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Abstract Viruses in the genus Babuvirus have multi-

component ssDNA genomes and often associate with

alphasatellite molecules containing two common motifs, a

common-region stem-loop (CR-SL) involved in initiation

of rolling-circle replication and a common-region major

(CR-M) motif involved in secondary-strand synthesis. We

compared known babuvirus genome components and

alphasatellite CR-SL and CR-M sequences, defining five

divergent CR-SL sequence classes. We identified iterated

sequence elements in babuvirus genome components that

have particularly conserved sequences and spatial

arrangements between known babuviruses.

Babuviruses (family Nanoviridae) are single-stranded

DNA viruses that infect monocotyledons. Members of the

three established species, Banana bunchy top virus

(BBTV), Abaca bunchy top virus (ABTV) and Cardamom

bushy dwarf virus (CBDV) [23] have multi-component

genomes comprising at least six individually encapsidated

components that are all essential for infectivity. DNA-R

encodes a replication initiation protein (Rep); DNA-S, a

capsid protein (CP); DNA-M, a movement protein (MP);

DNA-C, a cell-cycle link protein (Clink); and DNA-N, a

nuclear shuttle protein (NSP). The sixth canonical com-

ponent, DNA-U3, contains no obvious genes and has no

known function [23]. CBDV has two additional compo-

nents, DNA-Uf1 and DNA-Uf2, neither of which contains

known genes [15]. All six canonical components contain

two highly conserved motifs, the common region stem-

loop (CR-SL) and the common region major (CR-M) motif

[3, 15]. As babuviruses have only one Rep-encoding

component, the other components must be trans-replicated.

This is facilitated by conservation in CR-SLs of the origin

of replication (v-ori), stem-loop sequences where rolling-

circle replication [RCR] is initiated, and iterated Rep

recognition sequences called iterons F1, F2 and R (Sup.

Fig. 1) [3, 8, 9]. In BBTV, mutations in any of these iterons

have some effect on replication, but those in F2 generally

have the greatest impact [9].

BBTV DNA-U3 is unique among babuvirus genome

components, having the smallest CR-SL and no identified

iteron R, its CR-SL starting 14-21 nt closer to the v-ori

hairpin than other BBTV components [3], although an

iteron R sequence may be present in the *90 bp 5’

direction from the v-ori hairpin [9]. Consistent with BBTV

DNA-U3 having a larger CR-SL than other components,

Wang et al. [24] identified a sequence element in the 5’

direction from the DNA-U3 CR-SL that is conserved in

CR-SL sequences of all BBTV components

Babuviruses and other nanoviruses frequently associate

with Rep-encoding DNA-R-like alphasatellite molecules,

with babuvirus alphasatellites being * 20% larger than

nanovirus alphasatellites [14]. These alphasatellites are

most closely related to alphasatellites associated with
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plant-infecting single-stranded DNA viruses in the family

Geminiviridae [18, 25]. Alphasatellites are capable of

autonomous replication but cannot trans-replicate the

genome components of nanoviruses and geminiviruses

[11, 22] and are probably encapsidated by their associated

viruses [2, 19]. CR-SL sequences occur in BBTV

alphasatellites but the only similarities found between these

and canonical BBTV genome components were in v-ori

hairpin structures that contained a TAGTATTAC loop

sequence in alphasatellites and TATTATTAC in BBTV

[12].

We used MUSCLE [5] to align separate component-

specific datasets of BBTV, ABTV [21] and CBDV [15, 20]

(Sup. Table 1), identifying and separating CR-M and C-SL

sequences for each babuvirus species and component.

Given that CR-SL of BBTV DNA-U3 had previously

been identified without an iteron R, a region in the 5’

direction from the previously identified CR-SL boundary

was included in the CR-SL datasets. The CR-SL sequences

of all three babuviruses were aligned using MAFFT [13],

the 5’ region was trimmed to include only CR-SL

sequences that were obviously similar between different

components, and the remaining sequence fragments were

realigned. The CR-SL sequences were then grouped into

species- and component-specific datasets, and a consensus

representation (sequence logo) was constructed using

WebLogo v3.4 [4]. As the BBTV DNA-U3 CR-SL dataset

had numerous sequences containing an insert in the CR-SL

region, the dataset was split into two separate datasets, and

separate CR-SL sequence logos were generated. Pairwise

identities (PIs) of iterons R, F1 and F2 were determined

using SDT v1.2 [17].

All analysed components, including BBTV DNA-U3

and CBDV DNA-N, had sequences resembling iteron R, F1

and F2. Overall, iteron R was most conserved, with 88% of

sequences sharing 100% PI (Sup. Table 3). Also, 99.5% of

the components of all three species had an identical

nonanucleotide (TATTATTAC) at their presumed v-ori.

We noted various insertions in the BBTV DNA-U3 CR-

SL sequences that affected component alignments. Two

Taiwanese sequences in the DNA-U3 CR-SL group con-

tributed an alignment gap, indicated by vertical lines in

Fig. 1 between positions 94 and 115, due to 16- and 17-nt

inserts at different sites in the 3’ direction from the v-ori

hairpin. The * 30-nt insert that split the DNA-U3 datasets

was present in 111 sequences in the 5’ direction from the v-

ori hairpin and replaced a 9-nt region seen in most other

sequences. Seventy-six of the 77 BBTV DNA-U3

sequences without this insertion had the expected GTCCC

iteron R sequence. In contrast, none of the 111 sequences

with the insertion had an iteron R sequence at the same

position as in most other components. Instead, 95% of

these sequences had a GCCTC sequence (Fig. 1), which

may be functionally equivalent to iteron R. There was,

however, an iteron-R-like GTCCC sequence * 50 nt in

the 5’ direction from the GCCTC sequence that previously

had been identified as a possible DNA-U3 iteron R [9].

Based on the alignment of the CR-SL with all the com-

ponents, it is more likely that GCCTC acts as iteron R for

these 111 DNA-U3 sequences. Thus, we propose that we

have identified the full CR-SL and all iterons of BBTV

DNA-U3.

A consequence of using an alignment encompassing a

larger section of the DNA-N sequence than was used in

previous analyses [15] was that we identified probable

iteron R sequence in the CR-SL of this component in

CBDV (Fig. 1). The two additional, largely uncharac-

terised components of CBDV, CBDV-Uf1 and CBDV-Uf2

also contained CR-SL sequences more similar to those of

the six canonical CBDV components than to known

babuvirus alphasatellites, suggesting that these are genuine

CBDV genome components.

Trans-replication has been shown experimentally for

three nanoviruses, faba bean necrotic yellows virus

(FBNYV), milk vetch dwarf virus (MDV) and subterranean

clover stunt virus (SCSV), where each DNA-R was able to

replicate the DNA-C of a member of another species [22].

Similarities between the CR-SL sequences of all three

babuviruses suggest that similar trans-replication might

also occur in the babuviruses. Although the consensus

iteron R of all six babuvirus genome components is

GTCCC, individual sequences had variations of this con-

sensus sequence (GTCTC/GTCGC/GCCCC/TTCGC/CTC

CC/CCCCC/GTCCT/ATCCC/CTCTC/TGCTC/TCGCC/T

CCCTC). More variation was detected from the consensus

iteron F1 (GGGAC) and iteron F2 (GGGAC), with only

48% and 44%, respectively, of the sequences sharing 100%

identity (Sup. Table 3). Variability was found both

between members of different species, with iteron F1 in

DNA-M AGGAC/GGAAC/AGAAC in BBTV, ABTV, and

CBDV respectively, and within species, with isolates of

CBDV iteron F2 containing GG[A/G]AC (Fig. 1).

Although mutagenesis of these conserved iterons results in

varying degrees of replicative fitness loss [9], the extensive

variations seen in these iteron sequences suggests a degree

of flexibility in the exact sequence motifs that Rep can

recognise.

Having identified conserved elements in babuvirus CR-

SLs, we attempted to discover conserved sequences in CR-

M. Due to the low sequence similarity between babu-

viruses, the CR-Ms were aligned separately using MAFFT,

cFig. 1 Logo of aligned babuvirus CR-SL sequences. Iterons R, F1

and F2 are highlighted in grey. The letter heights indicate relative

proportions of nucleotides at each site, while letter widths reflect the

number of gaps at that site across all the sequences in the alignment

(narrower implying more gaps)
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with the percentage PI of the CR-M sequences determined

in SDT v1.2. The three alignments were re-split according

to genome component, and a consensus representation of

the CR-M sequences for each component was generated for

each species using Weblogo v3.4 (Sup. Fig. 2). A GC-rich

region of CR-M displayed detectable sequence similarity

across all species. This conserved portion of CR-M from

BBTV, ABTC and CBDV was combined into a single

dataset and realigned using MAFFT to reveal a partially

conserved GGGCCGNAGGCCC sequence in 98.9% of the

analysed babuvirus genome components (Fig. 2). This GC-

rich sequence has the potential to form a stable secondary

structure in single-stranded BBTV genomic DNA [7, 16]

and is similar to the GC-boxes in the transcription-pro-

moting rightward promoter element (Rpe1) in gemi-

niviruses [3, 6]. Other GC-rich regions occur in single-

stranded bacterial plasmids, where they help to prime

complementary-strand synthesis following RCR [7, 10].

However, the 5’ region of the BBTV CR-M lacks the

conserved GC-rich sequence and has been identified as the

binding site of an oligonucleotide primer involved in sec-

ondary-strand synthesis [7]. It is therefore likely to have

this function in ABTV and CBDV.

We attempted to identify the CR-SL and CR-M

sequences of all available geminivirus and nanovirus-as-

sociated alphasatellites to compare them to the DNA-R,

CR-SL and CR-M sequences of BBTV, CBDV and ABTV

(Fig. 3). The non-coding regions of alphasatellites from

babu-, nano- and geminiviruses (Sup. Table 2) were

aligned using MUSCLE. Regions containing the charac-

teristic v-ori nonanucleotide sequence were identified and

further aligned to identify the boundaries of the CR-SL.

The alphasatellite CR-SL sequences, together with those of

the BBTV, ABTV and CBDV DNA-R components, were

aligned using MAFFT. This alignment was then separated

into five groups of CR-SL sequences consisting of (1)

babuvirus DNA-R; (2) babuvirus alphasatellites (babu-al-

phas), (3) the coconut foliar decay alphasatellite sequence,

(4) nanovirus alphasatellite (nano-alphas), and (5) gemi-

nivirus alphasatellite (gemini-alphas).

While babuvirus DNA-R CR-SLs shared the same v-ori

TATTATTAC sequence (Fig. 1), the consensus v-ori

nonanucleotide in BBTV, TAGTATTAC, [12] (Fig. 3A)

was the same in all the other alphasatellites, and

alphasatellites were more similar to each other across their

entire CR-SL than to babuvirus DNA-R, suggesting that

they were not derived from babuvirus DNA-R sequences.

No sequences homologous to babuvirus iterons R, F1

and F2 were detected in the CR-SLs of the babuvirus-

associated alphasatellites. Although 5-nt-long sequences

resembling these iterons were found in the 5’ direction

from alphasatellite CR-SL in some sequences (not shown),

these were not conserved within or between the different

alphasatellite groups, and these potential iterons were sta-

tistically less common than expected for random 5-nt-long

sequences (expected frequency, 1 in every 1024 nucleo-

tides; observed frequency, 1 in 1292 nucleotides).

To identify elements in CR-M that are conserved

between babuviruses and alphasatellites, the alphasatellite

CR-M sequences were identified by realigning GC-rich

CR-M regions of the various DNA-R sequences with

complete alphasatellite sequences, and the probable CR-M

sequences were aligned with the babuvirus DNA-R CR-M

sequences using MAFFT. However, as alphasatellite CR-

Ms were highly diverse, sequences from the five different

groups were separately realigned with MAFFT, and some

groups were subdivided. The gemini-alpha group was split

into two groups, and the babu-alpha group was split into

four groups (BBTV-1, BBTV-2, CBDV and a group con-

taining all remaining babu-alphas). The percentage PIs for

the CR-M of each group of alphasatellites was determined

using SDT v1.2.

The alphasatellite CR-Ms, like those of babuviruses,

displayed little conservation between the different groups

outside of a specific GC-rich region in either the 5’ or 3’

portion of the CR-M (Fig. 3B). Like the canonical babu-

virus components, the babuvirus alphasatellite GC-rich

regions contained GGGCCGNAGGCC, whereas gemi-

nivirus alphasatellites had G/TGCCG/CCGCAG. Two

distinct groups of BBTV alphasatellite CR-M sequences

were identified, with group-2 sequences, which all

share[80% PI, being more similar to the CBDV

alphasatellite CR-M sequences ([71% PI) than to the

group-1 sequences ([67% PI; Fig. 3B).

Two distinct groups of geminivirus alphasatellites were

also evident. Whereas group 2 included most of the

available geminivirus-associated alphasatellite sequences

(155 sequences) and had a GC-rich region at the 3’ end of

the CR-M, members of group 1 contained a GC-rich region

that was located further toward the 5’ end as well as

sequences that were more conserved in the 3’ direction

from the GC-rich region (Fig. 3B). Although the group-1

and -2 geminivirus-associated alphasatellites have simi-

larities in their CR-M sequences in the 5’ direction from

the GC-rich region, this is highly diverse both across and

within the groups.

Interestingly, a 5’ region of the group-2 sequences is

similar to a 3’ region of the group-1 sequences (underlined,

Fig. 3B), with both regions conserved in each group, sug-

gesting biological functionality in geminivirus alphasatel-

lites. This adenine-rich (A-rich) region was previously

identified in both geminivirus-associated alphasatellites

and geminivirus-associated betasatellites and may be

involved in complementary-strand synthesis [1] or in

increasing the size of satellites to approximately half that

of full-length geminivirus genomes to ensure efficient
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trans-encapsidation [18]. As the 5’ end of the CR-M in

BBTV is a primer-binding site for complementary-strand

synthesis [7], it is plausible that this conserved A-rich

region might also act as a primer-binding site in gemi-

nivirus-associated alphasatellites. However, the reason that

this conserved region is found on different sides of the CR-

M GC-rich region in the group 1 and 2 alphasatellites

remains unclear.

In summary, the sequences and structural arrangements

of elements in babuvirus CR-SLs are strongly conserved

between BBTV, ABTV and CBDV, suggesting that the

Reps encoded by the DNA-R components of each of these

viruses may trans-replicate the genome components of the

others. Conversely, the CR-SL sequences of the gemini-,

nano- and babuvirus-associated alphasatellite molecules

are highly diverse but also detectably more similar to one

another than to any known babuvirus DNA-R CR-SL

sequences. This suggests that these alphasatellites are

unlikely to have been derived separately from their asso-

ciated viruses and that they are probably incapable of trans-

replicating either one another or the genome components of

their helper viruses. Also, unlike the babuvirus CR-SL

sequences, the babuvirus CR-M sequences were highly

divergent, with high similarities being restricted to a GC-

rich region at the 3’ end of the CR-M. Like the babuvirus

components, the CR-M of the alphasatellites was only

conserved in a well-defined GC-rich region.
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Fig. 3 The common regions of alphasatellites. A) The CR-SL of the

alphasatellites along with the CR-SL sequences of babuvirus DNA-R

components for comparison. B) The CR-M of the alphasatellites with

the CR-M of babuvirus DNA-R components for comparison. BBTV

and geminivirus-associated alphasatellites were split into two groups

based on the similarities between their CR-M sequences. The black

horizontal line indicates a region of sequence conservation between

the geminivirus-associated alphasatellite groups. The GC-rich region

is shown in grey. In both A and B, the letter widths reflect the number

of gaps at that site across all the sequences in the alignment (narrower
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