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address the impact of HIV-1 infection on PMNs as well as 
the impact of PMNs on HIV-1 disease progression to better 
understand the pathophysiology of HIV-1 infection.

Introduction

Although more than three decades have passed since the 
discovery of human immunodeficiency virus (HIV)-1, the 
etiologic agent of acquired immunodeficiency syndrome 
(AIDS), HIV-1 infection is still an incurable disease. This 
is, at least in part, due to the fact that HIV-1 almost targets/
negatively affects all the cell types of the immune system in 
infected individuals [1–7]. For instance, CD4+ T cells are 
the major target cells for HIV-1 infection and replication. 
Nonetheless, not all CD4+ T cells are preferred for HIV-1 
replication, since it replicates very efficiently in activated but 
not resting CD4+ T cells [8]. The very rapid viral replication 
in activated CD4+ T cells ensures high viral load as well as 
the high mutation rate that enables to HIV-1 escape both 
immune responses and antiviral therapeutics. On the other 
hand, infection of resting CD4+ T cells enables HIV-1 to 
become latent(transcriptionally silent), and thus unrecogniz-
able to the immune system and antiviral therapeutics, ensur-
ing viral persistence in HIV-1 patients [9]. Macrophages are 
the second most favored cells for HIV-1 infection and rep-
lication [10, 11]. However, unlike CD4+ T cells, which are 
susceptible to HIV-1-related cytopathic effects that result 
in a massive depletion of CD4+ T cells during the course of 
HIV-1 infection, macrophages show much more resistance 
against these cytopathic effects [12, 13]. Interestingly, HIV-1 
hijacks this property to ensure its persistence through estab-
lishment of a stable latent infection in these cells [13–15]. 
Moreover, HIV-1 can harness monocytes/macrophages as 
vehicles to spread throughout the body compartments (such 
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as the central nervous system and gut) and between target 
cells, thereby supporting its persistence [16–18]. HIV-1 can 
also infect other immune cells such as dendritic cells albeit 
at a rate of 1 to 2 orders of magnitude lower than infection 
in CD4+ T cells [19, 20]. Despite the fact that dendritic cells 
are not considered major targets for direct HIV-1 infection, 
dendritic cells can enhance HIV-1 infectivity towards CD4+ 
T cells [16, 17]. In addition, during the course of HIV-1 
infection, dendritic cell numbers, phenotypes, and functions 
are grossly altered resulting in various immunological alter-
ations, (reviewed in [21]). These alterations subsequently 
inhibit potent anti-HIV-1 immune responses, all of which are 
required to support HIV-1 persistence. This is also the case 
with other immune cells such as natural killer cells and baso-
phils/mast cells (reviewed in [21]). Hence, we can say that 
HIV-1 is able to hijack and exploit almost all cell types of 
the immune system for its advantage, taking into considera-
tion the individual differences between these cells. Accord-
ingly, it is not surprising to realise that polymorphonuclear 
neutrophils (PMNs) undergo similar peturbation during the 
course of HIV-1 infection.

This review aims to address critical issues related to 
PMNs and HIV-1 infection. However, to begin we will con-
cisely introduce the reader to some of the major biological 
aspects of PMNs that include: (i) PMNs infiltration, patho-
gen recognition and elimination; (ii) PMNs cross-talking 
with other immune cells; and (iii) PMNs and mucosal 
homeostasis, especially in the gut compartment. This intro-
duction will allow a better estimatation and understanding 
of the very critical impact of PMNs on health and disease 
(i.e. during HIV-1 infection). Next we will address the 
impact of HIV-1 infection on PMN number and function, 
and then we will address the consequences of PMN altera-
tions on the pathogenesis of HIV-1 infection. Finally, this 
review will address the role of PMNs in the pathology of 
gut mucosa and microbial translocation during HIV-1 infec-
tion, to improve our understanding of the pathophysiology 
of HIV-1 infection.

PMNs: roles in pathogen elimination and immune 
mediation

PMNs are the most abundant leukocytes in the human cir-
culation, constituting up to 60-70% of the total number of 
circulating leukocytes. These granulocytes are generated 
in the bone marrow during the process of hematopoiesis 
at a rate of ~ 100 billion cells per day under normal con-
ditions; this number may reach ~ 1 trillion during seri-
ous infections. Relatively speaking, PMNs are short lived 
cells; however, recent studies have indicated that PMNs 
may have 10 times (5.4 days) longer lifespans than that 
previously reported under homeostatic conditions [22]. As 

professional innate immune cells equipped with several 
defense mechanisms, PMNs can mediate different effector 
functions against extracellular pathogens. Intriguingly, it 
has been recently revealed that PMNs have the capability to 
eliminate intracellular pathogens including viral pathogens 
such as HIV-1 [23].

PMNs are characterized by their ability to rapidly infil-
trate to the site of infection/inflammation to mediate their 
effector functions [24, 25]. To accomplish this task, PMNs 
express a variety of receptors which includes those required 
for adhesion to endothelial cells during the infiltration 
process such as selectins, selectin-ligands and integrins, 
among others [25]. After leaving the vascular compartment, 
chemo-attractant receptors (such as chemokine and cytokine 
receptors) facilitate their migration to the site of pathogenic 
stimulation [26, 27]. In order to detect pathogens, PMNs 
express several classes of receptors such as toll-like recep-
tors (TLRs), nod-like receptors (NLRs), dectin-1 [28–30], 
Fc-receptors (FcR) that recognize antibody-opsonized path-
ogens, and complement receptors that recognize comple-
ment-opsonized targets [31–36]. In addition, PMNs express 
receptors for granulocyte colony-stimulating factor (G-CSF) 
and granulocyte-macrophage colony-stimulating factor 
(GM-CSF) that participate in enhancing their responsive-
ness and a metabolic burst, while prolonging their survival 
once at the site of stimuli [31, 36]. In turn, this helps fur-
ther recruitment of immune cells to the site of inflammation 
to effectively eliminate invading pathogens and terminate 
inflammation, indicating that PMNs can be seen as one of 
the first lines of defense against invading pathogens.

There are several different mechanisms by which PMNs 
can eliminate pathogens. These include: phagocytosis, 
neutrophil extracellular traps (NETs) formation, anti-
body-dependent cellular cytotoxicity, degranulation and 
the release of antimicrobial peptides [24, 25, 31, 37, 38]. 
For instance, once a pathogen is encountered by a PMN, 
particularly in the circulation, phagocytosis takes place. 
The presence of serum favors triggering of phagocytosis 
while inhibiting the induction of NETs [39]. This informa-
tion indicates that the extracellular milieu may significantly 
affect the mechanisms of killing employed by PMNs. It is 
also of considerable importance to realise that PMNs are 
extremely potent and very efficient phagocytes that can 
internalize IgG-opsonized particles within less than 60 sec-
onds when compared to other professional phagocytes such 
as macrophages, which require several minutes to digest 
similar amounts and types of ingested particles [40–42]. 
The degradation process takes place once a pathogen or a 
microorganism is inside the phagosome of a PMN. This is 
accomplished by mediating the fusion of the PMNs’ gran-
ules with the phagosome. These granules contain several 
digesting and hydrolyzing enzymes that act as weapons to 
destroy the phagocytized pathogens [31]. PMNs further 



3Polymorphonuclear neutrophils in HIV-1 infections

1 3

recruit nicotinamide adenine dinucleotide phosphate 
(NADPH)-oxidase (NOX) to the phagosome to optimally 
destruct their contents [43, 44].

In another example, PMNs have suicidal capabilities, i.e. 
to capture and kill invading microorganisms in order to limit 
their spread. PMNs release highly sticky net-like structures 
upon infiltration to the site of invasion [45, 46]. These struc-
tures have been designated as NETs and are composed of 
genomic DNA, histones, and various antimicrobials such as 
calprotectin, α-defensin, and myeloperooidase (MPO) among 
others, which combine to efficiently eliminate invading patho-
gens and prohibit their dissemination [45, 46]. Intriguingly, 
intact PMNs can also release NETs, indicating that NET for-
mation is not only associated with PMNs cell death [47]. Fur-
thermore, PMNs can mediate the killing of infected cells in 
an antibody-dependent manner via engagement of FcγR with 
the Fc portion on IgG-opsonized infected cells [48]. Taken 
together, these data briefly clarify how PMNs can infiltrate, 
recognize and eliminate pathogens and also highlight their 
role as key effector cells in the innate immune system.

Indeed, PMNs function is not only restricted to their 
ability to eliminate pathogens; they can also engage with 
several types of immune cells to orchestrate immune 
responses. For instance, in vitro and in vivo studies have 
shown that the direct interaction of lipopolysaccharides 
(LPS)-stimulated PMNs with dendritic cells induces their 
activation (maturation) and production of tumor necro-
sis factor alpha (TNF-α) and interleukin-12 (IL-12) [48]. 
Other studies have also revealed that PMNs are involved 
in the induction of dendritic cell activation upon the 
direct interaction of PMNs’ surface molecules, such as 
macrophage antigen-1 (MAC1) and carcinoembryonic 
antigen-related cell adhesion molecule-1 (CEACAM1), 
with corresponding molecules on dendritic cells, namely 
dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN) [49, 50]. Moreover, 
PMNs have been demonstrated to promote dendritic cell 
survival through a manner dependent on cell-to-cell con-
tact [51]. Alternatively, activated PMNs release differ-
ent molecules that can mediate dendritic cell activation 
in a manner independent on direct contact; these include 
α-defensins, cathelicidins, lactoferrin, and high-mobility 
group proteins [52]. Accordingly, these activated dendritic 
cells can then mediate T cell proliferation and shape their 
polarization towards distinct helper T cell phenotypes 
[50, 53], thereby shaping the adaptive immune response. 
However, under certain circumstances, PMN interaction 
with dendritic cells may not result in their activation. For 
example, PMNs-released elastases and ectosomes interfere 
with dendritic cell activation, in part, through increasing 
the production of transforming growth factor-β1 (TGF-
β1), an immunosuppressive cytokine [54, 55]. These data 
indicate that PMNs are involved in both immune activation 

and suppression, which seems to be dependent on the par-
ticular microenvironment where interactions take place.

In another example, Silva has shown that PMNs and 
monocytes/macrophages work together in harmony to medi-
ate effective downstream innate immune responses against 
both extracellular and intracellular pathogens [56]. Activated 
PMNs recruit monocytes/macrophages to the site of inflam-
mation through secretion of different attractant molecules 
such as macrophage inflammatory protein-1α (MIP-1α) 
and MIP-1β, among others [57–59]. PMNs can then acti-
vate recruited monocytes/macrophages and mediate their 
polarization toward anti-inflammatory or pro-inflammatory 
subsets according to the microenvironment of the interaction 
[60]. In turn, these activated macrophages release G-CSF 
and GM-CSF that prolong the survival of PMNs [61, 62], 
maximising the PMNs’ effector functions. Furthermore, 
these activated macrophages can then mediate and shape 
the adaptive immune responses, since macrophages are well-
recognized to act as professional antigen presenting cells. 
Interestingly, recent studies have also shown that NET for-
mation by PMNs is regulated by macrophages in a time- and 
phenotype-dependent manner (for more details see ref. [63]), 
which reflects the vital relationship between these types of 
cells, and also highlights the functional complementarily 
between these cells [56].

In terms of PMN cross-talking with other types of innate 
immune cells, such as natural killer cells, Spӧrri and col-
leagues have shown that mice PMNs are critical activators 
of natural killer cells [64]. They have shown that IL-18-de-
rived from PMNs in combination with IL-12, a dendritic 
cell-derived cytokine, are critical for triggering the secretion 
of interferon-γ (IFN-γ) from natural killer cells in Legionella 
pneumophila-infected mice. Interestingly, the lack of IFN-γ, 
as a result of neutropenia in infected mice, has been impli-
cated in their inability to clear the bacterial infection [64]. 
In line with these data, a later study revealed that natural 
killer cells from neutropinic mice exhibit hyperprolifera-
tion, poor survival, and hyporesponsiveness due to a block 
in their maturation process at an immature stage [65]. The 
critical impact of PMNs on natural killer cell functions has 
also been confirmed in neutropinic-related disorders such as 
autoimmune neutropenia and severe congenital neutropenia 
[65]. However, once the natural killer cells are activated by 
PMNs, they can activate dendritic cells by releasing IFN-γ 
and TNF-α, or through a contact-dependent activation man-
ner [66]. In turn, these activated dendritic cells can then 
activate adaptive immune responses, as previously dis-
cussed. Furthermore, activated natural killer cells have been 
observed to promote the activation and survival of PMNs 
in culture studies, both of which rely on direct cell-to-cell 
contact and cytokine-dependent mechanisms [67]. These 
data briefly reflect the very critical relationship between 
these two types of cells. For more details, Costantini and 
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Cassatella have comprehensively reviewed the defensive alli-
ance between PMNs and natural killer cells [68].

The impact of HIV‑1 infection on PMN count 
and function

Numeric- and phenotypic-alterations as well as functional 
defects in PMNs are frequently observed during the course 
of HIV-1 infection [69–72].

PMNs depletion (neutropenia)

In terms of numerical-alteration, some studies have reported 
that about 17% of HIV-1 patients exhibit neutropenia [73, 
74], while others have reported that up to 50% of HIV-1 
patients exhibit neutropenia [75], indicating that neutrope-
nia is relatively common in HIV-1 patients. Recent studies 
have also indicated that the incidence of severe neutrope-
nia is high in HIV-1 patients living in West Africa, even 
in those treated with antiretroviral therapy (ART) [76]. Of 
note ethnic neutropenia is prevalent in individuals of Afri-
can ancestry [77, 78], which is, at least in part, related to 
genetic factors [78]. Of particular importance, longitudinal 
analysis has found that HIV-1 disease progression is directly 
associated with the severity of neutropenia [75]. Of note, 
neutropenia has not been only implicated in the disease 
progression of HIV-1 infection but is also considered as a 
possible risk factor for HIV-1 transmission during the peri-
natal period, since a higher PMN count in HIV-1 positive 
women has been demonstrated to be inversely associated 
with perinatal HIV-1 transmission risk [79]. PMNs were 
also shown to play a role in protection against sexual HIV-1 
acquisition in adults, as demonstrated by a Taiwanese cohort 
(which studied HIV-1-exposed but uninfected individuals) 
[80]. These data reflect the possible impact of neutropenia 
on disease progression in HIV-1 infected individuals and 
also the transmission risk to uninfected individuals. There-
fore additional investigations are required to further establish 
the role of neutropenia on HIV-1 disease progression and 
transmission. However, in this paper we will only address 
the role of PMNs during HIV-1 infection. Several possible 
mechanisms, by which HIV-1 infection can contribute to the 
neutropenia, are mentioned as follows:

•	 Direct cytopathic effects related to direct HIV-1 infec-
tion. Some early studies indicated that HIV-1 could 
directly infect PMNs, due to the detection of HIV-1 DNA 
in these cells [81]. This was further supported by the 
findings of Biswas et al. who showed that 7.8% of HIV-1 
patients and 12% of healthy individuals express the CD4 
molecule (the primary receptor for HIV-1 entry into tar-

get cells) on 39-97% of their PMN populations [82]. In 
addition, PMNs constitutively express C-X-C chemokine 
receptor type 4 (CXCR4 or X4), a major co-receptor 
involved in HIV-1 entry [82]. Even though this suggests 
that PMN depletion during the course of HIV-1 infection 
could, in part, be due to direct HIV-1-related cytopathic 
effects on PMNs in some patients, there is still no clear 
indication that HIV-1 can directly infect PMNs. None-
theless, as professional phagocytes, PMNs can internal-
ize HIV-1 by phagocytosis. HIV-1 might also be able to 
escape destruction by endosomal compartments withini 
PMNs, as it does in macrophages [83]. Furthermore, 
HIV-1 can also its Nef protein to inhibit the formation 
of phagosomes in macrophages by altering endosomal 
compartment membrane recycling [84]; thus, it could be 
assumed that HIV-1 could use the same strategy in PMNs 
to establish a non-canonical (indirect) mechanisms of 
infection. These hypotheses remain assumptions and can-
not fully explain PMN depletion during HIV-1 infection. 
Therefore, it is of particular importance to highlight that 
studying the capability of HIV-1 to infect and mediate 
cytopathic effects in PMNs remain important questions 
that need to be answered in the near future. However, 
other explanations do exist to explain neutropenia during 
the course of HIV-1 infection.

•	 PMNs apoptosis (bystander apoptosis). Early ex vivo 
studies have demonstrated that PMNs from AIDS patients 
exhibit remarkable increased rates of apoptosis; however, 
in vitro incubation of PMNs from AIDS patients with 
G-CSF significantly decreased the rate of apoptosis [85], 
suggesting a potential benefit of G-CSF in this situation. 
Other studies have assessed programmed PMN cell-death 
at different HIV-1 disease stages using TUNEL assays 
and propidium iodide, and have shown that accelerated 
PMN apoptosis occurs at different clinical stages, with 
a remarkable increase in advanced disease stages [86]. 
Importantly, Fas-mediated apoptosis in PMNs from 
HIV-1 patients was proposed to be a mechanism that con-
tributes to neutropenia during HIV-1 infection [87]. It is 
noteworthy that apoptosis in PMNs from HIV-1 patients 
was shown to be closely associated with the levels of 
Fas-FasL surface molecules expressed, which are directly 
associated with viral load [87], indicating that HIV-1 
indirectly mediates PMN apoptosis. Other studies have 
demonstrated that oxidative stress secondary to HIV-1 
infection is associated with increased spontaneous PMN 
apoptosis during the course of HIV-1 infection, since the 
inhibition of reactive oxygen species (ROS) resulted in 
decreased PMN apoptosis [88]. Furthermore, the inhibi-
tion of ROS decreased caspase-3 hydrolysis, connecting 
oxidative stress with the intrinsic (caspase-3), but not 
the extrinsic (caspase-8), apoptotic pathway in mediating 
PMN apoptosis during HIV-1 infection [88]. Studies in 
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non-human primates (Rhesus macaques) infected with a 
pathogenic simian immunodeficiency virus (SIV) strain 
have also demonstrated that PMNs undergo apoptosis 
[89]. Intriguingly, SIV-infected Rhesus macaques with 
increased PMN apoptosis rates were shown to be associ-
ated with faster disease progression [89]. PMN apoptosis 
in SIV-infected Rhesus macaques was also demonstrated 
to be associated with PMN activation state and ROS pro-
duction [89]. These data emphasize that the remarkably 
increased rate of PMN apoptosis during the course of 
HIV-1 infection is likely, at least in part, to be a possible 
explanation for their observed depletion during HIV-1 
infection [88, 90, 91]; however, other factors may also 
contribute to neutropenia in HIV-1 patients.

•	 Affecting the hematopoiesis process. HIV-1 may directly 
decrease PMNs counts through affecting the hematopoie-
sis process in the bone marrow. This is thought possible 
because several studies have demonstrated that HIV-1 
can infect certain CD34+ hematopoietic stem cells that 
express CD4, CCR5 and CXCR4 on their surfaces [92–
99]. Moreover, different viral proteins can also directly 
affect the hematopoiesis process. For example, in vitro 
studies have revealed that the HIV-1 envelope glyco-
protein 120 (gp120) can suppress the growth of CD34+ 
hematopoietic stem cells by inducing endogenous TGF-β, 
which is a growth inhibitory cytokine [100]. Other stud-
ies demonstrated that HIV-1 gp120 can also induce apop-
tosis in CD34+ hematopoietic stem cells in a Fas-manner 
dependent [101]. In another example, Nef and Tat viral 
proteins can suppress the growth of granulomonocytic 
and myeloid progenitor cells, thereby contributing to 
the neutropenia observed in HIV-1 infection [102–104]. 
Deductively, these direct suppressive effects of HIV-1 
and HIV-1 proteins on the hematopoiesis process are 
consistent with the pan-leukocytopenia and other cyto-
penias such as anemia and thrombocytopenia observed 
in HIV-1 patients [105]. Interestingly, HIV-1 can also 
indirectly affect the hematopoiesis process by altering the 
bone marrow microenvironment (through modulation of 
cytokines and growth factors) [106–108]. This, in part, 
can be attributed to the ability of HIV-1 to infect differ-
ent types of bone marrow stromal cells (e.g. monocytes/
macrophages and megakaryocytes) [109–111], which are 
the source of cytokines, growth factors, and other regula-
tors involved in hematopoiesis.

On the other hand, secondary and opportunistic infec-
tions (bacterial, fungal, protozoal, or viral infections) are fre-
quently reported in HIV-1 patients, particularly in advanced 
disease stages [70, 112–115]. Certain infections may directly 
contribute to the neutropenia in HIV-1-infected individuals 
by targeting hematopoietic stem cells, myeloid progenitors, 
and bone marrow stromal cells, all of which would impair 

the normal hematopoiesis process. Alternatively, these sec-
ondary infections may directly target mature PMNs in the 
blood circulation. For secondary bacterial infections, HIV-1 
patients exhibit an increased risk of Salmonella infection 
[114–116], which is known to cause neutropenia by infecting 
and suppressing the development of bone marrow hemat-
opoietic stem cells [117]. Similarly, mycobacterial infections 
such as infection with Mycobacterium tuberculosis were also 
shown to negatively affect the bone marrow and hematopoie-
sis [118, 119], taking into consideration that Mycobacte-
rium tuberculosis infection is relatively prevalent in HIV-1 
patients [119, 120]. Cytomegalovirus (CMV) infection is 
another example of a frequently reported secondary viral 
infection in HIV-1 patients [121]. Of considerable impor-
tance, CMV infection is known to target both bone marrow 
stromal cells and hematopoietic stem cells, which, in turn, 
suppress the normal hematopoiesis process resulting in cyto-
penia, including neutropenia [122]. In addition, studies have 
shown that HIV-1 patients infected with opportunistic fungal 
pathogens such as Pneumocystis carinii, Candida albicans, 
or Cryptococcus neoformans show suppressed myelopoiesis 
and injured bone marrow [123, 124], thereby affecting the 
generation of new PMNs at the level of hematopoiesis in the 
bone marrow, also resulting in neutropenia.

•	 Increased PMN infiltration rate. The continuous infil-
tration of PMNs into inflamed lymphatic tissues (e.g. 
mucosa-associated lymphatic tissues and lymph nodes) 
and other non-lymphatic tissues that harbor HIV-1 may, 
in part, provide another explanation for the depletion of 
PMNs from the circulation of HIV-1 patients (discussed 
later) [125], especially because PMNs are among the 
first cells to infiltrate to the site of an immune stimulus, 
as previously discussed. This assumption, in part, arose 
from the observation that increased infiltration of mac-
rophages into the gut mucosa was shown to be associated 
with depleted circulating monocytes in HIV-1 infected 
individuals [126]. In addition, increased dendritic cell 
homing to lymphatic tissues was also suggested as an 
explanation, at least in part, for the decreased den-
dritic cell numbers in the circulation of HIV-1 patients 
(reviewed in ref [21]).

•	 Therapeutic drugs. Some, but not all, antiretroviral drug 
classes and other drugs that are used to treat co-infec-
tions, opportunistic infections, and/or HIV-1-related 
or unrelated malignancies can also cause neutropenia 
[72, 76, 127–135]. For antiretroviral drugs, it is well-
known that certain antiretroviral drugs such as Zido-
vudine (AZT), which is a nucleoside analog reverse-
transcriptase inhibitor, have bone marrow toxicity and 
myelosuppression properties [132, 133]. Importantly, 
studies have shown that HIV-1 patients receiving AZT-
containing highly active antiretroviral therapy (HAART) 
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are more likely to experience neutropenia [134]. Other 
antiretroviral drugs, particularly protease inhibitors, are 
also known to cause neutropenia [135]. Therefore, dur-
ing the treatment of neutropenia in ART-treated HIV-1 
patients, health care providers should consider the bone 
marrow associated myelosuppression as side effects of 
these drugs.

•	 Miscellaneous factors. Other factors such as age, ethnic-
ity, genetics, and advanced disease stage may also con-
tribute to neutropenia during the course of HIV-1 infec-
tion [78, 136, 137].

Taken together, these data indicate that neutropenia 
among HIV-1 patients is multifactorial (Fig. 1). Several 
clinical and experimental investigations have indicated that 
using cytokines that act as hematopoietic growth factors 
such as G-CSF and/or GM-CSF may significantly increase 
PMN counts by overcoming the myelosuppression observed 
in HIV-1 infection [70, 138]. For G-CSF, several studies 
have demonstrated that the application of filgrastim, a 
recombinant human methionyl G-CSF, to HIV-1 patients 
can significantly alleviate neutropenia [137, 139–141]. For 
GM-CSF, a clinical study has shown that treatment of leu-
kopenic HIV-1 patients with recombinant human GM-CSF 
significantly increased the total leukocyte count, including 
PMNs [142]. Another clinical study (a phase III trial) has 
also demonstrated that administration of GM-CSF to HIV-1 
patients at an advanced disease stage significantly increased 
PMN and CD4+ T cell counts [143]. These hematopoietic 
growth factors can increase PMN generation at the level of 
bone marrow hematopoiesis and alleviate apoptosis in the 
peripheral circulation. Further investigations have shown 

that using other cytokines such as IL-15 can also signifi-
cantly reduce the rate of PMN apoptosis [144]. Of note, clin-
ical application of IL-15 should not be considered, because 
increased plasma levels of IL-15 is associated with HIV-1 
disease progression [145].

PMNs: functional defects in HIV‑1 infection

It is well-established that PMNs from HIV-1 patients exhibit 
multiple functional defects [23, 71, 146–150]. For example, 
several studies have reported an impaired anti-microbial 
killing activity for PMNs from HIV-1 patients, especially 
from patients in advanced stages of disease. For instance, 
the capacity of PMNs from HIV-1 patients to phagocytize 
bacteria (e.g. Escherichia coli and Staphylococcus aureus) 
was significantly reduced in patients with low CD4+ T cells 
count when compared to patients with higher CD4+ T cells 
count and healthy individuals [151–153]. Similarly, inves-
tigators have also reported defects in the anti-fungal (e.g. 
Aspergillus fumigatus and Cryptococcus neoformans) activ-
ity of PMNs obtained from HIV-1 patients [154, 155]. HIV-1 
and its accessory proteins such as Tat have been implicated 
directly in the impairment of phagocytosis and respiratory 
burst in different phagocytes, including PMNs [149, 150]. 
Of note, the level of impairment of the phagocytic activity 
and respiratory burst of PMNs during the course of HIV-1 
infection has shown to be directly associated with the viral 
load and indirectly with CD4+ T cell counts. PMNs from 
patients successfully treated with highly active antiretroviral 
therapy (HAART) were shown to have better functions than 
patients suffering from HAART failure [150], indicating that 
such defects are associated with faster disease progression. 
Other studies have reported defects in PMN development, 
cell structure, adhesion, chemotaxis and recruitment during 
HIV-1 infection [147, 148, 156, 157]. Still others reported 
dysregulated cytokine production and defects in degranula-
tion in PMNs from HIV-1 patients [158–160]. Furthermore, 
PMNs from HIV-1 patients exhibit dysregulated responses 
to endotoxin stimulation and a reduced inhibitory response 
to S100A8 and S100A9, calcium-binding proteins that are 
abundant in the cytosolic compartment of human PMNs 
which can inhibit oxidative metabolism. This is likely to be 
associated with an increased risk of oxidative stress-related 
illnesses such as cardiovascular diseases [161]. HIV-1 can 
also indirectly impair PMN functions, for example, HIV-1 
down-regulates NET-mediated effector functions by inhib-
iting their formation, through suppressing the production 
of ROS via IL-10 produced by dendritic cells following 
HIV-1 binding to DC-SIGN [23]. One should also realise 
that NET formation by PMNs is initiated after viral stim-
ulation of PMNs’ TLR-7 and TLR-8 receptors [23]. Fur-
thermore, HIV-1 can impair antibody-dependent cellular Fig. 1   Factors that drive neutropenia in HIV-1 patients
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cytotoxicity, mediated by phagocytes including PMNs, par-
tially, by enhancing the shedding of and/or down-regulating 
the expression level of CD16 on PMNs [162, 163]. Indeed 
these functional defects can negatively affect a wide range 
of immune responses against HIV-1, thereby contributing to 
the pathogenesis of HIV-1 infections.

Functional defects in PMNs from HIV-1 patients may, 
in part, result from the direct binding of HIV-1 or HIV-1 
proteins to the cell membrane of PMN as declared by Muñoz 
and coworkers [164], or indirectly by altering the plasma 
cytokine network and cellular components of the immune 
system, or even due to the presence of intrinsic defects in the 
PMNs themselves during development [165]. Importantly, 
application of G-CSF and GM-CSF has been shown to abro-
gate PMN functional defects in HIV-1 patients [138, 139].

PMNs and the pathogenesis of HIV‑1 infection

Resting PMNs, even those negative for CD4, were shown to 
bind to HIV-1 and efficiently enhance viral transfer to CD4+ 
T cells in a manner dependent on cell-to-cell contact [166]. 
Interestingly, studies have revealed that activation of PMNs 
can increase the binding of HIV-1 at least twofold. These 
events were shown to be associated with increased transfer 
of HIV-1 to CD4+ T cells, when compared to HIV-1 bound 
to resting PMNs and to free HIV-1 particles [167]. In addi-
tion, PMNs were demonstrated to significantly increase C-C 
chemokine receptor type 5 (CCR5 or R5)/macrophage tropic 
HIV-1 replication when cultured with monocyte-derived 
macrophages through the production of IL-10 and CCL2 in a 
manner independent on direct cell-to-cell contact [168, 169]. 
At mucosal tissues of the genital tract and in draining lymph 
nodes, the attachment of HIV-1 to PMNs may support the 
establishment of new infection by facilitating trans-infection 
of CD4+ T cells. This, in part, could be achieved by the aid 
of peripheral blood mononeuclear cells, since they produce 
GM-CSF that prolongs PMN survival, which in turn may 
facilitate the interaction of HIV-1-bound PMNs with CD4+ 
T cells [170]. Consistently, increased infiltration of PMNs 
to the penile foreskin in the presence of CD4+ T cells has 
been shown to be correlated with an increased risk of HIV-1 
infection [171].

PMNs can also contribute to the chronic immune activa-
tion observed during the course of HIV-1 infection, which 
is a hallmark of pathogenesis in HIV-1 disease progression 
[172], through the increased production of α-defensins in 
the circulation of HIV-1 patients [173]. Although high levels 
α-defensins could play a beneficial role in protection against 
HIV-1 acquisition in highly exposed but uninfected individu-
als [80], they may have detrimental effects in the course of 
natural HIV-1 infection [173]. Moreover, PMNs have been 
shown to express high levels of programmed death-1 ligand 

(PD-L1) on their surfaces [146]. Importantly, the elevated 
expression level of PD-L1 on PMNs has been shown to be 
associated with: (i) increased PD-1 expression on both CD4+ 
and CD8+ T lymphocytes; (ii) increased levels of PMN 
degranulation markers; and (iii) an increased frequency of 
PMNs expressing the granulocytic myeloid-derived suppres-
sor cell phenotype [146]. Of note, PD-L1 interaction with 
PD-1 on T cells has been implicated in immune exhaustion, 
lower CD4+ T cell counts and faster disease progression, 
all of which are critical in the pathogenesis of both HIV-1 
and SIV infections [146, 174–177]. This may be because 
the interaction of PD-1 on T cells with its ligand (PD-L1) 
expressed on several types of immune cells, such as mono-
cytes/macrophages and dendritic cells, negatively affects T 
cell function through down-regulating cytokine production 
and proliferation. Similarly, increased PD-L1 expression on 
PMNs in HIV-1 infection has been shown to suppress T cell 
immune responses, through the PD-L1/PD-1 pathway and 
ROS production [146]. As such, PD-1 blockade is suggested 
as a strategy to abrogate PD-1/PD-L1 mediated immune 
activation, exhaustion, and impairment [174–177].

Chronic immune activation is strongly believed to be 
associated with the development of non-HIV/AIDS-related 
inflammatory conditions in HIV-1 patients, even in those 
with well-controlled viremia (HIV-1 elite controllers or 
treatment responders). Furthermore, immune activation 
may be the underlying cause of continuous loss of CD4+ T 
cells, especially in those with undetectable viremia [178]. 
To assess the role of PMNs in this context, Campillo-Gime-
nez and coworkers enrolled two groups of ART-treated 
HIV-1 patients, with and without inflammatory disorders, 
as well as a group of healthy individuals as a control group. 
Importantly, they showed that hyperactivation of PMNs 
was greater in those patients with inflammatory conditions 
[179]. Hyperactivation of PMNs was also shown to be asso-
ciated with imbalanced PMNs apoptosis/necrosis [179], 
which, in part, could be related to impaired macrophages 
failing to phagocytize apoptotic PMNs in HIV-1 patients 
[180], thereby contributing to the chronic inflammation in 
HIV-1 infection. One useful marker for PMN activation 
and systemic inflammation during HIV-1 infection is the 
increased expression of CD64 (FcγRI) on PMNs, as has 
been recently revealed [181, 182]. Activation of PMNs dur-
ing HIV-1 infection can be mediated by direct HIV-1 contact 
with TLRs expressed on PMNs [183]. The interaction of 
PMNs’ TLRs with HIV-1 or HIV-1-derived single-stranded 
RNA has been shown to induce the production of inflam-
matory cytokines (such as TNF-α and IL-6) and ROS [183, 
184]. Furthermore, HIV-1 Nef can also activate PMNs and 
induce the production of ROS [185]. Importantly, it has been 
revealed that there is a relationship between ROS production 
and TLRs [186, 187]. Consistently, increased PMN ROS 
production following HIV-1 interaction with TLR7/8 has 
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also been revealed [188], indicating that HIV-1 enhances the 
production of ROS, in part, through TLRs. This increased 
inflammatory cytokine production and ROS generation 
could have detrimental impacts on the site of stimulution 
leading to tissue damage such as epithelial barrier damage 
resulting in microbial translocation (discussed below), which 
is a critical contributor to the chronic immune activation 
during HIV-1 infection. These data indicate that the activa-
tion of PMNs is a consequence of HIV-1 infection and that 
activated PMNs, in turn, contribute to the chronic immune 
activation during the course of HIV-1 infection. Hence, 
using antioxidants and/or anti-inflammatory agents could 
provide a potential therapeutic strategy for HIV-1 infec-
tion, at least in part, through containing chronic immune 
activation.

The role of PMNs in maintaining gut epithelial 
barrier integrity in homeostasis and HIV‑1 
infection

PMNs were shown to critically impact mucosal homeostasis, 
especially within the gut compartment [189, “reviewed in 
190, 191”, 192]. This is because they play a major role in 
controlling microbes translocated across impaired gut epi-
thelial barriers. This is based on their exceptional capacity 
to eliminate extracellular pathogens, as aforementioned, as 
well as their ability to participate in the healing of dam-
aged tissues (discussed below). However; PMNs may have 
detrimental effects on inflamed parts of the gut mucosa, 
especially during certain chronic inflammatory conditions. 
Hence, one can conclude that PMNs may act as a double-
edged sword (reviewed in [190]).

The importance of maintaining gut epithelial 
barrier integrity in human health

In normal adult humans, approximately, a 400 m2 monolayer 
of columnar epithelial cells covers the gastrointestinal tract, 
also known as the gut epithelial barrier, representing the 
largest environmentally-exposed part of the body. Main-
taining an intact gut epithelial barrier is essential for main-
taining gut homeostasis (reviewed in [193–196]). This is 
because the gut epithelial barrier acts as a physical barrier 
to prevent the non-physiological passage or translocation of 
the gut’s lumenal content (i.e. commensal microorganisms 
and their byproducts, and other noxious substances) to the 
lamina propria, deeper tissues, and/or into the blood circula-
tion. Indeed, microbial translocation is a consequence and/or 
a cause of different pathological conditions such as: inflam-
matory bowel diseases, celiac disease, obesity, diabetes, and 

certain cancers (e.g. colorectal cancer) [197–204]. Further-
more, the intact gut epithelial barrier is essential for orches-
trating the immune responses within the gut compartment 
[193–196]. These data underscore the extreme importance 
of maintaining both the functional and physical integrity of 
this barrier.

The continuous exposure of this barrier to noxious sub-
stances present in the gut lumen can compromise its integ-
rity as time passes. To avoid this, this barrier is entirely 
regenerated, every three to five days on average in humans, 
through a strictly balanced process of senescent epithelial 
cells shedding at the intestinal villi and differentiation of 
new epithelial cells from the intestinal stem cells that reside 
within the intestinal crypt [205–208]. Of note, gut epithe-
lial cells are held together by tight junctions. These junc-
tions are composed of multi-protein complexes that form a 
selective permeable barrier between adherent cells [209]. To 
further support the integrity of this layer, a massive number 
of immune cells are localized within gut mucosal tissues; 
ready to ‘accommodate’ any invasion that could impair the 
integrity of the gut epithelial barrier [210].

The role of PMNs in controlling microbial 
translocation under normal conditions

During gut epithelial barrier regeneration, some of the gut 
lumen contents translocate across this layer into the lamina 
propria. Once this occurs, phagocytes (especially PMNs and 
macrophages) and other immune cells are rapidly recruited. 
These phagocytes, particularly PMNs, will contribute to the 
clearance of translocated microbes and prevent their dis-
semination into the lamina propria or deeper to the drain-
ing lymph nodes. Most importantly they prevent them from 
reaching the blood circulation. In fact, evidence for the very 
critical role of PMNs in controlling intestinal microbial 
translocation arose from early investigations which indicated 
that 50% of the infections in neutropenic cancer patients 
result from intestinal microbiota [211]. More recent studies 
have also indicated that chemotherapy-induced neutropenia 
in mice models is also associated with increased intestinal 
microbial translocation [212–215]. However, under normal 
conditions, recruited PMNs participate in the healing of 
injured intestinal epithelial barriers to prevent further micro-
bial translocation. Nonetheless, prolonged immune activa-
tion and continuous immune cell recruitment to the site of 
infection/inflammation can negatively affect these tissues, 
which in turn can lead to certain pathological conditions 
(discussed below), depending on the site of inflammation. 
Hence, upon clearance of translocated microbes, PMNs 
release several agents such as lipid mediators including 
resolvins, protectins, and lipoxins to counteract the recruit-
ment of other phagocytes, including PMNs. Moreover, 
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these lipid mediators participate in the healing of dam-
aged epithelial barriers (reviewed in [216]). At the same 
time, PMNs release some proteases that degrade cytokines 
and chemokines at the site of cleared microbes to limit the 
recruitment of additional phagocytes, including PMNs, to 
in effect terminate inflammation. Of note, these data could 
provide an explanation for why the gut of healthy individuals 
contains a small number of PMNs, when compared to other 
innate effector cells [42].

Indeed, other types of immune cells are now well-
appreciated to play a central role in maintaining mucosal 
tissue homeostasis, particularly within the gut compart-
ments, such as the helper T cells type 17 (TH17). These 
cells secrete different cytokines (such as IL-17 and IL-22) 
and chemokines that are involved in maintaining the integ-
rity of gut compartments [217, 218]. These cytokines can 
act as chemo-attractants to PMNs, and play a crucial role 
in antimicrobial production such as β–defensin and S100, 
a calcium-binding protein that participates in immune 
defense against bacterial pathogens [218]. In addition, 
they participate in the healing of injured intestinal epithe-
lial barriers by inducing the proliferation, differentiation, 
and tight-junction formation of epithelial cells [218, 219]. 
Interestingly, under normal conditions, PMNs could be 
involved in maintaining normal TH17 cells counts, since 
studies on mice have demonstrated that PMNs can instruct 
the polarization of naive helper T cells to differentiate into 
TH17 cells [220]. Taken together, these data highlight the 
indispensable role of PMNs in maintaining gut homeostasis 
under physiological conditions.

PMNs and the pathology of certain intestinal 
inflammatory conditions

Under abnormal conditions, PMNs can participate in the 
pathogenesis of certain diseases. For instance, inflammatory 
bowel diseases are characterized by chronic inflammation 
of the intestinal tract (reviewed in [221, 222]), microbial 
translocation [223, 224], abnormal function of PMNs [225, 
226], as well as increased infiltration and activation of PMNs 
and other phagocytes to the gut compartments [190, 227], 
all of which contribute to the pathogenesis of inflamma-
tory bowel diseases. This is because PMN infiltration to the 
site of infection/inflammation is associated with increased 
pro-inflammatory cytokine secretion (such as IL-1β, IL-6, 
and TNF-α), ROS generation, and MPO releasing, which 
is the major constituent of the PMNs’ primary granules 
[156, 228–232]. These products, when increased at the 
gut mucosa, are associated with the severity of inflamma-
tory bowel diseases [230, 233, 234], because they not only 
impact translocated microbes/invaders, if present, but also 
negatively impact the tissues at the sites of stimulation. For 
instance, the interaction of MPO with mannose receptors on 
residual macrophages leads to pro-inflammatory cytokine 
and ROS release by macrophages (reviewed in [53]). In turn, 
pro-inflammatory cytokines then increase the permeability 
of the gut epithelial barrier by manipulating the expres-
sion of genes responsible for tight junction formation, or 
through biochemical or morphological reorganization of 
tight junction proteins, as illustrated in (Fig. 2) [230–232, 
235–237]. Equally, excessive ROS production within these 

Fig. 2   Signaling pathways 
mediated by pro-inflammatory 
cytokines (IL-1β, IL-6, TNF-α) 
in intestinal epithelial cells that 
lead to increased intestinal epi-
thelial permeability. These sign-
aling pathways were obtained 
from these references [230–232, 
235–237, 271–274]
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compartments participates in the induction of a high rate of 
epithelial cells shedding/apoptosis, thereby dysregulating 
the balance of apoptotic intestinal epithelial cells shedding 
at the intestinal villi and the differentiation of new epithelial 
cells from the intestinal stem cells at the intestinal crypt. In 
other words, the increased apoptosis/shedding rate of intes-
tinal epithelial cells exceeds the capacity of intestinal epithe-
lial stem cell differentiation to compensate for this high rate 
of cell death, manifested by crypt hypertrophy [238–240]. 
Indeed, not only do the PMNs’ secreted molecules impact 
on gut epithelial barrier function, but also the PMNs them-
selves can significantly affect epithelial barrier function 
and homeostasis, since PMN transepithelial infiltration can 
modulate the expression, conformation, and distribution of 
adhesion molecules; for more details see [241]. Accordingly, 
increased PMN infiltration rates into the gut compartment, 
as a result of persistent gut inflammation and/or microbial 
translocation, has been demonstrated to play a central role 
in the impairment of gut epithelial barrier.

HIV‑1 infection, gut epithelial barrier integrity, 
microbial translocation, and a possible role 
for PMNs

In the case of HIV-1 infection, there is more to say about 
microbial translocation, immune activation and disease pro-
gression. This is because it is well-recognized that HIV-1 
mainly resides and replicates in the gut compartment (gut 
associate lymphatic tissues, GALT), where a huge number 
of immune target cells are present [242–244]. After HIV-1 
infection and before microbial translocation (pre-microbial 
translocation stage), HIV-1 induces local inflammation in 
GALT, which, in part, could be mediated by pyroptosis, 
a form of inflammatory programmed cell death pathway 
induced by caspase-1, caspase-4, or caspase-5 in humans 
in response to different stimuli, which is associated with 
increased IL-1β and IL-18 production. This assumption 
arose from recent investigations that have shown that the 
intestinal paneth cells of Rhesus macaques, which are 
located at the intestinal epithelial crypt, produce IL-1β in 
response to SIV [232], inducing local inflammation. As a 
consequence of both viral replication and inflammation of 
GALT, the integrity of the gut epithelial barrier becomes 
partially impaired resulting in microbial translocation. From 
this point, HIV-1 infection actually shifts into another stage, 
specifically the post-microbial translocation stage. As a 
result, activation and death pathways are changed, as dem-
onstrated by Steele and coworkers, who revealed that micro-
bial exposure alters HIV-1-induced pyroptosis (i.e. through 
the caspase-1 pathway) in bystander CD4+ T cells in the 
gut mucosa towards apoptosis (i.e. a caspase-3 pathway) in 
infected CD4+ T cells, as a result of increasingly productive 

infected T cells [245]. Similarly, it has also been revealed 
that the exposure to Lactobacillus plantarum can reverse 
the damage mediated by IL-1β [232]. These are consistent 
with the recent observations that microbial translocation 
increases HIV-1 replication in CD4+ T cells [246]. Indeed, 
the continuous HIV-1 replication in GALT results in (i) a 
massive depletion of immune cells mainly CD4+ T cells, 
including TH17 and TH22 cells, and (ii) a great alteration in 
the immune components, as demonstrated both in HIV-1-in-
fected humans and SIV-infected non-human primates [219, 
238, 243, 244, 247–250]. This, in turn, alters the anatomical 
structure and functional activities of these compartments 
leading to impaired GALT integrity [238, 250–257], sup-
porting additional microbial translocation [238, 249].

It is important to realise that although the alteration 
and depletion of immune cells in GALT contributes to the 
impairment of gut epithelial barrier integrity, HIV-1 and its 
proteins (such as Gp120) can also do this, leading to micro-
bial translocation [254]. Two decades ago, Delézay and cow-
orkers demonstrated that exposure of HIV-1 to HT-29-D4, a 
human colonic epithelial cell line, can impair their differen-
tiation, in part, by affecting epithelial barrier function [255]. 
Of note, some in vitro studies have also indicated that HIV-1 
could directly infect epithelial cells [256–259]. Interestingly, 
according to these studies, HIV-1 infection of epithelial cells 
could be associated with inflammatory cytokine secretion 
[258, 259]. Other studies have shown that epithelial cells 
naturally resist HIV-1 infection but instead have demon-
strated that HIV-1 can bind to and interact with epithelial 
cells [254, 260, 261]. For instance, Nazli and coworkers have 
demonstrated that the exposure of T84, an intestinal cell 
line, to HIV-1 or its gp120, but not Tat protein, increased 
their permeability as a result of disruption to the tight junc-
tions [254]. These events were also shown to be associated 
with increased inflammatory cytokine secretion, including 
TNF-α [254]. Furthermore, HIV-1 replication in GALT has 
been implicated in Wnt and TGF-β signaling pathway dys-
regulation, pathways which are involved in intestinal epi-
thelial cell migration and differentiation [238]. This could 
explain why ‘well-controlled’ HIV-1 replication in GALT 
was shown to associate with better gut epithelial barrier 
function [238], and thus less microbial translocation. This 
process is actually observed in HIV-1 elite controllers (who 
do not progress to AIDS naturally and have considerably 
lower levels of microbial translocation and immune activa-
tion), reflecting the critical impact of HIV-1 replication and 
gut epithelial barrier integrity in the pathogenesis of HIV-1 
infection in humans [262, 263]. Similarly, the absence of 
microbial translocation and immune activation in chronically 
SIV-infected Soot mangabeys (monkeys that do not progress 
to AIDS naturally) provides evidence for the critical cor-
relation between viral replication and gut epithelial barrier 
integrity and disease progression [263, 264].



11Polymorphonuclear neutrophils in HIV-1 infections

1 3

On the other hand, a study was conducted to assess the 
function of the intestinal epithelial barrier using HT-29/
B6, a colonic epithelial cell line, upon exposure to HIV-
1-infected immune cells [265]. In this study, Stockmann 
and colleagues have shown that HIV-1 infected immune 
cells can impair the function of the intestinal epithelial 
barrier, at least in part, by secreting pro-inflammatory 
cytokines [265]. Similarly, the continuous infiltration of 
immune cells, particularly phagocytes (such as PMNs and 
macrophages), to the site of inflammation can worsen the 
inflammatory status of these tissues, at least in part, by 
increasing pro-inflammatory cytokine secretion (Fig. 3). 
This adds another mechanism that can explain the 

pathogenesis of GALT damage and increased microbial 
translocation in HIV-1 infection.

To further support the role of increased PMN infiltration 
into an organ (tissues) in the pathology of that organ (tis-
sues), Puerta-Arias et al. [266] showed that PMNs them-
selves can contribute to the pathogenesis of fibrosis and 
pulmonary inflammation in mice, in which increased PMN 
infiltration was observed, through secreting pro-inflamma-
tory cytokines. As such, depletion of PMNs was proposed 
as a strategy to promote the resolution of fibrosis and pul-
monary inflammation in mice, in part, by down-regulating 
the production of pro-inflammatory cytokines [265]. Con-
sistently, the continuous infiltration of PMNs has also been 

Fig. 3   A proposed model describing the role of PMNs in the impair-
ment of gut epithelial barrier integrity and microbial translocation 
during HIV-1 infection. After HIV-1 infection (sexual or non-sexual 
in nature) HIV-1 disseminates to the gut associated lymphatic tis-
sues where a pool of immune cells is present, as seen in case num-
ber 1. Exposure of the gut epithelial barrier to HIV-1 particles can 
impair barrier integrity. Furthermore, HIV-1 replication, depletion of 
immune cells (particularly CD4+ T cells) and increased inflammatory 
cytokine production can also contribute to epithelial barrier integrity 

damage (such as decreased tight-junctions expression), resulting in 
microbial translocation as seen in case number 2. Microbial translo-
cation increases immune activation, inflammation and HIV-1 replica-
tion supporting additional microbial translocation and triggering the 
infiltration of phagocytes such as PMNs and macrophages, case num-
ber 3. Unfortunately, as in case number 4 the increased infiltration of 
PMNs and macrophages within the gut mucosa, can only worsen the 
inflammatory condition of these tissues leading to permanent damage 
to the gut epithelial barrier
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implicated in lung-pathology in HIV-1-infected humanized 
mice co- or not infected with Mycobacterium tuberculosis 
[266]. Interestingly, in both cases, there was a remarkable 
increase in pro-inflammatory cytokine (IL-1β, IL-6, TNF-α, 
and IL-8) secretion [267]. On the other hand, the increased 
infiltration rate of phagocytes (i.e., macrophages) to the gut 
mucosa has been reported in HIV-1 patients, which was also 
shown to be associated with increased pro-inflammatory 
molecules related to macrophages within these compart-
ments [126]. As such, the accumulation of macrophages 
in the gut mucosa has been suggested as a contributor in 
the pathogenesis of HIV-1 infection through promotion 
of inflammation [126]. Interestingly, macrophages that 
accumulate in the colon of AIDS patients were demon-
strated to be responsive to LPS and express inflammatory 
cytokines such as IL-1β and TNF-α, supporting the role 
of macrophages in the pathogenesis of the gut mucosa in 
HIV-1 infected individuals [268]. Similarly to macrophages, 
increased PMN infiltration to the gut compartments of 
chronically SIV-infected Rhesus macaques has also been 
demonstrated [264]. Importantly, this study showed that the 
lamina propria of SIV-infected Rhesus macaques contains an 
increased level of MPO+ PMNs; this observation was shown 
to be associated with epithelial barrier damage and increased 
microbial translocation [264]. These infiltrated PMNs could 
participate in the pathology of gut mucosa by increasing 
the secretion of inflammatory cytokines (Fig. 2 and Fig. 3), 
MPO, and by generating ROS. Moreover, Somsouk and cow-
orkers have demonstrated that HIV-1 infected individuals, 
even those treated with ART, have significantly high rates 
of PMN infiltration into gut mucosal tissues, and this event 
was shown to be associated with increased mucosal apop-
tosis [269], both of which can also contribute to microbial 
translocation (Fig. 3). Microbial translocation contributes 
to the pathogenesis of HIV-1 infection by driving chronic 
immune activation, which is now recognized as a critical 
predictive marker for faster disease progression in HIV-1 
and SIV infections. Indeed, certain translocated microbes, 
namely Gram negative bacteria, can enhance viral replica-
tion by increasing the expression of the CCR5 receptor on 
CD4+ T cells present in the lamina propria [246], amplifying 
this vicious cycle. It should be noted that HIV-1 is among 
those pathogens that thrive under highly inflammatory con-
ditions (high pro-inflammatory cytokines and ROS) [270].

Taken together, these data indicate that impairment 
of gut mucosal integrity and increased microbial trans-
location in HIV-1 infection is, at least in part, a result 
of increased inflammatory conditions (inflammatory 
cytokines and ROS) mediated by an increased infiltration 
rate of phagocytes, including PMNs, to the gut mucosa of 
HIV-1-infected individuals. However, additional investi-
gation is needed to further establish the role of PMNs in 
gut epithelial barrier integrity and microbial translocation 

during the course of HIV-1 infection at different clinical 
stages of disease (acute, chronic, and AIDS).

Conclusion

PMNs are critical innate immune cells involved in the clear-
ance of pathogens. They are considered the most powerful 
immune cells in eliminating pathogens, especially extracel-
lular ones. Additionally, they play a vital role in regulat-
ing innate immune responses, since they cross-talk with 
different innate immune cells. Furthermore, PMNs can 
directly instruct polarization and activation of specific adap-
tive immune responses. These data underscore the critical 
role that PMNs play in pathogen elimination and immune 
response mediation and regulation.

In the case of HIV-1 infection, neutropenia is relatively 
common in HIV-1 patients. Neutropenia is known to be asso-
ciated with recurrent microbial infections, particularly, dur-
ing the advanced stages of HIV-1 disease. Of note, several 
factors can lead to neutropenia in HIV-1 patients, including 
increased peripheral apoptosis rates, decreased production 
rates at the level of hematopoiesis, increased rates of infiltra-
tion, as well as certain drug treatments. Of central impor-
tance, the neutropenia observed during HIV-1 infection is 
not only known associated with increased microbial infec-
tions but also contributes to defects in immune function. On 
the other hand, PMNs become defective as HIV-1 disease 
progresses, and these defects are associated with immune 
response impairment and increased microbial infection. In 
addition, PMNs from HIV-1 patients exhibit hyperactiva-
tion that can contribute to chronic immune activation and 
immune exhaustion, both of which are known to contribute 
to disease progression in HIV-1 patients. Therefore restoring 
normal PMN count and function is essential for preventing 
microbial infection and immune impairment. To this end the 
therapeutic application of G-CSF and GM-CSF to HIV-1 
patients is suggested.

Finally, HIV-1 mainly resides and replicates in lymphatic 
tissues, especially, in the GALT. These tissues become 
chronically inflamed during the early events of HIV-1 infec-
tion. This, in turn, leads to gut integrity damage, and as a 
consequence, microbial translocation occurs. Both events 
lead to an increased phagocytic infiltration rates, particularly 
of PMNs. Unfortunately, once at the GALT, PMNs become 
fully trapped in the viral ‘illusion’. These cells worsen the 
inflammation status of the GALT, by increasing the pro-
duction of inflammatory cytokines and ROS that results in 
further damage to the integrity of the gut mucosa. Hence, 
therapeutic application of antioxidants and/or anti-inflamma-
tory agents could provide a potential strategy for inhibiting 
HIV-1 infection through containment of chronic immune 
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activation, particularly within the GALT, which could limit 
phagocyte infiltration, including that of PMNs.
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