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Abstract Reactive species are frequently formed after

viral infections. Antioxidant defences, including enzymatic

and non-enzymatic components, protect against reactive

species, but sometimes these defences are not completely

adequate. An imbalance in the production of reactive

species and the body’s inability to detoxify these reactive

species is referred to as oxidative stress. The aim of this

review is to analyse the role of oxidative stress in the

pathogenesis of viral infections and highlight some major

therapeutic approaches that have gained importance, with

regards to controlling virus-induced oxidative injury.

Attention will be focused on DNA viruses (papillo-

maviruses, hepadnaviruses), RNA viruses (flaviviruses,

orthomyxoviruses, paramyxoviruses, togaviruses) and

retroviruses (human immunodeficiency virus). In general,

viruses cause an imbalance in the cellular redox environ-

ment, which depending on the virus and the cell can result

in different responses, e.g. cell signaling, antioxidant

defences, reactive species, and other processes. Therefore,

the modulation of reactive species production and oxida-

tive stress potentially represents a novel pharmacological

approach for reducing the consequences of viral

pathogenesis.

Reactive species, antioxidant defences
and oxidative stress

Reactive species (RS) include free radicals containing one

or more unpaired electrons in the last electronic layer and

species that, although not radicals, also exhibit high reac-

tivity in biological systems [1]. Reactive oxygen species

(ROS) and reactive nitrogen species (RNS) are produced in

cells by means of normal physiological processes or by

enzymatic and non-enzymatic mechanisms associated with

pathological processes. Examples of RS are the superoxide

radical (O2
•-), hydroxyl radical (OH•), nitric oxide (NO),

hydrogen peroxide (H2O2) and peroxynitrite (ONOO-).

Molecular oxygen (O2) and NO are the most important

mediators between reactive species induced by inflamma-

tory processes, including microbial infections [1, 2].

RS generally play an important role in cellular signaling,

the regulation of cytokines, growth factors, transcription,

immunomodulation and apoptosis as well as in other pro-

cesses [3, 4]. However, when there is an overproduction of

RS, there might be damage to DNA, lipids and proteins,

leading to the loss of cellular integrity and functionality

[5]. To prevent and combat this excess RS and maintain

cellular homeostasis, both physiologically and in a patho-

logical process, there is an antioxidant defence system that,

under physiological conditions, does not allow harmful

actions of RS [6–8].

The antioxidant defence system is divided into enzy-

matic and non-enzymatic aspects. The vast majority of

non-enzymatic antioxidants are obtained from the diet and

are classified into several classes, including polyphenols.

The other classes include vitamins C and E (a-tocopherol),

carotenoids, organosulfur compounds, minerals and

cofactors that play important roles in the maintenance of

human health [9].
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Enzymatic antioxidants are produced endogenously, and

the major antioxidant enzymes are Superoxide Dismutase

(SOD), Catalase (CAT), and Glutathione Peroxidase

(GPx). O2
•- is metabolised to H2O2 by enzymes of the SOD

family. Higher eukaryotes have three isoforms of SOD:

cytoplasmic SOD1 (Cu/Zn-SOD), mitochondrial SOD2

(Mn-SOD) and extracellular SOD3 (Cu/Zn-SOD) [10]. The

glutathione redox cycle is complementary to catalase in

converting H2O2 to water and oxygen, whereas GPx use

glutathione as a reducing agent [11].

The term ‘‘oxidative stress’’ refers to a disturbance in the

oxidant-antioxidant balance, leading to potential cellular

damage. This imbalance could result from a lack of

antioxidant capacity or an overabundance of RS. However,

because oxidative stress is involved in multiple systems

such as redox signaling pathways, a better definition of

oxidative stress is a ‘‘disruption/dysregulation of signaling

and redox control’’ [12].

Oxidative stress and virus infections

Peterhans [13] published the first evidence that a virus

could induce oxidative stress by increasing the RS levels.

The author demonstrated that infection of mouse spleno-

cytes with Sendai virus (a paramyxovirus) induced an

increase in chemiluminescence levels, because luminol had

been oxidised by RS. It was also shown that virus inacti-

vated with UV light was able to generate RS, whereas virus

inactivated by heat would not generate RS, suggesting that

the conformation of the viral structure mediates this action.

Later, other studies showed that many retroviruses, DNA

and RNA viruses could cause cell death by generating RS

[14–16].

Regarding its role in the activation of cells, the RS might

facilitate or even promote viral replication, depending on

the cell type and the virus involved. The effect of RS on

cellular functions depends on the amount of RS and how

long the cell has been exposed to RS [16–19]. Viruses, in

general, vary in the production of RS but share a common

pathogenic pathway accentuating the production of RS and

antioxidant depletion [20]. Generally, during infection, the

virus is detected, encompassed and phagocytosed by

inflammatory cells including macrophages, neutrophils and

dendritic cells. The pathogens activate the expression of

the NADPH oxidase complex and nitric oxide synthase in

phagocytic cells, leading to an increased production of RS

[21].

The activation of phagocytes induced by viruses is

associated with oxidative stress because the RS are

released and because activated phagocytes can release pro-

oxidant cytokines. Pro-oxidant cytokines such as tumour

necrosis factor (TNF) and interleukin-1 (IL-1) promote iron

uptake by the reticuloendothelial system, which can accu-

mulate and, through the Fenton and Haber Weiss reactions,

generate the hydroxyl radical OH• [22, 23].

Oxidants induced by viral infection include NO, O2
.-,

OH• and their by-products (such as H2O2), which might

contribute to the modulation of cellular responses, regula-

tion of viral replication, host defences and viral patho-

genesis [24]. Because the RS are closely related to the cell,

changes in these species in different signaling pathways

might modulate gene expression, adhesion, metabolism,

cell cycle and death [25, 26]. Therefore, the RS are crucial

for the development of viral infections. As obligatory

intracellular parasites, viruses depend on the biosynthetic

mechanisms of the host for replication. Thus, the redox

state of the cell could benefit or harm certain viral infec-

tions, depending on the cell type and the virus involved

[18, 19, 27, 28].

Initially, RS fight infection and are seen as a protection

mechanism for the host cell, which might contribute to the

induction of apoptosis [29]. However, with the advance-

ment of viral multiplication, more RS are formed, causing

an imbalance in cellular redox homeostasis. Therefore, the

oxidative stress caused by viral infections can contribute to

several aspects of pathogenesis, including inflammatory

responses, cell death, and weight loss, among others

[16, 27, 30]. Moreover, this change in the redox state of the

host cell could select for certain viral mutants and/or pro-

duce mutations and activate transcription factors, such as

nuclear Factor kappa B (NF-kB), which increases viral

replication [23].

RS and lipid peroxidation products may affect viral

replication through modulation of the activation state of

cells, regulation of host inflammatory and immune

responses, and by causing oxidative damage to host tissues

and viral components [23, 27, 30–33]. Oxidative damage of

infected and adjacent cells may also limit viral spread.

However, for most viral infections, the extent to which

oxidative damage plays a beneficial role for the host by

limiting viral replication is not well understood [33].

Gullberg et al. [28] observed that oxidative stress positively

affects viral RNA replication of flaviviruses and alpha-

viruses and that antioxidant treatment can significantly

impair viral RNA replication, altering the amount of cap-

ped viral RNA. For human papillomavirus, studies suggest

that oxidative stress favors different stages of HPV repli-

cation [34]. However, in HCV infection, the relevance of

HCV-dependent induction of oxidative stress, with respect

to viral genome replication, is controversial [35]. On one

hand, there are reports describing an inhibitory effect of

elevated RS levels on HCV replication [36, 37] but on the

other hand there are reports describing Pycnogenol, a pine

extract, which has antioxidant effects and leads to reduced

RS levels and impaired HCV replication [38]. Thus,
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developing a better knowledge of oxidative stress, in par-

ticular cellular functions and viral replication, remains a

challenge for the following years.

Viruses affect cellular redox balance by increasing

oxidants such as superoxide and nitric oxide and inhibit the

synthesis of antioxidant enzymes such as SOD, CAT, and

GPx. Therefore, given what has been discussed so far, it

could be inferred that oxidative stress is related to various

aspects of the pathogenesis of various viral aetiologic

agents. Evidence of the consequences of oxidative stress on

the pathogenesis of some important viruses of different

families is reviewed below.

Oxidative stress in papillomavirus infections

Human papilloma virus (HPV)

RS are extremely important in HPV infection because of

their roles in mutagenesis, initiation and neoplastic pro-

gression [39]. If not adequately regulated by the antioxi-

dant defence system, excess RS can damage lipids, proteins

or DNA, inhibiting normal function, which increases

chromosome aberrations associated with cell transforma-

tion [25, 40]. High RS production was detected in almost

all cancers, acting as secondary messengers in intracellular

signaling cascades, promoting many aspects of tumour

development and progression [41]. Therefore, in HPV

infection, oxidative stress could promote cellular transfor-

mation, which might facilitate the integration of HPV

oncogenes into cellular DNA [34, 42]. Furthermore, studies

suggest that oxidative stress is a condition that favors dif-

ferent stages of HPV infection including viral adsorption,

viral entry and the initial establishment of viral gene

expression [34, 43].

The RS produced by HPV infection can activate cellular

signaling pathways, such as those mediated by mitogen-

activated protein kinase (MAPK), NF-kB, phosphatidyli-

nositol 3-kinase (PI3K), p53, b-catenin/Wnt and pathways

associated with angiogenesis [42, 44]. These changes

contribute to viral pathogenesis through modulation of cell

growth/proliferation, differentiation, protein synthesis,

glucose metabolism, cell survival and inflammation [45].

Moreover, the specific radicals generated, the location of

their generation, as well as their local concentrations are

important for determining the cellular functions of RS in

cancer [41].

Foppoli et al. [43] highlighted that HPV confers to

infected cells the ability to survive in an oxidising envi-

ronment, through various mechanisms, such as the regu-

lation of antioxidant enzymes (CAT, SOD, peroxiredoxin,

glutathione S-transferase), protection against oxidation and

suppression of apoptosis induced by stress. This redox

adaption, through up regulation of anti-apoptotic and

antioxidant molecules, allows cancer cells to promote

survival and to develop resistance to anti-cancer drugs.

However, little is known about how an increase in intra-

cellular oxidative stress levels is sensed and transduced

into RS-induced, specific, intracellular signaling to regulate

the expression of antioxidant and survival genes [41].

Oxidative stress in hepadnavirus infections

Hepatitis B virus (HBV)

Several studies in the literature indicate that HBV induces

oxidative stress in cells, mice or patients and that this stress

might precede the development of hepatocellular carci-

noma [46–50]. High levels of lipid peroxidation, DNA

damage and hepatic transaminase alanine aminotransferase

(ALT) were found in patients with chronic hepatitis, sug-

gesting that oxidative stress plays an important role in liver

injury induced by HBV [26, 51].

In general, patients infected with HBV show a reduction

in Cu/Zn-SOD and GPx and increased levels of malondi-

aldehyde (MDA), indicating oxidative stress during infec-

tion. Even after treatment with a-interferon and

lamivudine, there is reduced lipid peroxidation and

increased antioxidant enzyme levels [26]. Ren et al. [52]

showed that the replication of HBV in infected cells

induces oxidative stress by increasing the RS production

and also showed that transfected cells overexpressing

mitochondrial Sirtuin3 (SIRT3) protein decreased RS

production (induced by the HBV viral protein, HBx)

reducing oxidative damage to infected cells and reducing

viral replication.

In addition to non-specific oxidative stress generated by

local inflammation in response to viral infection, increasing

evidence suggests that HBV-encoded proteins directly

regulate cellular RS production and may also inhibit cel-

lular DNA repair pathways. These changes can deleteri-

ously alter intracellular antioxidant defences in HBV

infected cells, causing apoptosis and extensive liver dam-

age [51].

Oxidative stress in flavivirus infections

Hepatitis C virus (HCV)

Many studies have shown a role for oxidative stress in the

hepatic pathogenesis of HCV. Patients infected with HCV

showed elevated levels of various biomarkers of oxidative

stress in serum and liver biopsy samples, including 8-hy-

droxydeoxyguanosine (8-OHdG, an indicator of DNA
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damage), MDA and thioredoxin [53–55]. Patients with

HCV showed higher expression levels of 8-OHdG com-

pared with patients with chronic hepatitis B, suggesting

that oxidative damage to DNA is more common in chronic

hepatitis C infections [49].

The expression of several structural, non-structural and

core proteins of HCV (core protein, NS3, NS5A, E1, E2,

NS4B) are associated with the induction of oxidative stress,

with consequent damage to DNA contributing to carcino-

genesis [51, 56]. The non-structural protein NS5A can

activate cellular transcription factors such as NF-kB and

STAT-3 by inducing oxidative stress in the cells [57]. As a

consequence of endoplasmic reticulum stress, Ca2? is

released and is readily taken up by mitochondria, where-

upon it affects the transmembrane potential and induces

oxidative stress, exhibited by the rising levels of RS in

mitochondria [58–60]. NS5A also cause oxidation of

mitochondrial glutathione leading to increased RS [61–63]

and resulting in translocation of NF-jB and STAT-3

transcription factors into the nucleus, also leading to

oxidative stress [64]. Furthermore, the HCV protein NS5A

seems to play a critical role in the activation of p38 MAPK,

JNK and AP-1, leading to increased Mn-SOD antioxidant

responses. The activation of AP-1 and Mn-SOD by HCV

NS5A may be instrumental in the regulation of host oxi-

dant status, and underscores the potential importance of

this protein [65, 66].

During acute liver injury and liver inflammation, RS are

generated by Kupffer cells and neutrophils as major toxic

mediators to induce cell death [67]. Because these cells are

very close to hepatocytes, some RS (for example, H2O2)

are able to diffuse into hepatocytes and induce intracellular

signaling [68]. In this context, these RS would amplify

intracellular effects caused by the viral proteins them-

selves, although they could also activate intracellular

antioxidant defences that could prevent or allow increases

in oxidative stress [69].

Generally, in parallel to the RS increase in HCV

infection, there is a decrease in antioxidant defence, such as

glutathione content, which contributes to the oxidation of

important cellular components. These changes can lead to

the development of cirrhosis and hepatocellular carcinoma

[69–72]. Some clinical studies have shown that the addition

of antioxidants can improve liver injury caused by oxida-

tive stress and this could be a potential treatment for HCV

infection [71, 72].

Additionally, evidence suggests that HCV non-structural

proteins, together with Core, repress hepcidin expression in

a RS-dependent manner, altering iron metabolism [73].

Importantly, NS5A-induced RS production may also

impact on glucose production [74], demonstrating that

oxidative stress induced by HCV impacts on several other

HCV-associated pathologies, including diabetes [51].

Japanese encephalitis virus (JEV)

JEV infection can lead to death in approximately 20-30% of

infected patients [75, 76]. Neuronal apoptosis and inflam-

mation are generally attributed to JEV-induced cytopathol-

ogy. However, the extent of cell injury that can be accredited

to viral cytopathology remains unclear [24, 77, 78].

Liao et al. [79] showed that infection by JEV induces the

generation of the superoxide anion in rat cortical glial cells.

Later, Srivastava et al. [80] revealed that RS, such as

peroxynitrite, were increased in acute JEV rat infection

models. In another study, JEV infection increased levels of

SOD in the brains of rats in an attempt to suppress the high

levels of superoxide [81]. In addition, in human

promonocyte cells, an increase in intracellular RS was

observed, in addition to activation of p38 MAPK signaling/

ASK1-ERK; both processes that are associated with the

apoptosis induced by JEV [82]. Moreover, JEV infection

down-regulates thioredoxin expression, which would

increase cytoplasmic oxidation and interfere with homeo-

static redox balance during infection [28, 82].

Apoptosis induced by JEV has been associated with

many important mechanisms, such as endoplasmic reticulum

stress, RS generation and activation of NF-kB. JEV infection

is also associated with microglial activation, resulting in the

production of pro-inflammatory cytokines including IL-1b

and IL-18, which is mediated by RS production [83]. Fur-

thermore, RS can react to form peroxynitrite, which triggers

the loss of ATP and mitochondrial membrane potential,

leading to cytochrome c release from the mitochondria and

the activation of caspase 3, causing neuronal apoptosis [24].

Therefore, oxidative stress is closely related to JEV infection

in several ways, either through increasing the RS, or causing

changes in antioxidant enzyme levels or the activation of

major signaling pathways.

Dengue virus (DENV)

In sera of dengue patients, the levels of peroxidation

potential, MDA?4-hydroxyalkenals, and SOD activity are

significantly higher, whereas the levels of GPx and total

hydroperoxides are significantly lower, suggesting that an

alteration in redox status could be a result of increased

oxidative stress and might play a role in the pathogenesis of

the disease [84]. Among patients with dengue fever on

different days of infection, Klassen et al. [85] showed an

increase in the plasma concentrations of retinol and beta-

carotene and a decrease in the glutathione and total

antioxidant status. However, when compared to control

subjects, patients with dengue fever had lower retinol

concentrations in the acute phase of the disease and lower

glutathione concentrations 7 d after discharge, suggesting

that an imbalance of the antioxidant system might be a
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response to, or a consequence of, the viral induced

inflammation. According to the authors, although levels of

vitamin A in patients may be more strongly affected by

their dietary intake than by their disease state, the lower

plasma concentrations found in patients at the beginning of

the disease may be related to the acute infection. Therefore,

oxidative stress generated by an imbalance of micronutri-

ent levels becomes significant when disease or infection

occurs [16].

Another study assessing oxidative stress in different

clinical spectrums of DENV infection (dengue fever, dengue

haemorrhagic fever and dengue shock syndrome) showed

that the level of oxidative stress was maximal in dengue

shock syndrome followed by dengue haemorrhagic fever,

and its severity was minimal in dengue fever. Additionally,

the thrombocytopenia seen during dengue infections was

associated with the extent of lipid peroxidation [86]. Later,

Soundravally et al. [87] observed a significant positive

correlation between lipid peroxides and TNF-a levels, and

the TNF-a/IFN-c ratio, in severe dengue cases.

Yen et al. [88] showed that DENV infection induced

endothelial cell production of RS and apoptotic cell death,

which was greatly enhanced by TNF-alpha. Additionally,

the development and severity of the haemorrhage were

greatly reduced in mice lacking iNOS or p47 (phox), or in

mice treated with an oxidase inhibitor, suggesting a critical

role for reactive nitrogen and oxygen species in dengue-

associated haemorrhaging.

A previous study demonstrated that DENV-2 infection

alters host intracellular GSH levels, and that exogenous

GSH inhibits viral production by modulating the activity of

NF-jB in HepG2 cells [89]. In model animals, mice

infected with DENV-2 showed an increase in MDA and the

GSSG/GSH ratio and a decrease in the activity of CAT and

SOD. This study suggests that exogenous GSH might be a

promising therapeutic agent for the prevention of oxidative

liver damage during DENV infection [90].

Therefore, many studies show changes in the redox state

in DENV infections, changes which contribute to the

pathogenesis of the disease. Moreover, some markers of

oxidative injury are altered during different stages of

infection and might function as markers of disease

progression.

Oxidative stress in orthomyxovirus infections

Influenza virus

Studies suggest that oxidative stress might promote lung

injury and inflammation after infection with influenza A

[91, 92]. RS, such as superoxide and nitric oxide, are

released into the extracellular space by inflammatory and

airway epithelial cells. These molecules might exacerbate

lung injury after influenza virus pneumonia [93]. It has

been demonstrated that damage to the lung tissue is a result

of virus-induced cytopathic effect and is also due to the

cytotoxic effects of excessive inflammation [94–96].

Buffinton et al. [97] evaluated the lungs and bron-

choalveolar lavage fluid (BALF) of mice infected with a

lethal dose of influenza A/PR8/34 virus and found

increased generation of O2
•- in BALF cells during the early

stages of infection and increased production of H2O2 in the

lungs. The activities of GPx and glutathione reductase

remained unaltered, demonstrating that oxidative stress

was present in the early stages of influenza infection.

Hennet et al. [98] determined the endogenous concentra-

tions of the antioxidants glutathione and vitamins C and E in

the lungs, liver and blood plasma of control mice and mice

infected with the influenza A/PR8/34 virus. There was a

decrease in the total concentration of glutathione and vita-

mins C and E, and changes in the concentration of hepatic

antioxidants occurred in the early stages of infection. This

finding is important because a decrease in the concentrations

of antioxidants might contribute to the host becoming more

susceptible to the pathogenic effects of other agents.

Another study showed that glutathione blocked influenza

viral infection in cultures of Madin-Darby canine kidney

cells or human small airway epithelial cells. In this context

there was protection against the production of active virus

particles, inhibition of expression of the viral matrix protein

and inhibition of viral-induced caspase activation and Fas

upregulation. Moreover, the addition of GSH in the drinking

water of BALB/c mice decreased the viral titre in both lung

and trachea homogenates, suggesting an anti-influenza

activity for glutathione in vitro and in vivo [99].

Shi et al. [100] administered recombinant human cata-

lase (rhCAT) to mice infected by (H1N1) influenza A virus

and observed a significant reduction in inflammatory cell

infiltration, inflammatory cytokine levels (IL-2, IL-6, TNF-

a, IFN-c), and the mRNA levels of Toll-like receptors

TLR-4, TLR-7, as well as NF-jB. This finding indicates a

protective effect for rhCAT in viral-induced pneumonia of

mice, via the suppression of immune responses.

According to Lin et al. [101], H5N1 virus infection of

epithelial lung cells decreased the gene and protein

expression of the SOD1 enzyme. Transfection of these

cells to overexpress SOD1 significantly inhibited the pro-

duction of RS by the H5N1 virus and reduced the pro-

inflammatory response. It also prevented the phosphoryla-

tion of p38 and p65 and the nuclear export of viral

ribonucleoprotein and viral replication. H5N1 infection in

A549 cells resulted in a significantly greater production of

intracellular RS, when compared with H1N1 infections,

and, remarkably, decreased the GSH/GSSG ratio when

compared with controls.
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As observed in these studies, influenza virus infection

induces oxidative stress and contributes to viral patho-

genesis. Moreover, several studies have shown that the use

of antioxidants might have a protective effect against

infection by influenza virus.

Oxidative stress in paramyxovirus infections

Respiratory syncytial virus (RSV)

Oxidative stress also plays an important role in the

pathogenesis of pulmonary inflammation caused by RSV.

Mochizuki et al. [102] evaluated changes in the intracel-

lular glutathione redox state in cultured human airway

epithelial cells (A549) and normal human bronchial

epithelial cells (NHBE) infected with RSV and found RSV-

induced oxidative stress. Furthermore they showed that this

stress could induce airway inflammation.

The infection of airway epithelial cells by RSV induces

the production of RS and is able to increase lipid peroxi-

dation products whilst decreasing the expression of SOD1,

SOD3, CAT and GST, albeit with a slight increase in SOD2.

Moreover, there was a verified increase in the activity of

SOD and decreases in CAT, GPx and GST [103–105].

In infected mice, RSV induces oxidative stress in the

lung, while antioxidant treatment alleviates clinical signs

and pulmonary inflammation [106, 107]. Huang et al. [108]

showed that mice infected with RSV obtained oxidative

stress through increased NO, MDA and OH. levels and

decreased GSH and SOD activity, but the administration of

melatonin reversed all these effects and inhibited the pro-

duction of pro-inflammatory cytokines such as TNF-a in

the serum of RSV-infected mice. These results suggest that

melatonin might be a novel therapeutic agent in virus-in-

duced pulmonary infections.

Hosakote et al. [109] evaluated if synthetic catalytic

scavengers could reduce RSV-induced pro-inflammatory

gene expression, as well as oxidative cell damage, in air-

way epithelial cells (AECs). These cells were treated with

the salen-manganese complexes EUK-8 or EUK-189,

which possess SOD, CAT and GPx activity. This treatment

reduced RSV-induced RS formation by increasing cellular

antioxidant enzyme activity and the levels of the lipid

peroxidation products F(2)-8-isoprostane and MDA. This

treatment also inhibited RSV-induced cytokine and che-

mokine secretion and the activation of the transcription

factor NF-jB and interferon regulatory factor-3, suggesting

that increasing antioxidant cellular capacity could reduce

the oxidative cell damage induced by RSV.

Children with acute bronchiolitis, caused by RSV, pre-

sent with an induction of oxidative stress caused by the

virus. Accordingly, the concentrations of GSSG and GPx

increase, and there is a positive correlation between GSSG

and the severity of disease [110].

These studies show that RSV is capable of inducing

cellular oxidative damage as a result of the imbalance

between the production of RS and cellular antioxidant

defences.

Oxidative stress in togavirus infections

Chikungunya virus (CHIKV)

Dhanwani et al. [111] showed that new-born mice infected

with CHIKV have changes to their apoptotic, inflammatory

and stress pathways. There was an increase of inflammatory

cytokines, particularly IL-6, TNF-a and IL-1. The antioxi-

dant enzymes CAT and peroxiredoxin-6 were reduced, and

there were changes, resulting from infection, in the urea

cycle and energy metabolism in the liver and brain. This

study showed evidence that the stress response is an

important factor in the pathogenesis and inflammation by

CHIKV, and tissue injury and apoptosis are the main events.

Another study using the neuroblastoma cell line SH-

SY5Y infected with CHIKV showed a decrease in glu-

tathione expression as well as decreased levels of the

enzymes SOD, CAT, GPx, GR and GST. The MDA levels

increased at all times examined after infection. In addition,

there was an increase in the levels of the inflammatory

cytokines IL-6, TNF-a and IL-1, showing inflammation in

neuronal infection-induced CHIKV. High levels of these

cytokines during infection could also activate and aggravate

virus-induced cytopathic effects, stress and apoptosis [112].

Patil et al. [113] found changes in oxidative homeostasis

in mice infected with CHIKV. These mice had high levels

of the inflammatory cytokines iNOS, TNF-a, IL-1a, and

IL-1b and high levels of the COX-2 and CCL-3 proteins

during the symptomatic stage of disease, followed by

normalisation of these levels during the recovery phase of

the disease. Joubert et al. [114] showed that the infection of

cells and mice by CHIKV induces increased RS produc-

tion, causing endoplasmic reticulum and oxidative stress.

These events act through independent mechanisms to

induce autophagy during CHIKV infection.

Oxidative stress in retrovirus infections

Human immunodeficiency virus (HIV)

The presence of oxidative stress during HIV infection is

already well established in the literature, and many articles

have shown different changes, in various experimental

models [115, 116]. It is known that oxidative stress, as well
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as other viral infections, might promote HIV replication

and activate NF-kB, which is necessary for both viral

replication and activation of inflammatory cytokines of the

immune system [117, 118]. HIV-infected patients and

AIDS patients generally have high serum hydroperoxide

and MDA levels [119–121].

Most of the work related to HIV shows a reduction of

antioxidant enzymes and high levels of oxidants. Malvy

et al. [122] Dröge et al. [123] and Fuchs et al. [124] found

levels of GSH, cysteine, vitamin C, GPx and SOD to be

significantly reduced in plasma and leukocytes in HIV

infections and found increased lipid peroxidation, with

elevated plasma levels of MDA.

De Rosa et al. [125] also showed diminished levels of

glutathione in erythrocytes and T cells associated with

disease progression; and after the oral administration of

glutathione, NAC and ATP, there was a significant

restoration of virus-induced cell injury.

In general, during HIV infection, there is a depletion of

antioxidants, which results in a decrease in immune func-

tion. The immune cells generally require a higher con-

centration of antioxidants than other cells to maintain the

redox balance and preserve their integrity and function

[126]. Therefore, oxidative stress is very important in HIV

infection, i.e. reducing the antioxidants CAT and glu-

tathione leads to an excess of H2O2, which increases OH•
radicals that signal cell programmed cell death [127].

Excess RS appears to contribute to the progression to AIDS

in different ways, including the apoptosis of CD4 cells and

alterations in the function of other components of the

immune system [16, 19, 128].

Potential therapeutic approaches

As discussed above, a large amount of evidence indicates

that oxidative stress plays a complex role in viral diseases,

from influencing host cell metabolism to viral replication.

Therefore, the targeted use of antioxidants in viral disease

therapy can be an effective strategy, capable of acting at

different levels of viral infection. Currently, many com-

pounds are available, including minocycline, quercetin,

curcumin, butylated hydroxyanisole, melatonin, and

exogenous GSH.

An example of research that has addressed antioxidant

therapy during viral infection is Mishra et al. [129], who

reported that the semisynthetic tetracycline, minocycline,

inhibited RS production and neuronal death in mouse

neuroblastoma N2a cells infected with JEV. When these

same cells infected with JEV were treated with varying

doses of curcumin (the main component of turmeric), the

cell viability increased and apoptosis, and the cellular RS

levels, significantly decreased [130].

Beyond these compounds, Gansukh et al. [131] pre-

sented quercetin-7-O-glucoside (Q7G), which exhibited

strong antiviral activity against the influenza A and B

viruses and acted as an inhibitor of influenza virus-induced

symptoms, such as RS production. Gullberg et al. [28]

showed that treatment of BHK cells infected with Kunjin

virus (KUNV, flavivirus) with the antioxidant agent buty-

lated hydroxyanisole (BHA) significantly decreased RS

production, indicating that BHA blocked KUNV-induced

oxidative stress. Castro et al. [106] also demonstrated that

treatment with BHA significantly attenuated RSV-induced

lung oxidative stress by decreasing the MDA and 4-hy-

droxynonenal levels in RSV-infected mice. Moreover,

Huang et al. [108] showed that the administration of

melatonin reversed the high NO, MDA, and OH. levels and

inhibited the production of pro-inflammatory cytokines,

such as TNF-a, in the sera of RSV-infected mice.

These compounds as well as other natural compounds

have been studied. However, our own antioxidant compo-

nents are also used to combat oxidative stress caused by

viral infections. In vivo and in vitro studies have shown that

the administration of exogenous GSH inhibits DENV-2

viral production by modulating NF-jB activity and

reducing the MDA level, GSSG/GSH ratio and RS pro-

duction [89, 90]. The administration of recombinant human

catalase (rhCAT) to mice infected with H1N1 influenza A

virus decreased inflammatory cell infiltration, inflamma-

tory cytokine levels and the mRNA levels of the Toll-like

receptors and NF-jB [100]. Moreover, transfection of the

cells to induce SOD1 overexpression significantly inhibited

RS production in response to an H5N1 virus infection and

also reduced the pro-inflammatory response as well as viral

replication [101].

Thus, we can conclude that many possible antioxidant

therapies exist. More therapies are being discovered regu-

larly because oxidative stress is closely associated with

viral infections and therapies to combat this stress are

therefore very important, especially those based on natural

compounds.

Conclusions

In the infected cells of all of the viral agents discussed in

this review, there are significant changes to cellular

homeostasis. These changes are caused mainly by high

levels of oxidative stress biomarkers and depletion of the

antioxidant defence system. Increased RS and a reduction

in the expression of antioxidant enzymes in infected cells

can result in varied responses. In some cells, depending on

the type of virus, this process favours viral replication,

while in other cells, it inhibits replication. Therefore, it is

necessary to research all aspects of oxidative stress, e.g.
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signaling pathways, antioxidant enzymes, lipid peroxida-

tion, inflammatory responses, RS production etc. to better

understand how the host response to viral infection occurs

and how viruses act within the cell. This information can

then be used to elucidate mechanisms that could be used to

help fight, and prevent, certain viral infections.
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8. Armogida M, Nisticò R, Mercuri NB (2012) Therapeutic

potential of targeting hydrogen peroxide metabolism in the

treatment of brain ischaemia. Br J Pharmacol 166:1211–1224

9. Ratnam DV, Ankola DD, Bhardwaj V et al (2006) Role of

antioxidants in prophylaxis and therapy: a pharmaceutical per-

spective. J Controll Release 113:189–207

10. Miao L, St Clair DK (2009) Regulation of superoxide dismutase

genes: implications in disease. Free Radic Biol Med 47:344–356

11. Zamocky M, Furtmuller PG, Obinger C (2008) Evolution of

catalases from bacteria to humans. Antioxid Redox Signal

10:1527–1548

12. Jones DP (2006) Redefining oxidative stress. Antioxid Redox

Signal 8:1865–1879

13. Peterhans E (1979) Sendai virus stimulates chemiluminescence

in mouse spleen cells. Biochem Biophys Res Commun

91:383–392

14. Peterhans E, Grob M, Burge T et al (1987) Virus-induced for-

mation of reactive oxygen intermediates in phagocytic cells.

Free Radic Res Commun 3(1–5):39–46

15. Muller F (1992) Reactive oxygen intermediates and human

immunodeficiency virus (HIV) infection. Free Radic Biol Med

13(6):651–657

16. Reshi ML, Su Y-C, Hong J-R (2014) RNA viruses: ROS-me-

diated cell death. Int J Cell Biol 2014:467452-1–467452-16.

doi:10.1155/2014/467452

17. Burdon RH (1995) Superoxide and hydrogen peroxide in rela-

tion to mammalian cell proliferation. Free Radic Biol Med

18:775–794

18. Albrecht T, Boldogh I, Fons MP (1992) Receptor-initiated

activation of cells and their oncogenes by herpes-family viruses.

J Investig Dermatol 98(6 Suppl):29S–35S

19. Pace GW, Leaf CD (1995) The role of oxidative stress in HIV

disease. Free Radic Biol Med 19:523–528

20. Stehbens WE (2004) Oxidative stress in viral hepatitis and

AIDS. Exp Mol Pathol 77:121–132

21. Deramaudt TB, Dill C, Bonay M (2013) Regulation of oxidative

stress by Nrf2 in the pathophysiology of infectious diseases.
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