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Abstract Zika virus is considered a major global threat to

human kind. Here, we present a crystal structure of one of

its essential enzymes, the methyltransferase, with the

inhibitor sinefungin. This structure, together with previ-

ously solved structures with bound substrates, will provide

the information needed for rational inhibitor design. Based

on the structural data we suggest the modification of the

adenine moiety of sinefungin to increase selectivity and to

covalently link it to a GTP analogue, to increase the affinity

of the synthesized compounds.

Zika virus has recently emerged as a significant threat to

human health in our globalized society [1–3]. This member

of the Flaviviridae family, genus Flavivirus, belongs a

group of arthropod-borne viruses that are transmitted

mainly by the bite of the Aedes spp. mosquitoes [4, 5].

However, sexual transmission [6, 7] and mother-to-fetus

transmissions [8] have also been reported, which seem to

be especially important because of the linkage between

Zika virus infections and birth defects, namely micro-

cephaly [9, 10]. Coupled with the fact that Zika virus RNA

can be detected in semen for as long as six months [11],

infection with Zika virus may present a serious threat to the

safety of human reproduction. Apart from microcephaly

and other common symptoms such as fever, rash and joint

pain, Guillain-Barré syndrome was also reported to be

associated with Zika virus infection [12]. Guillain-Barré

syndrome is a serious condition characterized by rapidly

progressing symmetrical muscle weakness. So far, neither a

treatment nor vaccine against Zika virus is in clinical use,

although significant effort has been invested into this

challenging task within the last year [13–18].

As with other members of the Flavivirus genus, Zika

virus is an enveloped single stranded positive sense RNA

(?RNA) virus [19] whose genome contains a methylated

cap at its 50 end. This RNA molecule, after simple host

cell-associated processing [20], serves as the mRNA for

translation of a single large viral polyprotein, which is

subsequently cleaved by both cellular and viral proteases

into three structural (envelope, E; membrane precursor,

PrM; and capsid C) and seven nonstructural proteins (NS1,

NS2A, NS2B, NS3, NS4A, NS4B, and NS5) [21, 22]. The

central protein of flavivirus replication is NS5, which is

responsible for two distinct catalytic activities. Its first

domain (approximately one third of the NS5 protein) is a

methyltransferase (MTase) and the second domain is an

RNA-dependent RNA polymerase (RdRp) [23].

The vast majority of cellular mRNAs possess a stabi-

lizing cap structure at the 50 end which usually consists of

N-7-methylguanosine triphosphate combined with 20-O-
methylation [24] of the first one or two nucleotides (Fig. 1)

[25]. Numerous viruses, including flaviviruses, have

developed their own capping mechanisms in order to

bypass host innate immunity, enhance the translation pro-

cess and mimic host mRNA [26]. Apart from the installa-

tion of the guanosine triphosphate (Gppp) on the 50 end of

the RNA, the methylation of position N-7 of Gppp and 20-
O-hydroxyl of the following nucleotide(s) is essential for

the whole capping process. In humans, the methyl groups

are installed in the nucleus by two distinct enzymes (N-7
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MTase and 20-O-MTase), however, Zika virus MTase

catalyzes both methylation steps [27]. The methylation of

the cap structure is essential for the whole replication

process of flaviviruses, including Zika virus, and its inhi-

bition leads to arrest of viral replication in cells [28].

Therefore, the MTase is one promising target for the dis-

covery and development of novel therapeutic agents

against Zika virus infection. We note some compounds

targeting Zika virus MTase have already been reported

based on an in silico screen [29].

Here we report the crystal structure of the Zika virus

methyltransferase in complex with pan-methyltransferase

inhibitor sinefungin, an adenosine derivative, originally

isolated from Streptomyces griseoleus by Eli Lilly and Co.

as a potential antifungal antibiotic [30]. From a mecha-

nistic point of view, it competes with S-adenosyl-1-me-

thionine (SAM), the natural substrate of numerous MTases

[31], and, therefore, presents an interesting starting point

for the development of novel competitive inhibitors of this

essential enzyme involved in the Zika virus replication

cycle.

The last few months have resulted in a frenetic struggle

for the structural characterization of the Zika virus pro-

teins, which resulted in the successful crystallization of

proteins including Zika virus MTase [32–34]. However,

this structure together with an inhibitor was not elucidated

until now.

The sequence encoding the Zika virus methyltransferase

from ZIKV virus (strain MR766) infected cells was

amplified using primers: 50-GAGGGATCCGGGGGTGGA
ACGGGAGAGAC-30 (forward) and 50-GAGGCGGCCG

CCTATTACCGCGTGCCAGAGCCGAGATT-30 (re-

verse). The coding sequence was cloned into the pHis2

plasmid previously modified to encode an N-terminal

8xHis tag followed by the SUMO protein (a gift from Dr.

Ren, Berkeley). The protein was expressed in E. coli

Rosetta Gami B (DE3) cells in auto-induction medium

supplemented with 100 lg/ml ampicillin and 34 lg/ml

chloramphenicol using standard protocols [35–37] and

subsequently purified using metal affinity chromatography

followed by TEV cleavage and size exclusion chromatog-

raphy using standard methods [38, 39]. Briefly, the cells

were lysed by French pressure cell press in lysis buffer

(500 mM NaCl, 50 mM Tris pH 8.0, 3 mM 2-mercap-

toethanol, 10% glycerol, 5 mM MgCl2, 0.5 U/ml Salt

Active Nuclease [ArcticZymes]) and centrifuged. The

supernatant was incubated with Ni-NTA agarose (Mach-

ery-Nagel) and subsequently washed with the lysis buffer.

The protein was eluted with lysis buffer supplemented with

300 mM imidazole. The 8xHis-SUMO tag was removed by

Ulp1 protease cleavage at 4� C overnight and the protein

was further purified using size exclusion chromatography

on a Superdex 75 column (GE Healthcare). Finally, the

protein was concentrated to 10 mg/ml and stored at -80� C
until needed.

For crystallization trials sinefungin (Sigma-Aldrich), at

a final concentration of 1 mM, was added to purified Zika

virus MTase. Diffraction quality crystals grew within two

weeks in hanging drops created by mixing 2 ll of the

protein with 2 ll of the well solution (100 mM sodium

acetate pH 4.6, 39% (v/v) PEG 400). The crystals were

flash frozen in liquid nitrogen and data were collected

using a home source. The crystals belonged to the mono-

clinic C2 spacegroup and diffracted to 1.95Å resolution.

The structure was solved by molecular replacement using

Zika methyltransferase bound to S-adenosylmethionine

(PDB ID: 5KQR) as a search model using Phaser [40] and

further refined using the Phenix package [41] to Rwork =

22.67 % and Rfree = 26.88 % and good stereochemistry as

detailed in Table 1. The data and the model were deposited

on the PDB database (http://www.rcsb.org) under deposi-

tion ID 5MRK.

Our crystals contained two Zika virus MTase molecules

in their asymmetric unit. We traced the whole polypeptide

except for the first four N-terminal residues in both mole-

cules; however, we found the segment Arg37 – His53

disordered only in molecule B. This was probably caused

by crystal packing; however, it still reveals that this seg-

ment is flexible, as reported by others [34, 42]. The overall

fold from our structural analysis of Zika virus MTase is in

good accordance with previously solved substrate-bound

structures. The MTase domain is composed of eight a-
helices and seven b-sheets (Fig. 2A). The b-sheet is mixed

(parallel and antiparallel sheets are present) and forms a

Fig. 1 The cap structure consisting of 7-N-methylated guanosine 5’-

triphosphate and 2’-O-methyladenosine
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central motif from b3 to b6. The S-adenosyl methionine

(SAM) binding subdomain is defined by sheets b3, b2, b1,
and b4 and helices a3, a4, and a5 while the remaining

sheets (b5, b6, b7) and helices (a1, a2, a6, a7, a8) form
the second subdomain. The density for sinefungin was

clearly visible upon molecular replacement in both Zika

virus MTase molecules and was located in the SAM

binding pocket (Fig. 2B, Fig. 3A). It is held in place

mainly by hydrogen bonds between sinefungin and resi-

dues Ser56, Gly86 and Trp87 (backbone), His110, Glu111,

Asp146, Lys105 (backbone), and Asp131 as detailed in

Fig. 3B. Comparison with SAM and SAH bound structures

reveals that the binding of sinefungin and SAM differs

mainly in the conformation of Arg84 and Glu111 (Fig. 3C)

while the difference in the SAH bound structure is, again,

changed in the conformation of Arg84 and also rather an

insignificant change in the position of Ser56 (Fig. 3D).

The goal of this study was to obtain structural infor-

mation that would be useful for drug design against Zika

virus. Superposition of the currently obtained structure

with the sinefungin inhibitor in the SAM pocket and pre-

vious structures with GTP and 7-methyl-guanosine-5’-

diphosphate (m7GDP) in the GTP/cap pocket (Fig. 3)

reveals two distinct substrate binding sites. One site for

SAM or its analogues and a second for GTP (Fig. 3A).

Here, we speculate that a sub-nanomolar inhibitor of the

Zika virus methyltransferase can be designed by a frag-

ment-connecting approach; specifically, we propose a

chimeric molecule that would bind to both the SAM and

m7GDP binding pockets. Both sinefungin and SAM can

serve, in principle, as starting molecules. The chiral center

in sinefungin is inherently a complication. However, this

compound is commercially available and simple synthetic

Table 1 Statistics of crystallographic data collection and refinement

Data collection

Crystal MT ? sinefungin

Space group C2

Cell dimension a = 144.8 Å, b = 52.0 Å, c = 84.2 Å, a = 90�
b = 107.6� c = 90�

X-ray source Home source

Wavelength, Å 1.5419

Resolution, Å 29.67 - 1.9 (1.97 - 1.9)

No. of unique

reflections

46804 (4328)

I/r (I) 11.01 (0.7)

Rmerge, % 12.4 (160.5)

C1/2, % 99.5 (38.2)

Data completeness,

%

98.67 (92.06)

Multiplicity 5.18

Refinement

Rwork, % 22.67

Rfree, % 26.88

rms bond angle

deviation, �
0.005

rms bond angle

deviation, Å

0.72

Ramachandran

(outliers/ favored)

0%/97.8%

Fig. 2 Structure of the ZIKV methyltransferase in complex with sinefungin. A) The overall fold. B) The sinefungin molecule in the unbiased Fo-

Fc omit map, contoured at 3 sigma. Selected residues are shown and colored according to atoms (color figure online)
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approaches were reported [43]. To increase selectivity we

propose to modify the adenine nucleobase because this

approach was shown to be feasible in the development of

dengue virus methyltransferase inhibitors [44]. The pre-

sented crystal structure shows that the Zika virus MTase

possesses a similar lipophilic cavity which can be exploited

in order to generate inhibitors specific for viral methyl-

transferases only.

Zika virus has been identified as a potential threat for

human reproduction, especially due to its persistence in

semen, putative sexual transmission and teratogenic defects

associated with the viral infection during pregnancy [45].

Since there is no treatment for Zika virus infection, the

design and development of novel strategies to fight this

dangerous pathogen are of imminent importance. We

report on a crystal structure of Zika virus methyltransferase

in complex with sinefungin, a competitive

methyltransferase inhibitor. The presented data can serve

as a useful starting point for the further design of novel

inhibitors of Zika virus replication. In particular, we con-

clude that covalently connecting sinefungin with a GTP or

GDP analogue using an appropriate linker will result in

outstanding affinity towards this protein, and, together with

an increase in selectivity via proper substitution of the

nucleobase, will result in highly potent and selective

inhibitors of Zika virus replication.
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Fig. 3 A) Superposition of the sinefungin bound structure with

previously solved GTP bound (pdb id: 5GOZ) and 7-methyl-

guanosine-5’-diphosphate (pdb id: 5KQS) structures. B) Detail of

sinefungin bound in the SAM binding pocket. C) Detail of SAM

binding (prepared according to pdb id: 5KQR). D) Detail of SAH

bound in the SAM binding pocket (prepared according to pdb id:

5GOZ). For figures B-D the important residues are shown in stick

representation# and colored according to elements, hydrogen bonds

are drawn as dashed black lines (color figure online)
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