]. It has been reported recently that the 
nuclear export of the RNPs that are incorporated into the 
progeny virion is a process that is mediated via the interac-
tion of a protein assembly comprising the cellular chromo-
some region maintenance 1 receptor (CRM1) and the viral 
M1, NEP, and vRNP [12, 15]. Based on the results of this 
study, it is likely that ZEP inhibits the nuclear export of 
RNP, interfering with the daisy chain complex (MI/NEP/
vRNP) before it is released to the cytoplasm [9]. However, 
the direct interaction of ZEP with this complex needs to 
be examined further.

Numerous compounds have been reported to be NP inhib-
itors, such as verdinexor, a selective inhibitor of nuclear pro-
tein [28], TGBG, a natural product that suppress the nuclear 
export of the vRNP complex via the PI3K/Akt signaling 
pathway [8], dapivirine, which affects influenza A and B 
viruses by inhibiting the nuclear entry of NP in the early 
stage of viral replication [16], and ZBMD-1, which blocks 
the nuclear export of NP by impeding the binding of NP to 
CRM1 [17].

In summary, in this study, we demonstrated that ZEP pos-
sesses antiviral activity against influenza A and B viruses 
in vitro. It was found to reduce viral titers and block the 
extranuclear transport of NP, indicating that it might be con-
sidered a promising antiviral agent against influenza viruses. 
However, it is necessary to investigate in more detail what 

Fig. 6   Effect of ZEP on the intracellular distribution of viral NP protein of influenza A (H3N2) virus. MDCK cells were infected with A/Syd-
ney/5/97 (H3N2) (MOI: 1) and treated with 12.5 µM ZEP. At 4, 6 and 8 h p.i., cells were labeled with anti-IAV NP. Scale of images, 200 µm
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other proteins involved in the transport of vRNP are affected 
by ZEP.
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