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Abstract Mosquitoes of the genus Aedes are known vec-

tors of pathogenic flaviviruses, and insect-specific fla-

viviruses (ISFs) have been detected in members of this

genus in numerous parts of the world. In order to gain

insight into whether Aedes mosquitoes in Greece are

infected by flaviviruses, 1173 Aedes spp. mosquitoes col-

lected in 2010 and 2012 were grouped in 53 pools and

tested by RT nested PCR using flavivirus generic primers.

Eight pools (15.09 %) were found to be PCR positive: five

pools (5/53, 9.4 %) contained RNA sequences related to

Ochlerotatus caspius flavivirus (OCFV), an ISF previously

detected in the Iberian peninsula, two pools (2/53, 3.8 %)

contained sequences related to a mosquito flavivirus

detected in Aedes vexans (AeveV) in Italy and the Czech

Republic, and one pool contained a DNA sequence that

was too short to identify accurately. The highest OCFV

prevalence (12.9 %) was observed in August 2010 in the

regional unit of Thessaloniki. Similar sequences were later

obtained from two Culex spp. pools collected in 2013 in the

same regions. A genetic difference of 0.2-1.4 % was seen

among the Greek OCFV strains, which differed by 2.2-

4.1 % from the Iberian strains and by 6.2-11.1 % from the

Finnish Hanko virus. The genetic distances among strains

varied depending on the genome region (genes for E, NS3

and NS5 proteins), with NS3 being the most variable. The

present study shows no evidence of infection of Aedes

mosquitoes with known pathogenic flaviviruses, but it

expands the geographic distribution of OCFV in the eastern

Mediterranean area. Any implication of ISFs for public

health (either directly or through interactions with other

flaviviruses in the mosquitoes) remains to be elucidated.

Introduction

Aedes mosquitoes are known vectors of pathogenic fla-

viviruses (genus Flavivirus, family Flaviviridae), including

dengue virus and yellow fever virus. Furthermore, insect-

specific flaviviruses (ISFs) have been detected in these

mosquito species in numerous regions of the world,

including European countries [2, 7, 14, 16, 24, 25, 31].

ISFs comprise a distinct group of flaviviruses that do not

infect mammalian cells, replicate only in mosquitoes or

mosquito cell lines, and are not associated with disease in

humans. They are probably primordial flaviviruses [8, 27].

Some ISFs have been shown to produce DNA forms of

their genomic RNA; integrated sequences related to ISFs

have been detected in A. aegypti and A. albopictus mos-

quitoes [9, 31].

In 2010, West Nile virus (WNV) emerged in Greece and

caused large outbreaks of human infections [20]. During

entomological surveys conducted in the summer months of

2010-2014, WNV (lineage 2) was detected every year in

Culex spp. mosquitoes [11, 18, 19, 21–23]. Furthermore,

Culex theileri flavivirus, an ISF, has been detected in Culex

spp. mosquitoes in Greece [23]. There is increasing interest

in the interactions of ISFs with pathogenic flaviviruses

(including WNV) in mosquitoes, and studies have pro-

duced contradictory results. It appears that these interac-

tions depend on several factors, including the species of

mosquitoes, the flaviviruses involved, the timing of infec-

tion, and the load of each virus [4, 5, 13, 15]. Concerning
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the role of Aedes spp. in the WNV life cycle, vector

competence studies have shown that Aedes (Ochlerotatus)

caspius is an inefficient vector of WNV in the laboratory

[3], while Aedes vexans may play a role in WNV enzootic

cycles [12, 30]. The vast majority of Aedes spp. mosquitoes

in the rice fields in Thessaloniki, northern Greece, are

Aedes caspius, representing 28.5 % of the trapped mos-

quitoes. The other mosquito species are Anopheles pseu-

dopictus (21 %), Culex modestus (19.5 %), C. pipiens

(16.8 %), Anopheles hyrcanus (9.6 %) and Anopheles

sacharovi (4.3 %) [8]. Since Aedes mosquitoes in Greece

have never been tested for flaviviruses, the aim of the

present study was to check whether Aedes spp. mosquitoes

collected during WNV outbreaks were infected by the virus

and to investigate whether they were carrying any other

pathogenic flavivirus or ISF.

Materials and methods

Following the emergence of WNV in 2010 in Greece,

mosquito surveillance studies were conducted every year,

targeting mainly Culex spp. mosquitoes. During 2010 and

2012, 1173 Aedes spp. mosquitoes were transported in dry

ice to the National Reference Centre for Arboviruses in

order to be tested for WNV infection (in 2011, only Culex

spp. mosquitoes were studied). The mosquitoes were col-

lected using CO2–baited light traps and were identified at

the genus level using dichotomous determination keys [10].

Of these, 469 were collected in August and September

2010 (soon after the initiation of the WNV outbreak) at 33

sites in six regional units (Nomenclature of Territorial

Units for Statistics 3 level: Imathia, Kilkis, Larisa, Pella,

Pieria, Thessaloniki), and 704 were collected in October

2012 at nine sites in five regional units (Chalkidiki,

Imathia, Pieria, Serres, Thessaloniki) (Table 1, Fig. 1).

The Aedes spp. mosquitoes were grouped into 53 pools

of up to 100 individuals that were sorted according to the

collection site and date. RNA was extracted using the

RNeasy Mini Kit (QIAGEN, Hilden, Germany), and a

reverse transcriptase (RT)-nested PCR using flavivirus

generic primers was applied [26]. Positive samples were

tested by PCR with three additional sets of primers (primer

sequences are available upon request) to obtain sequences

of a 520-bp fragment of the envelope (E) protein gene and

500-bp and 650-bp fragments of the genes for the non-

structural (NS) proteins NS3 and NS5, respectively. All

flavivirus-positive pools were re-tested without the reverse

transcription (RT) step in order to check for possible DNA

forms. Sequencing of the PCR products was performed

using a BigDye Terminator v3.1 Cycle Sequencing Kit in a

3130 ABI Genetic Analyzer (Life Technologies, Carlsbad,

CA, USA). Multiple alignment of the sequences was per-

formed using Clustal W, and phylogenetic trees were

constructed by the neighbor-joining method with 1,000

bootstrap replicates in MEGA6 [29]. Virus isolation was

attempted in Vero E6 cells.

Results

Eight (8/53, 15.1 %) pools of Aedes spp. mosquitoes were

found to contain flavivirus sequences. Using the NCBI

BLAST search tool [1], five sequences showed the highest

similarity to Ochlerotatus caspius flavivirus (OCFV),

which was previously detected in Portugal [14] and Italy

[6], two sequences were 100 % identical to Aedes vexans

flavivirus (AeVeV), previously detected in Italy

(GQ476997) [6] and the Czech Republic (JN802280) [7],

and one sequence was too short (\60 bp) to be indentified

accurately (Table 1). When the eight positive pools were

retested by PCR without the reverse transcription step, the

Table 1 Areas in Greece where insect-specific flaviviruses were detected in 2010 and 2012

Regional

unit

2010 2012 Total

Mosquitoes

(pools)

Flavivirus-positive

pools (%)

Mosquitoes

(pools)

Flavivirus-positive

pools (%)

Mosquitoes

(pools)

ISF-positive pools

(%)

Thessaloniki 353 (31) 4 OCFV (12.9) 100 (1) 0 553 (32) 4 (12.5)

Pieria 55 (3) 1 OCFV (33.3) 229 (3) 1*AeveF (33.3) 384 (6) 2

Imathia 29 (2) 0 100 (1) 0 129 (3) 0

Kilkis 8 (3) 1*(NI) (33.3) 8 (3) 1 (33.3)

Pella 14 (4) 0 14 (4) 0

Larisa 10 (1) 0 10 (1) 0

Chalkidiki 48 (1) 0 48 (1) 0

Serres 227 (3) 1*AeveF (33.3) 227 (3) 1 (33.3)

Total 469 (44) 5 (11.36) 704 (9) 2 1173 (53) 8 (15.1)

* DNA form was detected. NI: not indentified
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five OCFV-positive pools were negative, suggesting that

they were RNA forms, while the remaining three pools

were positive, suggesting that they included DNA forms.

However, it cannot be excluded that RNA forms were also

present in the samples. Virus isolation attempted in Vero

E6 cells from two OCFV-positive pools was not successful.

The Aedes albopictus C6/36 cell line, which is suitable for

the replication of ISFs, was not available.

The percentage of OCFV-positive mosquito pools was

9.43 % (5/53 pools), with the highest percentage observed

in 2010 in the regional unit of Thessaloniki (4/31, 12.9 %)

(Table 1, Fig. 1). The exact collection sites and dates of the

OCFV-positive pools are shown in Table 2. Two pools of

Culex spp. mosquitoes (100 mosquitoes per pool) collected

in 2013 in which OCFV sequences were detected are also

shown in Table 2 (marked with an asterisk).

Most of the OCFV-positive Aedes mosquitoes (4/5

pools) were collected in August 2010 in the regional unit of

Thessaloniki, while all Aedes mosquitoes (23 pools) col-

lected in September 2010 at the same sites were negative.

Additional sequences from the partial E, NS3 and NS5

genes were obtained from three of the five OCFV-positive

samples. The mean genetic differences among the Greek

OCFV flaviviruses in partial fragments of the E, NS3 and

NS5 genes at the nucleotide level were 0.4 %, 1.4 % and

0.2 %, respectively, and 0 %, 0.2 % and 0 % at the amino

acid level. In all three phylogenetic trees, the Greek OCFV

strains constitute a distinct subclade, clustering with related

sequences obtained from Portugal [14], Spain (referred to

as Mediterranean Ochlerotatus flavivirus) [31] and Finland

(Hanko virus, HANKV) [16] (Fig. 2A, B, and C). The

genetic differences at the nucleotide and amino acid levels

between the Greek OCFV strains and the related viruses

from the Iberian Peninsula (Spain and Portugal) and Fin-

land are shown in Table 3. In all fragments, the nucleotide

sequence identity is[84 %, which is the threshold value

for flaviviruses to be classified within the same species

[17]. The nucleotide sequences obtained from the present

study have been deposited in the GenBank database under

the accession numbers KM245094-KM245102.

Discussion

In order to determine whether Aedes mosquitoes in Greece

were infected by WNV and/or other flaviviruses during

WNV outbreaks, a generic flavivirus RT nested PCR was

applied to test genetic material extracted from Aedes spp.

Fig. 1 Locations where insect-

specific flaviviruses were

detected. The sites where OCFV

and AeVeV were detected are

marked with a white circle and

a triangle, respectively (the

black circle indicates the site

where the non-indentified virus

was detected)

Table 2 Spatial and temporal

data for the ISF-positive

mosquito pools collected in

Greece

ID Site Regional unit Collection date No. of mosquitoes (species) ISF

1/10 Katahas Pieria 9 Aug 2010 50 (Aedes) OCFV

13/10 Agios Athanasios Thessaloniki 11 Aug 2010 25 (Aedes) OCFV

23/10 Nea Mesimvria Thessaloniki 11 Aug 2010 25 (Aedes) OCFV

25/10 Agios Athanasios Thessaloniki 11 Aug 2010 25 (Aedes) OCFV

35/10 Sindos Thessaloniki 13 Aug 2010 25 (Aedes) OCFV

118/13* Loudias Thessaloniki 23 Jul 2013 100 (Culex) OCFV

247/13* Katahas Pieria 16 Aug 2013 100 (Culex) OCFV

41/12 Ol. Akti Pieria 1 Oct 2012 100 (Aedes) AeVeV

43/12 A. Kamila Serres 1 Oct 2012 100 (Aedes) AeVeV

* Detected in Culex spp. collected in 2013
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Fig. 2 Neighbor-joining

phylogenetic trees based on

partial fragments of the genes

encoding the A) E (507 nt), B)

NS3 (461 nt), and C) NS5 (460

nt) proteins of OCFV. The tree

is drawn to scale, with branch

lengths measured in the number

of substitutions per site. The

percentage of replicate trees in

which the sequences clustered

together in the bootstrap test

(1000 replicates) is shown next

to the branches. Sequences from

the present study are indicated.

Evolutionary analysis was

conducted in MEGA6 [29]
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mosquitoes collected in various locations in northern

Greece. Of the 53 Aedes spp. pools tested, eight (15.09 %)

were found to be flavivirus positive. Five of the eight

sequences obtained from the generic PCR showed highest

similarity ([90 %) to OCFV detected in Portugal [14].

This was confirmed by phylogenetic analysis of partial

genome fragments corresponding to the E, NS3 and NS5

genes: the Greek OCFV sequences clustered together with

OCFV sequences from Spain [31] and Portugal [14], with

HANKV being included in the same clade [16].

The genetic difference among the Greek OCFV strains

was 0.2-1.4 %, and these strains differed by 2.2-4.1 %

from the Iberian strains, and by 6.2-11.1 % from HANKV.

The differences among strains varied depending on the

genome region, with the NS3 gene being the most variable;

however, the threshold value of 84 % [17] was not over-

come even in the NS3 gene. Nucleotide sequence differ-

ences were observed even between sequences detected in

pools from mosquitoes collected in the same area. For

example, the pools Thessaloniki 23/10 and Thessaloniki

25/10 consisted of mosquitoes collected on the same night

in two locations in the Thessaloniki region only 10 km

apart. According to Kuno et al. (1998), all these viruses

should be considered members of one virus species. Blit-

vich and Firth [4] suggested HANKV as the name of these

related viruses.

There was a drastic difference in the prevalence between

2010 and 2012, since all of the OCFV-positive pools were

collected in 2010 (5 of 44 pools, 11.36 %), while all

mosquitoes collected in 2012 were OCFV negative. It has

to be mentioned that the collection of 2010 was performed

from mid-August to late September, while the collection of

2012 was conducted from late September to early October.

A seasonality of activity was observed, since all OCFV-

positive Aedes mosquitoes were collected in August 2010,

while all (23 pools) Aedes mosquitoes collected in

September 2010 at the same sites were negative. Further-

more, OCFV-positive Culex spp. mosquitoes were col-

lected in the same season (late July and mid-August of

2013 (Table 3). The fact that similar OCFV sequences

were taken from Culex mosquitoes suggests that Culex spp.

can also be infected by OCFV. Similar findings were

reported also in other countries in southern Europe [7].

Since 1975, when the first ISF (cell fusing agent virus,

CFAV) was isolated [28], the number of ISFs has increased

dramatically [4], mainly through entomological surveys in

which the detection of pathogenic flaviviruses was

attempted using PCR protocols with generic primers. So

far, ISFs of the OCFV and HANKV group have been

detected in Portugal [14], Spain [31], Italy [6], Finland [16]

and Greece, suggesting that they are widely distributed in

Europe. There are several issues concerning ISFs that need

to be clarified, such as their spatial and temporal distribu-

tion, factors associated with their prevalence, their com-

plete genome sequences, and their possible effect on

human health, either directly or through their interactions

with other flaviviruses in the mosquitoes.
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