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measures 1.7 to 2.1 kb in both genera with two open read-
ing frames (ORFs) which encode the replication-associated 
protein (Rep) and the capsid protein (Cap). The orientation 
and strand-specificity of these ORFs are key features that 
distinguish members of the two genera [3, 16]. Of inter-
est, fossil circoviral elements, mainly restricted to the rep 
gene (or its non-functional derivative), have been identified 
integrated into eukaryotic host genomes [5, 8]. Differenti-
ating these integrated fossil genetic traits from replication 
competent circoviruses and circovirus-like agents is criti-
cal for developing a better understanding of viral genome 
biology, ecology, possible disease associations, and finally 
virus taxonomy.

Circoviruses have been identified, with or without dis-
ease, in several bird species including parrots, pigeons, 
ravens, ducks, finches, and chickens [11, 12, 15, 17–20]. 
In contrast, chickens are the only bird species, in which 
cycloviruses have been identified [11, 12]. Recently, we 
have conducted an ecological survey among wild birds to 
identify potential reservoirs of circoviruses pathogenic to 
domestic poultry. One virus whose genome sequence we 
determined could be classified in the Cyclovirus genus and 
showed close genetic relatedness to cyclovirus-like partial 
rep sequences amplified from feces of a healthy Tunisian 
child and to cyclovirus-like partial rep sequence detected in 
honey bees in Hungary [11, 13]. These earlier reports did 
not clarify whether the novel cyclovirus-like sequences are 
integrated genomic elements, or, are parts of the genome of 
replication competent exogenous viruses. Thus, we made 
an attempt to perform whole genome sequencing of a wild 
bird-origin cyclovirus-like agent.

For this study cloacal swab specimens were resuspended 
in 1 ml of PBS buffer. Nucleic acid was extracted using 
the Direct-zol RNA MiniPrep Kit (Zymo Research) omit-
ting DNase treatment. A pan viral degenerated primer set 

Abstract The genome sequence of a novel avian cyclovi-
rus is described in this study. The genome size and orien-
tation of predicted genes was similar to those described in 
other vertebrate and insect origin cycloviruses. The great-
est genome sequence identity was shared with a dragon-
fly cyclovirus (nt, 60.6%). Phylogenetic analysis showed 
marginal relatedness with another avian cyclovirus, the 
chicken associated cyclovirus 1. In contrast, along a short 
fragment of the replication-associated protein coding gene 
(rep) (spanning nt 1240-1710) the duck origin cyclovirus 
was very similar to human origin and honey bee origin rep 
sequences (human – TN4, 98%; honey bee – hb10, 100%). 
Related cyclovirus strains existing amongst various animal 
species living in diverse ecosystems and separated by large 
geographic distances show the need for additional stud-
ies to better understand the ecology and epidemiology of 
cycloviruses.

The Circoviridae family classifies viruses comprising 
small, icosahedral, non-enveloped particles infecting eukar-
yote organisms including both invertebrate and vertebrate 
animals. The family is classified into two genera, Circo-
virus and Cyclovirus [16]. The single-stranded circular 
DNA (ssDNA) genome of circoviruses and cycloviruses 
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targeting the circoviral rep gene was utilized in a screen-
ing PCR assay [11, 13]. PCR mixtures (25 μl final volume) 
contained 1x DreamTaq Green buffer, 200 μM dNTP mix, 
200 nM primers, 0.625 U DreamTaq DNA Polymerase 
(Thermo Fisher Scientific), and 1 μl of nucleic acid tem-
plates. The cycling protocols used for the nested PCR were 
as follows: denaturation at 95 °C for 3 min, 40 cycles of 
95 °C for 30 s, 52 °C (first round of nested PCR) and 56 
°C (second round of nested PCR) for 30 s and extension 
at 72 °C 1 min; a final extension step (72 °C for 10 min) 
was also included [13]. The second round PCR product was 
extracted from the gel slice by the Geneaid Gel/PCR DNA 
Fragments Extraction Kit and was directly sequenced using 
the BigDye Terminator v1.1 Cycle sequencing Kit (Thermo 
Fisher Scientific) on an ABI PRISM 3100-Avant Genetic 
Analyzer.

A total of 16 cloacal swab samples collected from water-
fowl species, including seven samples from mallard duck 
(Anas platyrhynchos), seven samples from lesser white-
fronted goose (Anser erythropus) and two samples from 
great crested grebe (Podiceps cristatus) tested positive for 
circoviral rep gene by PCR. All samples were collected 
during December 2013, around the town of Mezőberény. 
The settlement is located in south-east Hungary. Within and 
near the settlement there are over a dozen ponds and lakes 
and a mid-size river (Kőrös) is located about 1-1.5 km 
north from the town; favorable conditions for many water-
fowl species to inhabit the neighborhood.

One specimen collected from mallard duck was selected 
for whole genome sequencing. Amplification of the whole 
virus genome was performed by back-to-back PCR primers 
(forward primer 5’ TCATCTCTTGAACTGGTGTGCC-3’ 
and reverse primer 5’-CTGTGACGCAATAACGAG-
GTC-3’) designed based on the sequence of the nested PCR 
product. The PCR mixtures (25 μl final volume) contained 
1x Phusion Green HF buffer, 200 μM dNTP mix, 200 nM 
primers and 0.25 U Phusion DNA Polymerase (Thermo 
Fisher Scientific), and 1 μl of nucleic acid templates. The 
cycling protocol used for the back-to-back PCR was as fol-
lows: denaturation at 98 °C for 30 s, 45 cycles of 98 °C for 
10 s, annealing at 57 °C for 30 s and extension at 72 °C 1 
min; a final extension step at 72 °C for 10 min was added to 
the protocol [13].

The approximately 2 kb long amplicon generated 
by the back-to-back primers was initially processed for 
next-generation sequencing (NGS) using the Ion Torrent 
PGM instrument. We have previously shared procedures 
concerning library preparation, emulsion PCR, templated 
bead enrichment and sequencing of amplified PCR prod-
ucts and we applied the same strategy in this study as 
well [6]. De novo assembly, which was carried out by 
using the Geneious software [9], gave a sequence scaffold 
for additional primer design. To confirm sequence data 

obtained by semiconductor sequencing we used these 
additional primers (data not shown) in a primer walking 
sequencing strategy using the same amplicon that served 
as template for NGS library preparation. Sequence reads 
were subsequently assembled into a single consensus 
genomic sequence by AliView [10] that was deposited in 
GenBank under the accession number KY851116.

The genome of the suspect cyclovirus strain was 1,902 
nt in length. Genome annotation [9, https://www.ncbi.
nlm.nih.gov/orffinder/] identified the ORFs coding for 
the rep and the cap with lengths of 981 nt and 759 nt, 
respectively. Introns were not found in any ORFs. The 
two ORFs were predicted to localize on complementary 
DNA strands (Fig. 1). The non-coding region between 
the 5’ end of rep and cap gene measured 158 nt, whereas 
the non-coding region between the 3’ end of rep and cap 
was 4 nt long. The sequence of the nonanucleotide motif 
located upstream of the start codon of the cap gene was 
TAGTATTAC (Fig. 1). Collectively, these genomic fea-
tures suggested that the duck-origin ssDNA virus can be 
classified within the newly proposed Cyclovirus genus.

This finding was confirmed by phylogenetic analysis. 
The PhyML software was used to infer cyclovirus phy-
logeny [7]. The maximum likelihood algorithm using 
the GTR+G+I+F substitution model was selected 
and SH-like support was chosen to validate tree topol-
ogy (Fig. 2). Pairwise distances from the whole genome 
alignment were calculated by using the Sequence Demar-
cation Tool v1.2 [14] using the Muscle alignment algo-
rithm [4], which showed a range of sequence identities 
between 54.5% (FeACyV-1) and 60.6% (DfACyV-3) 
(Fig. 3). These values fell below the species demarcation 

DuACyV-1
[KY851116]

1902 nt

rep
981 nt

cap
759 nt

Fig. 1  Genomic organization of the novel duck associated cyclovirus 
1 representing the rep and cap genes and the nonanucleotide motif
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threshold at 80% [16]. Further sequence analyses showed 
a close genetic relationship for the duck origin cyclovirus 
sequence with the human origin TN4 (nt, 98%) and the 
honey bee origin hb10 (nt, 100%) rep sequences along a 
~470 nt fragment within the ORF (nt 1240-1710) encod-
ing the rep protein (data not shown). These data together 
with current classification criteria strongly suggest that 
this duck origin cyclovirus isolate represents a novel 
species within the genus. Seeing the putative broad host 
range of the identified cyclovirus(es), however, assign-
ing a host species may be challenging at this moment. It 
is unclear whether the duck cyclovirus related sequences 
detected in other host species might represent (i) viral 
genetic elements integrated into the respective animal 
genomic DNA, (ii) exogenous multi-host virus strains, 
(iii) exogenous viruses of yet unidentified organisms that 

are capable of colonizing various invertebrate and ver-
tebrate animals, or (iv) these viruses are swallowed and 
pass through the intestine of animals by consumption of 
water or food where many newly described viruses pos-
sessing circular ssDNA genome can be effectively accu-
mulated [1, 2]. The recent classification proposal for the 
Circoviridae which provides new taxonomic criteria for 
cycloviruses, does not satisfactorily discuss issues relat-
ing to the host origin of characterized strains. None-
theless, given that the first representative full genome 
sequence originated from a wild duck specimen, we pro-
pose to introduce the name duck associated cyclovirus 1 
for this isolate (DuACyV-1) and “Duck associated cyclo-
virus 1” for the species.

In summary, this paper is the first to report a cyclovi-
rus in wild bird species. Our study illustrates how little 

Fig. 2  A maximum likelihood 
phylogenetic tree of repre-
sentative cycloviruses’ whole 
genome sequences. Branches 
with SH-like support < 80% are 
not shown. Scale bar represents 
nucleotide substitutions per site. 
Sequence names include Gen-
Bank accession numbers fol-
lowed by viral species using the 
acronyms introduced by Rosario 
et al. [16]; the novel duck origin 
cyclovirus is highlighted
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is known about the ecology and epidemiology of cyclo-
viruses, a paradigm that needs to be addressed in future 
research and taxonomy proposals.
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