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Abstract
From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) 
infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic 
correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis 
of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while 
the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe 
systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high suscep-
tibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis 
of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated 
from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases con-
centrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after 
the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, 
three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not 
only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple 
invasions had occurred during winter 2016–2017.

Introduction

Highly pathogenic avian influenza viruses (HPAIVs) cause 
serious disease in chickens and other avian species. For 
example, the H5N1 HPAIV that caused an outbreak at a 
goose farm in Guangdong in China in 1996 [1] initiated 
a decades-long endemic throughout the world. In 1997, 
a descendant virus caused outbreaks on poultry farms as 
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well as 18 human cases, including 6 deaths, in Hong Kong 
[2]. After a 5-year lull, progeny viruses caused devastating 
outbreaks in Asian countries in 2004 [3] and had spread to 
Europe, Africa, and the Middle East by 2006 [4, 5]. The 
numbers of countries and regions affected by H5N1 HPAIV 
peaked in 2006 [6]. Although local, regional, and interna-
tional efforts had decreased the number of affected coun-
tries by 2013, these progeny viruses have since resurged, and 
the number of affected countries has rebounded. Recently, 
H5N2, H5N3, H5N6, and H5N8 HPAIVs that carry the H5 
HA of clade 2.3.4.4 have emerged and have spread to Asia, 
Europe, and North America [7–10].

Wild birds play a key role in the transmission of influ-
enza, because waterfowl are the natural reservoirs of avian 
influenza viruses. The first massive mortality due to Asian 
H5N1 HPAIVs that involved waterfowl and several other 
avian species occurred in two Hong Kong parks in 2002; 
before this date, waterfowl had been resistant to HPAIVs 
[11]. In 2005, numerous wild birds were found dead from 
H5N1 infection at Qinghai Lake in western China and Mon-
golia [12]. After the die-off at Qinghai Lake, the first out-
breaks due to H5N1 HPAIVs in wild birds in Europe were 
reported in Romania and Croatia at the end of 2005 [13, 14]. 
During 2006–2007, several mute swans infected with H5N1 
HPAIVs died on the island of Ruegen in Germany [15], and 
the infection of wild birds subsequently spread to the Baltic 
countries [16]. At the same time, African cases of wild-bird 
infection were reported in Burkina Faso, Côte d’Ivoire, and 
Nigeria [17]. Given the rapidity of the virus’s spread, wild 
bird migration was considered to have contributed to the 
dissemination of the so-called “Qinghai lake strain,” an H5 
HPAIV of clade 2.2, throughout Africa, Europe, and the 
Middle East [18].

During winter 2010–2011, 63 cases of infection with 
H5N1 HPAIV, involving 18 species of wild birds, as well as 
24 outbreaks at chicken farms occurred in Japan [19]. Dur-
ing the same season in South Korea, H5N1 HPAIV caused 
outbreaks at 53 poultry farms, including 32 domestic duck 
farms, and infected 20 wild birds [20]. In 2014, the first 
North American outbreaks due to Asian H5Nx HPAIVs 
occurred in wild birds and poultry [21]. H5N8 HPAIV also 
caused outbreaks in poultry and wild birds in Europe in 
2016–2017.

South Korea experienced 2 waves of outbreaks due to 
H5N8 HPAIVs between 2014 and 2015 [22]. During these 
waves, 58 HAPIVs were isolated from wild birds through 
active and passive surveillance. In the same season, 12 
cases of wild-bird infection and 5 outbreaks at poultry farms 
were reported in Japan [23]. Recently, H5N6 HPAIVs have 
emerged in wild birds and poultry [24].

The HPAI outbreak in black swans in Akita Prefecture 
on 15 November 2016 was the first case due to an H5N6 
virus in Japan [25]. Subsequently, 212 cases in wild and 

captive birds as well as 12 cases on poultry farms occurred 
in Japan during winter 2016–2017 [26]. These cases were 
reported from Hokkaido in the north to Kyushu in the south. 
Among affected prefectures, Ibaraki had the most wild-bird 
cases—63 cases occurred from 29 November 2016 to 24 
January 2017—although no poultry cases were reported. In 
the current study, we analyzed the genetic, temporal, and 
spatial relationships among the HPAIV strains isolated from 
wild birds in Ibaraki Prefecture to elucidate how the viruses 
had intruded into, and spread throughout, this region and its 
wild-bird populations.

Methods

Virus isolation

Tracheal and cloacal swabs were collected from 242 dead 
birds that were brought into Ibaraki Prefecture Kenpoku 
Livestock Hygiene Service Center and were transferred to 
PBS containing 1,000 U/mL penicillin, 1,000 μg/mL strep-
tomycin and 25 μg/mL Fungizone (Table 1). The swabs 
were removed from the transport medium, and 0.2 mL of the 
supernatant was inoculated into 9- to 11-day-old embryo-
nated eggs for virus isolation [27]. The inoculated eggs were 
incubated at 37 °C for 2 days after inoculation or until the 
embryos died. The eggs then were chilled at 4 °C, and the 
allantoic fluid was harvested and tested in hemagglutinin 
(HA) assays using chicken red blood cells to detect virus 
[27]. Allantoic fluid that was negative by HA assay was pas-
saged once more in embryonated chicken eggs.

Pathology

Dead mute (Cygnus olor) and black (Cygnus atratus) swans, 
which comprised the majority of the dead birds at Senba 
Lake, were necropsied for the evaluation of gross lesions. 
Histopathology was performed on samples of brain, lung, 
heart, liver, pancreas, kidney, spleen, and intestinal tissue 
from birds that had gross lesions; the skin surrounding the 
rachis was evaluated in all dead birds. Tissue samples were 
fixed in 10% neutral buffered formalin for 24 h and embed-
ded in paraffin. Paraffin blocks were sectioned at 3 μm and 
stained with hematoxylin and eosin. For AIV immunohisto-
chemistry, paraffin sections were incubated with anti-influ-
enza A virus matrix protein mouse monoclonal antibody 
(dilution, 1:1000; LSBio, Seattle, WA, USA). This was fol-
lowed by incubation with universal immunoperoxidase poly-
mer (Histofine Simple Stain MAX-PO [MULTI], Nichirei 
Biosciences, Tokyo, Japan) as the secondary antibody and 
3,3′ diaminobenzidine tetrachloride as a chromogen.
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Table 1  Cases of H5N6 HPAVI infection in wild birds in Ibaraki Prefecture, Japan, during winter 2016–2017

Area Date Species Conditiona Location Isolate name

Northern 2016/11/29 whooper swan Cygnus cygnus Dead Otsukatyo A/whooper swan/Ibaraki/188C/2016(H5N6)
2016/12/6 black headed gull Larus ridibundus Dead Senba lake A/black-headed gull/Ibaraki/194T/2016(H5N6)
2016/12/8 mute swan Cygnus olor Hyposthenic Senba lake A/mute swan/Ibaraki/202T/2016(H5N6)
2016/12/10 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/208T/2016(H5N6)
2016/12/11 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/210T/2016(H5N6)
2016/12/12 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/211T/2016(H5N6)
2016/12/13 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/214T/2016(H5N6)
2016/12/13 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/217T/2016(H5N6)
2016/12/14 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/218T/2016(H5N6)
2016/12/14 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/219T/2016(H5N6)
2016/12/14 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/220T/2016(H5N6)
2016/12/14 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/221C/2016(H5N6)
2016/12/14 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/222C/2016(H5N6)
2016/12/14 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/223T/2016(H5N6)
2016/12/14 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/232C/2016(H5N6)
2016/12/15 black headed gull Larus ridibundus Dead Izumityo A/black-headed gull/Ibaraki/235T/2016(H5N6)
2016/12/15 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/236T/2016(H5N6)
2016/12/16 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/239C/2016(H5N6)
2016/12/16 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/240C/2016(H5N6)
2016/12/16 mute swan Cygnus olor Hyposthenic Senba lake A/mute swan/Ibaraki/242T/2016(H5N6)
2016/12/16 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/245C/2016(H5N6)
2016/12/16 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/247C/2016(H5N6)
2016/12/17 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/248C/2016(H5N6)
2016/12/17 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/249T/2016(H5N6)
2016/12/17 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/250T/2016(H5N6)
2016/12/18 black headed gull Larus ridibundus Dead Senba lake A/black-headed gull/Ibaraki/253T/2016(H5N6)
2016/12/18 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/252T/2016(H5N6)
2016/12/18 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/254C/2016(H5N6)
2016/12/18 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/255C/2016(H5N6)
2016/12/19 black swan Cygnus atratus Dead Senba lake A/black swan/Ibaraki/256C/2016(H5N6)
2016/12/19 black swan Cygnus atratus Dead Joto A/black swan/Ibaraki/259T/2016(H5N6)
2016/12/20 black headed gull Larus ridibundus Dead Senba lake A/black-headed gull/Ibaraki/265T/2016(H5N6)
2016/12/20 black headed gull Larus ridibundus Dead Senba lake A/black-headed gull/Ibaraki/267T/2016(H5N6)
2016/12/20 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/262C/2016(H5N6)
2016/12/20 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/263T/2016(H5N6)
2016/12/21 black swan Cygnus atratus Dead Senba lake A/black swan/Ibaraki/271C/2016(H5N6)
2016/12/21 black swan Cygnus atratus Dead Senba lake A/black swan/Ibaraki/272C/2016(H5N6)
2016/12/21 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/269T/2016(H5N6)
2016/12/21 mute swan Cygnus olor Dead Senba lake A/mute swan/Ibaraki/270T/2016(H5N6)
2016/12/21 pochard Aythya ferina Dead Tanotyo A/pochard/Ibaraki/268T/2016(H5N6)
2016/12/22 black headed gull Larus ridibundus Dead Senba lake A/black headed gull/Ibaraki/282T/2016(H5N6)
2016/12/22 mute swan Cygnus olor Dead Senba lake A/muteswan/Ibaraki/277T/2016(H5N6)
2016/12/24 black headed gull Larus ridibundus Dead Senba lake A/black-headed gull/Ibaraki/284T/2016(H5N6)
2016/12/25 great crested grebe Podiceps cristatus Dead Senba lake A/great crested grebe/Ibaraki/286T/2016(H5N6)
2016/12/25 great crested grebe Podiceps cristatus Dead Senba lake A/great crested grebe/Ibaraki/287T/2016(H5N6)
2016/12/26 black swan Cygnus atratus Dead Senba lake A/black swan/Ibaraki/290C/2016(H5N6)
2016/12/26 black headed gull Larus ridibundus Dead Tamiyahara A/black-headed gull/Ibaraki/289T/2016(H5N6)
2016/12/28 great crested grebe Podiceps cristatus Dead Tanotyo A/great crested grebe/Ibaraki/298C/2016(H5N6)
2016/12/30 black swan Cygnus atratus Dead Sakuragawa A/black swan/Ibaraki/302C/2016(H5N6)
2017/1/2 black swan Cygnus atratus Dead Senba lake A/black swan/Ibaraki/28-446T/2017(H5N6)
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Full‑genome sequencing of HPAIV isolates

Allantoic fluid was centrifuged for 5 min at 10,000 × g, 
and viral RNA was extracted from the supernatant by using 
an RNeasy Mini kit (Qiagen, Tokyo, Japan) according to 
the manufacturer’s protocol. Full-genome sequencing was 
performed by using a MiSeq sequencer (Illumina, Tokyo, 
Japan). The cDNA library was prepared by using the NEB-
Next Ultra RNA Library Prep Kit (New England Biolabs, 
Tokyo, Japan) with NEBNext Multiplex Oligos for Illumina 
(New England Biolabs, Ipswich, MA, USA), and the con-
centration of the library was measured by using an NEB-
Next Library Quant Kit for Illumina (New England Biolabs, 
Tokyo, Japan). We mixed 10 pM of each cDNA library with 
10 pM of the PhiX control (Illumina), and the mixtures were 
loaded into the Miseq Reagent Kit version 2 (Illumina) for 
2 rounds of 150 cycles. The output data were mapped to 
HPAIV genomes, and a consensus sequence for each isolate 
was generated by using FLUGAS software (World Fusion, 
Tokyo, Japan). All sequences were submitted to GISAID 
(http://platf orm.gisai d.org/epi3/start ); accession numbers are 
listed in Online Resource 1.

Phylogenetic analysis

All AIV sequences registered to GISAID (http://platf orm.
gisai d.org/epi3/start ) as of 13 June 2017 were downloaded; 
the numbers of sequences downloaded for each gene were: 
PB2, 46,165; PB1, 45,393: PA, 44,838; H5, 9,776; NP, 
46,082; N6: 3,168; M, 65,011; and NS, 47,497. To clas-
sify the HA clade of each isolate, 4,998 sequences were 
selected from the downloaded sequences by sorting for 
complete and unique sequences; these were then used to 

construct a maximum likelihood tree by using MEGA7 
[28]. For detailed phylogenetic analysis, each set of down-
loaded sequences was aligned in its order of similarity to the 
sequence of A/whooper swan/Ibaraki/188C/2016 (H5N6), 
which was the first HPAIV isolated from a wild bird in Iba-
raki Prefecture, by using MAFFT [29]; the top 200 most 
similar sequences were selected to generate the phyloge-
netic tree. Identical sequences from strains that were isolated 
on the same date, from the same species, and at the same 
place were removed from each sequence set. The alignment 
lengths of each segment are shown in Table 2. Maximum 
likelihood trees of each segment were generated by boot-
strapping 1,000 times using MEGA7.

a Condition of birds when being found. All birds had died before they were brought into Ibaraki Prefecture Kenpoku Livestock Hygiene Service 
Center

Table 1  (continued)

Area Date Species Conditiona Location Isolate name

2017/1/4 black swan Cygnus atratus Dead Tyuo A/black swan/Ibaraki/310C/2017(H5N6)
2017/1/16 black swan Cygnus atratus Dead Otsukatyo A/black swan/Ibaraki/341T/2017(H5N6)
2017/1/17 black swan Cygnus atratus Hyposthenic Otsukatyo A/black swan/Ibaraki/345T/2017(H5N6)
2017/1/18 black swan Cygnus atratus Dead Otsukatyo A/black swan/Ibaraki/348C/2017(H5N6)
2017/1/19 black swan Cygnus atratus Hyposthenic Otsukatyo A/black swan/Ibaraki/350T/2017(H5N6)
2017/1/21 black swan Cygnus atratus Dead Otsukatyo A/black swan/Ibaraki/356T/2017(H5N6)
2017/1/22 black swan Cygnus atratus Dead Otsukatyo A/black swan/Ibaraki/357T/2017(H5N6)
2017/1/24 black swan Cygnus atratus Hyposthenic Otsukatyo A/black swan/Ibaraki/365T/2017(H5N6)

Southern 2016/12/18 black headed gull Larus ridibundus Dead Suga A/black-headed gull/Ibaraki/258T/2016(H5N6)
2016/12/26 black headed gull Larus ridibundus Dead Tsumagi A/black-headed gull/Ibaraki/291T/2016(H5N6)
2016/12/28 whooper swan Cygnus cygnus Dead Numao A/whooper swan/Ibaraki/301T/2016(H5N6)
2017/1/11 whooper swan Cygnus cygnus Dead Maekawa A/whooper swan/Ibaraki/331C/2017(H5N6)
2017/1/19 whooper swan Cygnus cygnus Dead Kashimashi A/whooper swan/Ibaraki/351C/2017(H5N6)

Table 2  Best-fit substitution model and nucleotide substitution rates

a HKY: Hasegawa-Kishino-Yano model, +I: proportion of invariant 
sites, TrN: Tamura and Nei model
b HPD: highest posterior density
c M segment was not included in MCMC analysis

Segment Length 
(nucleo-
tides)

Substitution  modela Substitution rate (× 
 10−3)

Mean 95%  HPDb

B2 2280 HKY 4.59 3.58–5.65
PB1 2274 HKY+I 6.01 4.43–7.60
PA 2151 TrN 4.72 3.73–5.83
HA 1701 TrN 7.62 5.88–9.48
NP 1497 HKY+I 4.10 2.92–5.40
NA 1380 HKY 5.47 4.17–6.88
M 948 c

NS 823 HKY+G 4.23 2.80–5.73

http://platform.gisaid.org/epi3/start
http://platform.gisaid.org/epi3/start
http://platform.gisaid.org/epi3/start
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Bayesian phylogenetic trees were constructed by using 
BEAST (version 1.8.4) software [30]. From the 300 
sequences with the highest level of identity using MAFFT 
[37], we selected sequence sets that belonged to 89 strains 
and that had 7 segments (PB2, PB1, PA, HA, NP, NA, NS) 
in common. M segments were removed from the sequence 
set because their origin differed from those of the others. 
The abovementioned 7 segments were used as partitions, 
and their sites and clock models were unlinked. Best-fit 
substitution models were selected by using the Bayesian 
Information Criterion implemented in jModeltest2 [31] and 
are shown in Table 2. The uncorrelated log-normal relaxed 
molecular clock was used to estimate the substitution rate 
of each segment. Two Markov chain Monte Carlo (MCMC) 
chains were run for 5 ×  108 cycles and were thinned by 
sampling every 20,000 cycles. Two runs after 10% burn-in 
were combined by using LogCombiner in BEAST. Effective 
sample sizes were checked in Tracer version 1.6 (combined 
effective sample size >200), and maximum clade credibility 
(MCC) trees were generated from the MCMC samples by 
using TreeAnnotator (v1.8.4) software. Each MCC tree was 
viewed and edited by using FigTree v1.3.1 [32]. To elucidate 
how the H5N6 viruses were introduced into and expanded 
among wild-bird populations in Ibaraki Prefecture, we used 
SPREAD software [33] to perform discrete phylogeographi-
cal analysis, and the result was visualized in Google Earth 
(https ://www.googl e.co.jp/intl/ja/earth /).

Results

Outbreaks of H5N6 influenza in Ibaraki Prefecture

From November 2016 through March 2017, a total of 212 
cases of wild birds being affected by HPAIVs of the H5N6 
subtype were identified through dead-bird surveillance 

conducted by Japan’s Ministry of the Environment; 7 iso-
lates were obtained from samples of feces or water samples 
through surveys by universities or the Ministry of Health, 
Labour, and Welfare of Japan (Fig. 1). These cases were 
reported from Hokkaido in the north to Kyushu in the south 
of Japan and included 16 infected captive birds in two zoos. 
In particular, 63 cases occurred in Ibaraki Prefecture: the 
first occurred on 29 November 2016 and the last on 24 Janu-
ary 2017 (Table 1). Whereas 58 cases occurred in the north 
of the prefecture (Izumityo, Joto, Otsukatyo, Sakuragawa, 
Senba Lake, Tamiyahara, Tanotyo, and Tyuo), the remaining 
5 cases occurred in southern Ibaraki (Kashima, Tsumagi, 
Maekawa, Numao, and Suga) (Fig. 2). Otsukatyo, Senba 
Lake, and Tanotyo, which are in the northern area, are win-
tering or stopover sites of migratory waterfowl, and a total 
of 1,079 birds were observed in Senba Lake during the latter 
half of November 2016 [34]. In contrast, 5 locations in the 
southern region are near Kasumigaura, the second largest 
lake in Japan. Among the 63 cases in Ibaraki, most (that is, 
49 cases) of the affected birds belonged to the genus Cygnus, 
including mute swans, black swans, and whopper swans; the 
remaining 14 birds were black-headed gulls, great crested 
grebes, and a pochard.

We pathologically analyzed the dead mute swans and 
black swans from Senba Lake to elucidate whether HPAIVs 
had contributed to their deaths, because the numbers of 
deaths in these species stood out (Table 3). On both gross 
and microscopic examination, all mute swans demonstrated 
hepatic and pancreatic necrosis, and half of these birds also 
showed intestinal hemorrhage (Fig. 3 a–d). Although not 
apparent grossly, pathologic lesions in the brain, kidney, 
and spleen were noted microscopically in some subjects 
(Online Resource 2 a and b). Immunostaining for AIV anti-
gen revealed numerous positive cells in hepatic, pancreatic, 
and brain lesions (Fig. 3 e and f). No legions were present 
either grossly or in HE-stained samples from the lung, heart, 

Fig. 1  Numbers of H5N6 HPAIVs isolated from wild birds in Japan, November 2016 to March 2017. Blue, total cases; red, Ibaraki cases

https://www.google.co.jp/intl/ja/earth/
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or rachis, but numerous positive cells were revealed through 
immunostaining (Online Resource 2 c–f). In addition, AIV 
antigens were detected in the conjunctiva of a single mute 
swan (Online Resource 3). Similar hepatic, pancreatic, intes-
tinal, brain, renal, and splenic lesions were present in dead 
black swans (Table 3).

Phylogenetic analysis of H5N6 isolates from wild 
birds in Ibaraki

To genetically characterize the viruses, we sequenced and 
then phylogenetically analyzed the entire genomes of 63 
HPAIVs isolated from wild birds that had died in Ibaraki. 
In all isolates, the cleavage site of the HA protein had a 
series of basic amino acids (LRERRRKR/GLF), which is 
characteristic of HPAIVs. Maximum-likelihood phyloge-
netic analysis revealed that the HA genes of all 63 Ibaraki 
isolates belonged to clade 2.3.4.4, which includes the H5Nx 

(H5N1, H5N2, H5N5, H5N6, and H5N8) HPAIVs respon-
sible for the outbreaks in Asia, Europe, and North America 
since 2014 [35] (Online Resource 4). In addition, 7 seg-
ments (PB2, PB1, PA, HA, NP, NA, and NS) were derived 
from G1.1.9 strains, whereas the remaining segment (M) 
was derived from G1.1 strains; most of the ancestors of the 
Ibaraki viruses have been isolated in south China since 2014 
[36] (Online Resources 5–12). The genetic constellation of 
the Ibaraki isolates was the same as that found predomi-
nantly among the H5N6 HPAIVs isolated throughout Japan 
during the same season. [27]. The nucleotide identity among 
the 63 Ibaraki isolates was 98.9% to 100%, and the identity 
at the amino acid level was 98.4% to 100%, depending on 
the gene (Table 4).

Next, to depict the temporal relationship among the iso-
lates, we generated an MCC tree by using BEAST software. 
We performed a multi-locus coalescent analysis [30] using 
7 segments (the M gene was omitted because of its different 

Fig. 2  Map of Ibaraki Prefecture. Arrowheads indicate sites of HPAI 
outbreaks. These places were grouped into two areas (circled in red): 
the northern area includes Izumityo, Joto, Otsukatyo, Sakuragawa, 

Senba Lake, Tamiyahara, Tanotyo, and Tyuo, and the southern area 
includes Kashima, Maekawa, Numao, Suga, and Tsumagi
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genetic origin) to investigate the genetic relationships among 
the isolates, because using only a single segment might not 
have discriminated the isolates well owing to their high lev-
els of identity (Table 4). The MCC tree displayed 7 dis-
tinguishable branches among the isolates, comprising two 
dominant groups (designated as groups 1 and 2) (Fig. 4). 
Group 1 consisted of 43 isolates from Senba Lake, 5 iso-
lates from the vicinity in the northern area, as well as 1 
additional isolate, A/black headed gull/Ibaraki/291T/2016, 
from Tsumagi, which is 40 km away from Senba Lake. Most 
(that is, 30) of the Senba Lake (that is, group 1) isolates 
were from mute swans, with 5 isolates from black swans, 6 
from black-headed gulls, and 2 from great crested grebes. 
All of the viruses in group 2 were isolated from black swans 
in Otsukatyo. The first isolate in Otsukatyo, A/whooper 
swan/Ibaraki/188C/2006, was phylogenetically distinguish-
able from the other isolates in group 2, suggesting that 
this first isolate and the group 2 isolates were introduced 
independently.

Phylogeographic analysis of H5N6 isolates 
from Ibaraki Prefecture

Data from the MCC tree generated by multi-locus phylo-
genic analysis were entered on a map by using SPREAD 

software [33] to reveal the geographic and temporal relation-
ships among HPAI outbreaks involving wild birds in Ibaraki 
Prefecture. Using this approach, we simulated the spatial 
spreading of the H5N6 HPAIVs in Ibaraki Prefecture during 
winter 2016–2017 (Fig. 5).

The first H5N6 virus in Ibaraki Prefecture was obtained 
from a whooper swan in Otsukatyo on 29 November 2017. 
On 6 December, an H5N6 virus was detected in a dead 
black-headed gull at Senba Lake, but it did not appear to be 
directly related to the previous isolate from Otsukatyo. Sub-
sequently, the 6 December isolate spread among mute swans 
at Senba Lake from 8 through 22 December. Infections in 
and around Senba Lake continued until 2 January 2017, dur-
ing which period two cases involving great crested grebes 
and another 5 cases in black-headed gulls were detected. The 
virus at Senba Lake appeared to spill over to infect black-
headed gulls in Izumityo and Tamiyahara and black swans 
at Joto, Sakuragawa, and Tyuo (Fig. 5c). As indicated by 
the maximum likelihood tree, an isolate obtained from a 
black-headed gull in Tsumagi (in southern Ibaraki), A/black 
headed gull/Ibaraki/291T/2916, was derived from viruses 
at Senba Lake (Fig. 5c and 5f). Although Tanotyo is only 
7 km from Senba Lake, the isolates detected in a pochard 
on 21 December and a great crested grebe on 26 December 
differed from the Senba Lake isolates (Fig. 5b).

The first H5N6 virus detected in southern Ibaraki, A/
black headed gull/Ibaraki/258T/2016, was obtained from a 
black-headed gull in Suga on 18 December. This virus did 
not represent spill-over from Senba Lake, even though the 
outbreak at Senba Lake had already reached 27 cases by 
then (Fig. 5e). In contrast, the virus isolated in Tsumagi 
on 26 December was introduced from Senba Lake, as men-
tioned earlier (Fig. 5e and 5g). On 28 December, a whooper 
swan in Numao was found dead from the H5N6 virus A/
whooper swan/Ibaraki/301T/2016, and a related virus, A/
whooper swan/Ibaraki/331C/2016, was obtained from a 
whooper swan in Maekawa on 11 January (Fig. 5f). Another 
whooper swan case occurred on 19 January in Kashima, 
but the virus isolated, A/whooper swan/Ibaraki/351C/2016, 
was not directly related to those in the cases at Numao and 
Maekawa.

Discussion

Here, we analyzed the evolutionary dynamics of several 
HPAIV outbreaks by using BEAST software and a Bayesian 
MCMC approach [37, 38]. This approach has been useful for 
analyzing virus transmission and spread among susceptible 
animals in different regions, because the MCC tree that is 
generated reflects not only the genetic relationship among 
viruses but also temporal and geographic information [39]. 
For example, MCMC modeling has been used to investigate 

Table 3  Distribution of pathologic lesions in mute swans and black 
swans infected with H5N6 HPAIVs

HE hematoxylin and eosin stain, IHC immunohistochemistry for AIV 
M protein

Species Organ Pathologic lesions (no. of organs 
with lesions/no. of organs 
analyzed)

Gross HE IHC

Mute swan Brain 0/5 2/5 5/5
Lung 0/6 0/6 6/6
Heart 0/5 0/5 5/5
Liver 6/6 6/6 6/6
Pancreas 6/6 6/6 6/6
Kidney 0/5 1/5 4/5
Spleen 0/5 4/5 5/5
Intestine 3/6 3/6 5/6
Skin 0/30 0/30 30/30

Black swan Brain 0/8 1/8 8/8
Lung 0/10 0/10 9/10
Heart 0/9 0/9 7/9
Liver 11/12 11/12 12/12
Pancreas 12/12 12/12 12/12
Kidney 0/9 0/9 7/9
Spleen 0/10 6/10 9/10
Intestine 2/11 2/11 8/11
Skin 0/13 0/13 12/13
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the relationship between the spread of H5N1 viruses dur-
ing 2003–2012 and bird migration networks in Asia [40]. 
However, analyzing virus evolution within a small region or 
during a short period is difficult, because the genomic diver-
sity among isolates in these contexts is generally quite low. 

For example, the viruses analyzed in the present study were 
genetically similar (89.1% to 100%) to each other (Table 4). 
Using the concatenation or coalescent method with multi-
locus sequence sets can overcome such difficulty to allow 
detailed analysis of viral evolution. The concatenation 

Fig. 3  Pathologic findings in 
dead mute swans. Liver (a, c, 
e) and pancreas (b, d, f) were 
collected from dead mute 
swans and investigated by gross 
pathological examination (a, 
b). Tissue sections were stained 
with hematoxylin and eosin (c, 
d). In immunohistochemical 
analysis for AIV M protein, the 
antigen stains red (e, f)

Table 4  Genetic diversity 
among Ibaraki isolates

Gene Identity (%)

Among Ibaraki isolates Among Group 1 isolates Among Group 2 isolates

nucleotide amino acid nucleotide amino acid nucleotide amino acid

HA 99.1–100 98.9–100 99.7–100 99.4–100 99.9–100 99.8–100
NA 98.9–100 98.4–100 99.6–100 99.3–100 99.8–100 99.7–100
PB2 99.2–100 99.4–100 99.7–100 99.7–100 99.9–100 100
PB1 99.3–100 99.4–100 99.6–100 99.6–100 99.8–100 99.6–100
PA 99.3–100 99.1–100 99.8–100 99.5–100 99.8–100 99.7–100
NP 99.2–100 99.1–100 99.8–100 99.7–100 99.7–100 99.7–100
M 99.5–100 99.6–100 99.7–100 99.6–100 100 100
NS 99.5–100 99.2–100 99.7–100 99.2–100 99.7–100 99.2–100
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Fig. 4  Phylogenetic tree based on multiple segments of H5N6 
HPAIV. The phylogenetic tree was generated from the PB2, PB1, PA, 
HA, NP, NA, and NS segments of the Ibaraki isolates and reference 
strains by using the MCMC method and BEAST v1.8.4 software. The 
color of the virus name indicates the site in Ibaraki at which the virus 

was isolated (red, northern region; blue, southern region). Two dis-
tinguishable groups emerged: group 1 (green highlighting) and group 
2 (orange highlighting). Only posterior probability values above 0.80 
are shown
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Fig. 5  Spatial dynamics of H5N6 HPAIV in Ibaraki Prefecture. Panels a through c show sites in the northern region; panels d through f show 
sites in the southern region. Panel g shows an overview of virus spread
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method involves a single supergene, which is produced by 
concatenating all gene variants; this method is generally 
used to construct a species tree because the estimation pro-
cess is more rapid than with the coalescent method. How-
ever, the concatenation method can yield incorrect results 
when the evolution rate differs between gene sets [41].

In the coalescent method, estimation based on multi-
locus sequence data is performed concurrently, and each 
sequence is treated as an independent neutral replicate; 
consequently, estimating the phylogenetic tree is computa-
tionally expensive [42]. In the present study, we used the 
coalescent approach to construct a phylogenetic tree from 7 
segments (PB2, PB1, PA, HA, NP, NA, and NS), the sub-
stitution rates of which differed (Table 2). This 7-segment 
approach improved the posterior probability of monophy-
letic branches, compared with analysis that used a single 
segment (Online Resource 13), allowing us to perform a 
detailed investigation of virus evolution in a genetically 
closed population.

Phylogenic and phylogeographic analysis revealed that 
the HPAIV outbreaks among wild birds in Ibaraki Pre-
fecture during winter 2016–2017 were not due to a single 
introduction of virus, followed by dissemination through-
out the prefecture, but rather resulted from 7 independent 
introductions. Although Senba Lake, Otsukatyo, and Tano-
tyo are small areas within a 5-km radius (as are Tsumagi, 
Numao, Suga, and Kashima in southern Ibaraki), isolates 
from the respective areas did not share a Most Recent Com-
mon Ancestor with each other (Fig. 4). These multi-inva-
sions may have resulted from the widespread prevalence of 
H5N6 HPAIVs in wild-bird populations throughout Japan, 
as evidenced by the dead-bird surveillance completed by 
the Ministry of the Environment of Japan [26]. In addition, 
susceptibility to HPAIVs varies among avian species, and in 
experimental infection studies infected birds have not always 
died [43–46]; furthermore, few reports have addressed the 
pathogenicity of H5N6 HPAIV against avian species except 
poultry. Furthermore, H5N6 viruses have been isolated from 
apparently healthy wild birds during AIV surveillance in 
China [47]. Therefore, the dead wild birds recovered through 
the dead-bird surveillance in Japan might have been only a 
small representation of the situation, and many more wild 
birds might have been infected asymptomatically and trans-
mitted the virus among wild birds during the season.

Regarding the H5N6 HPAIVs in Ibaraki, 49 of the 63 
cases occurred in swans: 30 cases involved mute swans, 
15 black swans, and 4 whooper swans. Infections of swans 
with H5N1, H5N8, and H5N6 HPAIVs have been reported 
previously [48–50]. In 2006, 185 of the 347 cases of HPAI 
reported in Germany in wild birds and mammals involved 
swans [15]. Mute swans are highly susceptible to HPAIV 
and have been considered to act as virus spreaders because 
they shed large quantities of viruses from their respiratory 

and digestive tracts before the onset of clinical signs [51]. 
Furthermore, 43 of the dead or hyposthenic birds in the 
current study (that is, 68% of those involved in the Iba-
raki outbreaks) were found at Senba Lake during a single 
month (Table 1), and the Senba Lake viruses spilled over 
to sites as far as 10 km away (Fig. 5c). A possible explana-
tion for the serious outbreaks at Senba Lake is that H5N6 
HPAIV spread rapidly among the highly susceptible mute 
swans and that these viruses were subsequently transmit-
ted to other species of wild birds in Senba Lake.

Most of the dead birds during the first half of the out-
breaks at Senba Lake were mute swans; the infections in 
black swans, black-headed gulls, and great crested grebes 
followed in the second half. During these outbreaks, 
many wild birds flew into the Senba Lake site [34], and 
other species of wild birds—particularly mallard ducks, 
which have been subclinically infected with various H5N6 
HPAIVs in an experimental study [52]—might have con-
tributed to viral transmission. Some of these wild birds 
merely stopped over at Senba Lake before migrating else-
where. Even birds wintering over or staying year-round did 
not remain continuously at that site but flew from place to 
place to forage [53].

In the present study, we demonstrated the short-term 
evolutionary dynamics of H5N6 viruses in Ibaraki Pre-
fecture. Coalescent phylogenetic analysis of 7 segments of 
the HPAIV genome revealed multiple invasions of H5N6 
HPAIVs during winter 2016–2017, and these viruses 
both spread among susceptible birds at the same site and 
expanded to other sites. Use of a multi-segment coalescent 
approach allowed detailed analysis of virus introduction 
and spread, even among small areas and during a short 
period; this depth of investigation would have been dif-
ficult to accomplish by using a single segment.
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