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Abstract A novel low-temperature Escherichia coli
phage vB_EcoS_NBD2 was isolated in Lithuania from
agricultural soil. With an optimum temperature for plat-
ing around 20 °C, vB_EcoS_NBD?2 efficiently produced
plaques on Escherichia coli NovaBlue (DE3) at a temper-
ature range of 10-30 °C, yet failed to plate at tempera-
tures above 35 °C. Phage vB_EcoS_NBD?2 virions have
a siphoviral morphology with an isometric head (65 nm
in diameter), and a non-contractile flexible tail (170 nm).
The 51,802-bp genome of vB_EcoS_NBD2 has a G + C
content of 49.8%, and contains 87 probable protein-
encoding genes as well as 1 gene for tRNAS", Compara-
tive sequence analysis revealed that 22 vB_EcoS_NBD2
ORFs encode unique proteins that have no reliable
identity to database entries. Based on homology to bio-
logically defined proteins and/or proteomics analysis, 36
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vB_EcoS_NBD2 ORFs were given a putative functional
annotation, including 20 genes coding for morphogenesis-
related proteins and 13 associated with DNA metabolism.
Phylogenetic analysis revealed that vB_EcoS_NBD2
belongs to the subfamily Tunavirinae, but cannot be
assigned to any genus currently recognized by ICTV.

INTRODUCTION

Ever since their discovery in the early twentieth century,
bacteriophages (phages) have attracted the interest of sci-
entists from many fields. From the identification of DNA as
the genetic material to the discovery of CRISPR-Cas, phage
research has had an enormous impact on our understanding
of core biological processes and has provided many rea-
gents and techniques routinely used in molecular biology
[1-3]. Moreover, the rise of antibiotic-resistant bacteria has
led to a renewed interest in phage-based antimicrobials [4].
Based on this, one may conclude that bacterial viruses are
very well researched. However, recent evidence suggests
that phages represent the most numerous and biologically
diverse viral population, of which we have only a very lim-
ited understanding [5, 6].

Approximately 95% of known phages are double-
stranded DNA (dsDNA)-containing tailed viruses that com-
prise the order Caudovirales, which is divided into three
families: Podoviridae (phages with short tails), Siphoviri-
dae (those with long noncontractile tails), and Myoviridae
(phages with contractile tails) [7, 8]. More than three dec-
ades ago, three physiological types of phages were recog-
nized: high-temperature (HT) phages plating at or above
25 °C, low-temperature (LT) phages, plating at or below
30 °C, and mid-temperature (MT) phages, plating in the
range of 15 to 42 °C [9]. The vast majority of characterized
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coliphages, those that are active against the enterobacte-
rium Escherichia coli, are MT phages [5, 10]. Coliphages
belonging to the MT group have an optimum temperature
for plating about 37-40 °C, which correlates closely with
the optimum growth temperature of the host [11]. The abil-
ity of coliphages to lyse their hosts at low temperatures is
affected at various stages of phage infection. In the case of
phage T4, a typical representative of MT coliphages, cer-
tain steps in virion assembly are inhibited even at 19 °C,
leading to an accumulation of capsids, preheads, partially
sheathed tails, and naked cores [12]. In E. coli phage \, at
temperatures below 22 °C, the DNA injection process is
ineffective [13]. Therefore, unsurprisingly, only seven E.
coli-specific phages, all belonging to the family Myoviri-
dae, have been assigned to the LT group to date [5, 14].

In this paper, we present the molecular characterization
of E. coli-specific siphovirus vB_EcoS_NBD2 (subse-
quently referred to by its shorter common laboratory name,
NBD?2), which shows a low-temperature plating profile and
has an optimum temperature for plating of ~20 °C.

MATERIALS AND METHODS
Phage techniques

Bacteriophage NBD2 was isolated from agricultural
soil (strawberry patch, Alytus, Lithuania), using E. coli
strain NovaBlue (DE3) (Novagen) as the host for phage
propagation. Phage isolation was carried out as described
previously [15]. Since NBD2 failed to reproduce after
inoculation into liquid bacterial culture, a modified soft
agar overlay method was employed for phage multiplica-
tion. Briefly, after the addition of 5 ml of LB broth to the
surface of the plate, the top agar was scraped off and the
suspension recovered. After 30 min of incubation at 4 °C
with mild stirring, the mixture was then centrifuged at
6000 rpm for 15 min. The phage-containing supernatant
was decanted and the phage was concentrated by high-
speed centrifugation at 30000 rpm for 3 h. The result-
ing pellets were suspended in PB buffer (70 mM NaCl,
10 mM MgSO,, 50 mM Na,HPO,, 30 mM KH,PO,). To
avoid bacterial DNA contamination, DNase I was added
to the phage suspension, and the sample was incubated
1 h at 37 °C. Further purification was performed using
a CsCl step gradient as described in [15]. For all phage
experiments, bacteria were cultivated in Luria-Bertani
broth (LB) or LB agar. Determination of the efficiency of
plating (e.o.p.) was performed as described by Seeley and
Primrose [9]. Briefly, high-titer phage stocks were diluted
and plated in duplicate. Plates incubated at 15-36 °C were
read after 24 h, while those incubated at 10 °C were read
after 48 h. The temperature at which the largest number
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of plaques formed was taken as the standard for the e.o.p.
calculation.

The host range of NBD2 was investigated using a
quantitative spot dilution test as described in [8]; the list
of E. coli strains used is presented in Table 1.

Table 1 Susceptibility of E. coli K-12 and B derivatives as well as
E. coli BW25113 mutant strains to NBD2

Strain Spot Test ~ Reference/Source

1
E. coli B strains
BE
BL21
BL21(DE3)
B40
BE-BS
E. coli K-12 strains
NovaBlue (DE3)
DHI10B
DH5a
XL1blue
MHI
BW25113
GM2163
E. coli BW25113 Mutants
1I
AwaaC
AwaaF
AwaaS
AwaaY
AwaaQ
AwaaO
AwaaR
AwaaB
AwaaZ
I
AompA
AompC
AompF
AompN
AompL

Lindsay W. Black
Novagen

Novagen

Lindsay W. Black
Kenneth N. Kreuzer [22]

+ + + + +

Novagen

Pharmacia

Pharmacia

Stratagene

Kenneth N. Kreuzer [22]
[23]

Fermentas

Keio Collection [24]

+ 4+ + + + + +

o+ 4+ ++ o+t

AompT
AompX
AompW
Atsx
AfadL
AlamB
AtonB

++++ 4

“4” - clear plaques were observed after incubation at 20 °C
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Viral DNA isolation and restriction analysis

For the isolation of phage DNA, aliquots of phage suspen-
sion (10''-10'2 PFU/ml) were subjected to phenol/chloro-
form extraction and ethanol precipitation as described by
Carlson and Miller [16]. Isolated phage DNA was subse-
quently subjected to genome sequencing and restriction
digestion analysis.

Restriction digestion was performed with EcoRI, Scal,
and Bspl4071 restriction endonucleases (Thermo Fisher
Scientific) according to the supplier’s recommendations.
DNA fragments were separated by electrophoresis (7V/
cm) in a 0.8% agarose gel containing ethidium bromide.
Restriction digestion was repeated at least three times to
confirm the results.

Transmission electron microscopy (TEM)

CsCl density gradient-purified phage particles were diluted
to approximately 10'! PFU/ml with distilled water. In all
TEM analyses, 5 pl of the sample was directly applied on
the carbon-coated nitrocellulose grid, excess liquid was
drained with filter paper before staining with two succes-
sive drops of 2% uranyl acetate (pH 4.5). Samples were
then dried and examined in a Tecnai G2 F20 X-TWIN
(FED) transmission electron microscope operating at 200
kV with an 11 MPix ORIUS SC1000B (Gatan) CCD cam-
era. Magnification was calibrated using T4 phage particles
and dimensions established by measurement of at least 20
intact phage particles.

Genome sequencing and analysis

The isolated genomic DNA of NBD2 (~100 jg) was sent
to BaseClear (Netherlands) for sequencing. Paired-end
sequence reads were generated using the [llumina HiSeq2500
system. FASTQ sequence files were generated using the Illu-
mina Casava pipeline version 1.8.3. Initial quality assessment
was based on data passing the Illumina Chastity filtering. The
second quality assessment was based on the remaining reads
using the FASTQC quality control tool version 0.10.0.

The quality of the FASTQ sequences was enhanced by
trimming off low-quality bases using the “Trim sequences”
option of the CLC Genomics Workbench version 8.5.1.
The quality filtered sequence reads were puzzled into a
number of contig sequences. The analysis was performed
using the “De novo assembly” option of the CLC Genom-
ics Workbench version 8.5.1. Misassemblies and nucleo-
tide disagreement between the Illumina data and the contig
sequences were corrected with Pilon version 1.11. The con-
tigs were linked and placed into scaffolds or supercontigs.
The orientation, order and distance between the contigs
was estimated using the insert size between the paired-end

and/or matepair reads. The analysis was performed using
the SSPACE Premium scaffolder version 2.3. The gapped
regions within the scaffolds were (partially) closed in an
automated manner using GapFiller version 1.10. Thus,
reads were assembled into a single linear contig of 51,802
bp (2,661,576 reads; 6,306 av. coverage).

Open reading frames (ORFs) were predicted with
Glimmer v3.02 (https://www.ncbi.nlm.nih.gov/genomes/
MICROBES/glimmer_3.cgi) and Geneious Pro v5.5.6.
(http://www.geneious.com), using a minimum ORF size
of 75 nt. Analysis of the genome sequence was performed
using BLAST, PSI-BLAST, Megablast (https://blast.ncbi.
nlm.nih.gov/Blast.cgi) as well as Transeq, Clustal Omega
(http://www.ebi.ac.uk), and HHPred, HHblits, HHsenser
[17, 18]. Also, tRNAscan-SE 1.21 (http://lowelab.ucsc.edu/
tRNAscan-SE/) was used to search for tRNAs. Phylogenetic
analysis was conducted using MEGA version 5 [19]. Whole
genome alignment was performed using mVista [20, http://
genome.lbl.gov/vista/], and VIRFAM [21, http://biodev.cea.
fr/virfam/] was used for total proteome comparisons.

Analysis of structural proteins

Analysis of NBD2 virion structural proteins was performed
following a modified filter-aided sample preparation
(FASP) protocol as described in [15].

SDS-PAGE of NBD2 virion proteins

CsCl-purified phage particles (~10'° PFU/ml) resuspended
in a buffer containing 60 mM Tris-HCI (pH 6.8), 1% SDS
(W/v), 1% 2-mercaptoethanol (v/v), 10% glycerol (v/v) and
0.01% bromophenol blue (w/v) were boiled for 3 min and
separated on a 12% SDS PAGE gel. Protein bands were
visualized by staining with PageBlue Protein Staining
Solution (Thermo Fisher Scientific).

RESULTS

Virion morphology. Based on morphological character-
istics, phage NBD2 belongs to the family Siphoviridae
(Fig. 1); characterized by having an isometric head (~65
nm in diameter) and an apparently non-contractile flexible
tail (~170 nm in length, ~12 nm in width). Although neither
the baseplate nor the tail fibers are clearly visible by TEM,
several ORFs coding for putative tail fiber proteins have
been detected during bioinformatics analysis and/or by pro-
teomics (see below).

Basic physiological characteristics and host range.
To determine the optimal conditions for phage propaga-
tion, the effect of temperature on the efficiency of plating
(e.0.p.) was tested. The e.o.p. of NBD2 was examined at a
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Fig. 1 Electron micrographs of CsCl-purified NBD2 virions

temperature range of 7-36 °C, with the test revealing that
NBD?2 is a low-temperature virus: the phage forms plaques
on E. coli NovaBlue (DE3) lawns at a temperature range
of 10-34 °C, and has an optimum temperature for plating
of ~20 °C (Fig. S1). Notably, the same low-temperature
plating profile was observed when NBD2 was plated on
the lawns of other E. coli strains, listed in Table 1. After
24 h of incubation at an optimum temperature, bacte-
riophage NBD2 formed circular smooth plaques of about
6 mm in diameter with a clear center and turbid edge (data
not shown). Notably, since bacteriophage NBD?2 failed to
reproduce after inoculation into liquid bacterial culture, the
one-step growth experiment was not performed.

To investigate the host range of NBD2, the phage was
tested for its ability to infect different laboratory strains of
E. coli. As seen in Table 1, bacteriophage NBD2 has a broad
host range towards laboratory strains of E. coli, and shows
the capacity to infect both E. coli K-12 and B derivatives.
According to the literature, although genetically closely
related, strains of E. coli B and K-12 differ in the structure
of the outer membrane [25], particularly in the composi-
tion of the lipopolysaccharide (LPS) core and expression
of outer membrane proteins [26]. In wild-type enterobacte-
ria, a major component of the outer membrane, LPS, con-
sists of an O-antigen, the core-region, and lipid A [27, 28].
Many common laboratory strains of E. coli, such as K-12
strains, are devoid of the O-antigen, while B strains lack
not only O-antigen but the distal part of the core oligosac-
charide as well [29]. Although quite a number of E. coli
phages described in the literature use outer membrane LPS
as a receptor during adsorption [30], the results presented in
Table 1 (section I) indicate that the ability of bacteriophage
NBD2 to adsorb to the host cell is not influenced by the
structure of LPS. To confirm this, bacteriophage NBD2 was
tested against E. coli K-12 strains that are mutated in their
LPS biosynthesis pathway (Table 1, II). Also, since bacte-
rial viruses are known to recognize outer membrane proteins
as well [30], a set of E. coli K-12 strains with deletions in
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genes encoding outer membrane proteins (Table 1, IIT), most
commonly targeted by known tailed phages, was included in
the test. The test revealed that NBD2 is indeed insensitive to
alterations in LPS structure because this phage most likely
either recognizes more than one host receptor (one of which
may just as well be LPS) or adsorbs solely to the outer mem-
brane proteins, other than those listed in Table 1. However,
further studies are required to confirm this hypothesis.

Overview of the phage NBD2 genome. Bacteriophage
NBD2 has a linear, circularly permuted dsDNA genome
consisting of 51,802 bp with a G+C content of 49.8%. As
observed in other tailed phages, the genome of NBD2 is
rather compact, with ~93% of the DNA sequence represent-
ing coding sequences (Fig. 2). A total of 87 probable protein-
encoding genes and one tRNAS have been identified in the
genome of NBD2. As seen in Fig. 2, there is a certain asym-
metry in the distribution of the genes on the two NBD2 DNA
strands. In total, 65 NBD2 open reading frames (ORFs) have
been predicted to be transcribed from the same DNA strand,
whereas 22 ORFs have been found on the opposite strand.

The results of BLASTP analysis revealed that 51 NBD2
ORFs (~59% of NBD2 genes) code for hypothetical proteins
of unknown function, and 22 of these ORFs have no relia-
ble identity (E values of >0.001) to database entries. Using
bioinformatics approaches, a putative function was assigned
to 35 NBD2 ORFs, including 19 genes coding for virion
morphogenesis-related proteins and packaging, as well as 8
genes associated with DNA replication (Table S1), recom-
bination, and repair. None of the predicted NBD2 proteins
showed sequence homology with integration-related pro-
teins, antibiotic resistance determinants, or virulence factors.

DNA replication, recombination and repair. The
genome of bacteriophage NBD2 contains no homologues
to characterized DNA polymerase genes, suggesting that
this phage relies quite heavily on the replication machinery
of the host cell. However, the presence of a DNA primase
(gp58; HHpred probability, 100.0%; E value, 4.1e-36), hel-
icase (gp60; HHpred probability, 100.0%; E value, 9.4E-
31), replication licensing factor (gp74; HHpred probability,
97.99%; E value, 1.2e-06), and SSB protein (gp56; HHpred
probability, 100.0%; E value, 4.8E-33) suggests that NBD2
DNA replication depends not only on host factors but on
phage-encoded proteins as well.

Homology searches also allowed the identification of the
phage-encoded RecET recombination system in the genome
of NBD2. The product of NBD2 ORF54 shows homol-
ogy to the RecE protein of Escherichia virus TLS (56% aa
identity; E value, 3e-133) and is homologous to E.coli exo-
nuclease RecE (HHpred probability, 99.95%; E value, 1.8e-
27). NBD2 ORF54 is followed by NBD2 ORF55, which
codes for an ERF superfamily protein that is homologous
to gp26 from Klebsiella phage Sushi (60% aa identity; E
value, 1e-73). The ERF superfamily (pfam04404) includes
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Fig. 2 Functional genome map of bacteriophage NBD2. The cod-
ing capacity of the NBD2 genome is shown. Functions are assigned
according to characterized ORFs in the NCBI database and/or MS/
MS analysis. The colour code for the online version of the article is
as follows: yellow — DNA replication, recombination, repair; green

the single-strand annealing proteins such as RecT, Red-
beta, ERF, and Rad52, that all function in RecA-dependent
and RecA-independent DNA recombination pathways
[31]. Other NBD2 gene products possibly involved in
DNA recombination, replication and repair include a TopA
domain-containing (COGO0550) protein, NBD2 Gp79, and a
putative DNA repair nuclease, Gp61, which shows homol-
ogy to a VRR-NUC domain-containing protein from Escher-
ichia phage ADB-2 (73% aa identity; E value, 1e-68).
Nucleotide metabolism and DNA modification. Based
on the amino acid sequence homology, four gene products
of NBD2 were assigned as nucleotide metabolism and
modification enzymes, including two nucleoside kinases, a
polynucleotide kinase and dNMP kinase, encoded by two
adjacent genes, NBD2 ORF14 and NBD2 ORF135, respec-
tively. To escape from the digestion of restriction endo-
nucleases and replicate successfully, phages often encode
their own enzymes for DNA modification [32]. The results
of bioinformatics analysis indicate that two genes for meth-
ylases are present in the genome of NBD2. The gene NBD2
ORF62 codes for a putative N-6-adenine-methyltransferase

— transcription, translation, nucleotide metabolism; blue — structural
proteins; light blue — lysis; grey — ORFs of unknown function; red
— NBD2-specific ORFs that encode unique proteins with no reliable
identity to database entries

that has been predicted to belong to the Dam superfamily
of methylases (pfam05869), whereas the product of NBD2
ORF76 is a Dcm superfamily (cl21501) methylase that is
homologous to that from Klebsiella phage Sushi (64% aa
identity; E value, 9e-107).

Cell lysis. It has been reported recently that the lysis of
Gram-negative hosts by phages is a three-step process [33].
The infection cycle terminates when a small phage encoded
protein (known as a holin) permeabilizes the membrane at a
programmed time. Then, a muralytic enzyme (endolysin)
escapes through the holes to attack the peptidoglycan. Finally,
the fusion of the inner and outer membranes is accomplished
by spanins [33, 34]. As seen in Fig. 2, the host-cell lysis cas-
sette of NBD2 comprises three genes: ORF69, ORF70, and
ORF71. The gene product of ORF70 is a Lysozyme-like
superfamily (cl00222) protein that shows homology to differ-
ent endolysins and lysozymes, whereas ORF69 and ORF70
code for the holin and u-spanin, respectively.

Structural proteins. As mentioned above, using bio-
informatics approaches, 16 NBD2 structural genes were
identified, including those coding for head (ORF32,
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ORF33, ORF35), neck (ORF36, ORF37), tail (ORF38,
ORF39, ORF42, ORF43, ORF44), and tail fiber (ORF47,
ORF57) proteins, as well as 3 ORFs coding for virion mor-
phogenesis-related proteins, namely, ORF31 (putative pro-
head protease), ORF30 (head morphogenesis protein), and
ORF46 (putative tail assembly protein). FASP followed
by LC-MS/MS led to the experimental identification of 18
NBD?2 structural proteins, including two, gp26 and gp49,
which have no reliable homologues to annotated structural
proteins in other organisms (Table 2). Therefore, in total,
20 NBD?2 gene products were assigned as proteins involved
in virion morphogenesis and DNA packaging (Figure 2).

In tailed phages, the packaging machine consists of two
essential components: a portal ring and a terminase com-
plex. Most characterized terminases are heteroligomers that
consist of a small subunit (TerS) involved in DNA recog-
nition and a large terminase subunit (TerL) containing the
ATPase and the endonuclease activities [35, 36]. The GP3_
package domain-containing (pfam16677) protein TerS of
NBD?2 is encoded by ORF27, while NBD2 ORF29 codes
for a portal protein that shows homology to the correspond-
ing proteins from various phages and has been detected by
proteomics approaches as well. Based on the results of bio-
informatics analysis, the gene product of NBD2 ORF28 is
a TerL, since it has been predicted to belong to the termi-
nase-like family (pfam03237) and shows detectable homol-
ogy to the TerL proteins of a number of different bacteri-
ophages, including those that have been reported to use a

headful DNA packaging mechanism (e.g., Escherichia coli
phage Rtp [37]). Notably, restriction digestion profiles of
phage NBD2 DNA matched in silico predictions of a cir-
cular DNA molecule and, in addition to the expected frag-
ments of the circular map, a discrete submolar pac frag-
ment was observed in each digest (Fig. S2). According to
the literature, this type of restriction pattern is considered
to be diagnostic of headful packaging [38].

As seen in Fig. 1, neither the baseplate nor the tail fib-
ers of NBD2 are clearly visible by TEM. Nevertheless,
two genes potentially coding for baseplate components
(ORF44 and ORF45) as well as two ORFs coding for tail
fiber proteins (ORF47 and ORF57) have been identified in
the genome of NBD2, and verified by proteomics analysis.
NBD2 gp44 has been predicted to belong to the Phage-
tail-L superfamily (cl01908) and is homologous to minor
tail proteins from a wide range of diverse phages and bac-
teria. Meanwhile NBD2 gp45, which has an N-terminal
MPN_NLC_P60 family (cd08059) domain and a C-terminal
NLPC_P60 (pfam00877) family domain, is homologous to
phage-encoded minor tail proteins and tail tip assembly pro-
teins. Phage-tail-3 family (pfam13550) domain-containing
protein NBD2 gp47 (1200 aa) has two conserved C-termi-
nal domains of unknown function (DUF1983, pfam(09327,
and DUF1640, pfam07798) and is homologous to a puta-
tive tail fiber protein, T1p33 (1172 aa) of Escherichia virus
T1 (64% aa ident; E value, 0.0). Another tail fiber protein
of NBD2, gp57 (765 aa), has a C-terminal Peptidase_S74

Table 2 Structural NBD2

S , Gene Putative function MW (KDa) Peptide count Sequence
proteins identified by MS coverage
(%)
ORF32 Putative head decoration protein 20.919 15 64.98
ORF39 Major tail protein 26.171 33 41.25
ORF57 Tail fiber protein 80.277 38 46.01
ORF31 Putative prohead protease 42.399 28 29.79
ORF42 Tape measure protein 96.605 71 57.40
ORF33 Major capsid protein 35.315 27 61.76
ORF29 Portal protein 49.319 27 59.54
ORF47 Putative tail fiber protein 132.883 71 59.33
ORF35 Putative head completion protein 15.218 10 40.15
ORF30 Head morphogenesis protein 31.513 13 45.39
ORF38 Putative tail completion protein 16.141 9 38.03
ORF36 Putative head closure protein 13.979 4 26.77
ORF43 Minor tail protein 13.053 6 31.03
ORF44 Putative minor tail protein 28.988 11 52.47
ORF37 Putative neck protein 17.744 8 43.31
ORF46 Putative tail assembly protein 22.703 2 11.11
ORF26 Hypothetical protein 8.443 2 32.01
ORF49 Hypothetical protein 24.121 3 15.21

# ORFs with no amino acid sequence similarity to viral structural proteins are underlined
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domain (pfam13884), a conserved chaperone domain that is
commonly found in endosialidases, and shares two regions
of similarity (aa 1-398 and aa 585-756; 51% and 57% aa
identity, respectively) with the tail fiber protein (622 aa) of
Cronobacter virus ESP29491. Notably, phage endosialidases
are usually present on the virus particle in the form of tail
spikes or tail fibers and are responsible for host polysialic
acid capsule recognition, binding and degrading [39, 40].

In the case of siphoviruses, two proteins, the major cap-
sid protein and the major tail protein, are the main build-
ing blocks of the virion. A BLASTP search against the non-
redundant NCBI protein database revealed that the gene
product of NBD2 ORF33 shows homology to the major
capsid proteins of Escherichia, Klebsiella, Citrobacter,
Vibrio, Lactobacillus, and Edwardsiella siphoviruses. Also,
HHPred returned a high-probability hit to the major capsid
protein of Escherichia phage HK97 (HHPred probability,
99.9%; E value, 2.2E-26). NBD2 gp39 has been predicted
to belong to the Phage-tail-3 (pfam08813) superfamily and
is an orthologue of the major tail protein V of bacteriophage
lambda (HHPred probability, 99.84%; E value, 6.4e-21).

Phylogenetic analysis. The VIRFAM analysis, a novel
“head-neck-tail”-based classification method proposed by
Lopes and coauthors [21] classified NBD2 as a siphovirus
of Type 1 suggesting that this phage adopts the structural
organization of the Siphoviridae phage SPP1 neck, which
is formed by a portal protein, an Adl (Adaptor of type
1), a Hcl (Head-closure of type 1), a Nel (Neck protein
of type 1) and a Tcl (Tail-completion of type 1) proteins
[21]. However, as seen in Fig. S3, VIRFAM failed to assign
NBD2 to a specific cluster and grouped it with viruses
belonging to a subfamily, Tunavirinae.

Since the results of homology searches also hinted at
similarity between NBD2 and tunaviruses, four phyloge-
netic trees based on the alignment of the NBD?2 portal, tape
measure, major capsid, and major tail protein sequences
with those returned by BLASTP homology searches were
constructed. As seen in Fig. 3, bacteriophage NBD2, while
clearly related to tunaviruses, occupies a distinct branch on
all four phylogenetic trees.

For many years, bacteriophages related to E. coli phage
T1 were called T1-like viruses. In 2014 a new subfamily
Tunavirinae, comprising all T1-like viruses characterized at
the time, was established [41]. According to the 2016 ICTV
taxonomy release (https://talk.ictvonline.org/taxonomy/),
Tunavirinae is further classified into five genera, namely
Tlvirus, Tlsvirus, Kp36virus, Roguelvirus, and Rtpvirus,
each named after the prototype phages Escherichia virus
T1, Escherichia virus TLS, Klebsiella virus KP36, Escheri-
chia virus Roguel, and Escherichia virus Rtp, respec-
tively. Within each genus, phages share 64-82% nucleotide
sequence identity, whereas nucleotide sequence identity
shared between genera is 49-56% [41].

To obtain a more detailed picture of the phylogenetic
relationships between viruses classified within the sub-
family Tunavirinae and NBD2, the genome sequences of
17 tunaviruses recognized by ICTV were downloaded
from the NCBI database and compared to that of NBD2
using mVISTA (Fig. S4) and Progressive Mauve (data
not shown). Comparative whole-genome sequence align-
ment revealed that the genomes of NBD2 and tunaviruses
shared several regions of nucleotide sequence similarity
that, in NBD2, covered the virion morphogenesis as well
as DNA metabolism and modification genes. Nevertheless,
the overall nucleotide sequence similarity shared between
NBD2 and phages from the subfamily Tunavirinae was
relatively low and ranged from 24% (NBD2 vs Roguel) to
33% (NBD2 vs T1). Thus, based on the criteria mentioned
above, NBD2 cannot be assigned to any genus currently
recognized by ICTV and is a singleton phage classifiable in
the subfamily Tunavirinae.

DISCUSSION

Foodborne illnesses resulting from the consumption of agri-
cultural commodities contaminated with enteric pathogens
are an increasing problem around the world [42, 43]. While
various possibilities for the contamination of produce with
pathogens exist, global warming combined with the wide-
spread use of animal manure in agriculture likely contrib-
utes to the increased number of such outbreaks [44]. In this
regard, phages and their derived products may provide a safe
and effective intervention against bacterial contamination
[42]. However, while a number of reports in the literature
have recently described encouraging results, using phages to
reduce foodborne pathogens on a variety of fresh and fresh-
cut produce [45], one of the main barriers to the success of
such applications is the restrictive temperature used for the
storage of many fresh and minimally processed produce,
since at low temperatures, most pathogenic bacteria will
not be metabolically active and the cycle of phage infec-
tion cannot be completed [42, 45]. To overcome this limi-
tation, bacteriophages that are adapted to replicate at lower
temperatures may be used. However, to date, only a limited
number of LT enterobacteria phages have been described in
the literature, and little is known about the molecular mech-
anisms underlying cold-adaptation of bacterial viruses.

Here we present the results of the molecular characteri-
zation of the LT siphophage NBD2 that is active against
E. coli. Both comparative sequence and phylogenetic anal-
yses indicate that this phage is related to a group of sipho-
viruses that are classifiable within the subfamily Tuna-
virinae. Since all E. coli-specific tunaviruses described
in the literature are MT phages, one may expect that
cold-adaptation of coliphages can be elucidated from the
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Fig. 3 Phylogenetic analysis. Relationships of the: (a)- major capsid replicate trees in which the associated taxa clustered together in the
protein; (b)- major tail protein; (c)- tape-measure protein; and (d)- bootstrap test (500 replicates) is shown next to the branches

portal protein are analysed across diverse phages. The percentage of
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genome sequence comparisons. However, the results of the
molecular analysis of NBD2 presented here, in conjunc-
tion with our previously published findings [14], indicate
that it is not possible to demonstrate cold-adaptation of LT
phages solely from sequence data. Nevertheless, while for
now, we have come no closer to unraveling the mystery
of phage cold-adaptation, low-temperature coliphages are
not only extremely valuable for studying this phenomenon
but also represent an attractive tool for application in the
selective detection and/or the control of bacterial contami-
nation in areas where adaptation to grow at low tempera-
tures is desirable.

Nucleotide sequence accession numbers

The complete genome sequence of E. coli bacteriophage
NBD2 was deposited in the NCBI nucleotide sequence
database under accession number KX130668. The acces-
sion numbers of phage genomes used in this study are
as follows: Shigella virus Shfl (NC_015456), Shigella
virus Psf2 (NC_026010), Escherichia virus ADB-2
(NC_019725), Escherichia virus vB_EcoS_ACG-M12

(NC_019404), Escherichia virus bV_EcoS_AHP42
(NC_024793), Escherichia virus bV_EcoS_AHS24
(NC_024784), Escherichia virus bV_EcoS_AKS96

(NC_024789), Escherichia virus ed4/1c (NC_024210),
Escherichia virus phiKP26 (KC579452), Enterobacter
virus F20 (JN672684), Kiebsiella virus 1513 (NC_028786),
Citrobacter virus Stevie (KM236241), Escherichia virus
TLS (NC_009540), Klebsiella virus KP36 (NC_029099),
Escherichia virus vB_EcoS_Roguel (JQ182736), Escher-
ichia virus RTP (NC_007603), Escherichia virus Tl1
(NC_005833).
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