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Abstract Human norovirus (hNoV) infections cause

acute gastroenteritis, accounting for millions of disease

cases and more than 200,000 deaths annually. However,

the lack of in vitro infection models and robust small-an-

imal models has posed barriers to the development of

virus-specific therapies and preventive vaccines. Promising

recent progress in the development of a norovirus infection

model is reviewed in this article, as well as attempts and

efforts made since the discovery of hNoV more than

40 years ago. Because suitable experimental animal mod-

els for human norovirus are lacking, attractive alternatives

are also discussed.

Introduction

Human norovirus (hNoV) was discovered as the cause of

an outbreak of acute gastroenteritis in an elementary school

in 1968 in the city of Norwalk, Ohio, and in 1972, the

gastroenteritis was confirmed by immunoelectron micro-

scopy to have a viral etiology [47, 48]. Although gas-

troenteritis is caused by bacteria, protozoa and viruses,

viral gastroenteritis is particularly problematic due to the

lack of effective antiviral therapies. Acute gastroenteritis

caused by hNoV is estimated to account for 90 % of cases

of virus-mediated gastroenteritis. Approximately 800

fatalities among infants and the elderly due to hNoV

infection are reported each year in the US alone, and

200,000 children under the age of 5 years in developing

countries die annually from the disease [79]. Norovirus

infection in healthy adults causes self-limiting acute dis-

ease including vomiting and diarrhea and typically resolves

in 2-3 days. However, in immunocompromised patients,

hNoV can establish chronic and potentially fatal infections

[7].

Since the discovery of hNoV and the cloning of its

genome [57, 111], much effort has been made to develop

in vitro infection models for hNoV in cultured cell lines

[19, 31, 58]. However, the lack of cell lines that can sup-

port hNoV infection poses a barrier to its in vitro culture.

Therefore, hNoV stocks have been prepared from stool

samples of human patients or volunteers for human infec-

tion trials. For these reasons, progress in the study of the

pathological characteristics and mechanisms of viral

replication and gene expression has been severely impeded

for this virus compared to other positive-sense RNA viru-

ses such as hepatitis C virus and poliovirus. The present

review focuses on recent progress and challenges in the

development of in vitro culture models and alternative

models available to study hNoV.

In vitro infection and culture models of hNoV

De novo infection of established cell lines

A large number of established cell lines have been tested

for in vitro infection with hNoV (Table 1). Many different
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animal cell lines as well as human epithelial cells from the

gastrointestinal tract have been tested for susceptibility to

hNoV infection, with no clear indications of infection. As

simple and conventional infections have not been suc-

cessful, various culture methods and manipulations of

cellular phenotypes have also been attempted (Table 1).

[18, 19, 23, 25, 37, 44, 56, 63, 80, 82, 90, 96]. However,

there have been no clear indications of de novo hNoV

infection observed [19]. A plausible explanation may

include the inactivation of virus particles upon excretion in

feces. This possibility can be tested if virus stocks can be

prepared from sources other than feces. However, Schwab

et al. [87] reported that hNoV forms very stable particles

that can survive for an extended period outside the human

body. In addition, other enteric viruses are not inactivated

by similar preparations from feces. Therefore, noroviral

inactivation upon excretion might not fully explain its

inability to infect established cell lines [19, 88].

As some caliciviruses require the presence of intestinal

contents for infection [22, 78, 86], the hypothesis that

hNoV needs to be modified in a manner similar to that in

the gastrointestinal tract of the human body was put forth

and tested. For example, pre-treatment with trypsin and

intestinal contents from a gnotobiotic pig has been reported

Table 1 Norovirus infections in established human cell lines

Cell line Culture method Norovirus strain References

Human intestinal epithelium

AGS Rotation

Low temperature (34 �C)
GGI.1, GGI.2, GGI.4, GGII.4 [18, 37]

Caco-2 Cell differentiation

Co-culture

Various culture techniques

Infection by low-speed

centrifugation

Treatment with Lipofectamine

Low temperature (34 �C)

GGI.1, GGI.2, GGI.4, GGII.3, GGII.4, GGII.5 [25, 80, 96]

HT-29 Cell differentiation (I)

Long-term culture

Culture in transwell plates

GGI.1, GGI.2, GGI.4, GGII.3, GGII.4, GGII.5

HCT-8

Detroit 562

HuTu-80

Cell differentiation

DMSO (0.3-1 %)

Butyric acid (1-5 mM)

Insulin (0.5 U/ml)

Dexamethasone (0.1-10 uM)

Various culture techniques

Culture with rocking

Hypotonic shock

Infection by low-speed centrifugation

GGI.2, GGI.4, GGII.3, GGII.4, GGII.5 [23, 44, 82]

I-407 Treatment with Lipofectamine

Low temperature (34 �C)
GGI.1, GGII.4 [18, 56]

Kato-3

Other human cell lines

A549

CCD-18 Co-culture with Caco-2 GGI.1 [25]

Detroit 551 Rotation GGI.1-4, GGII.1-4 [37]

HEp-2

HEC Infection by low centrifugation GGI.1 [63, 90]

HeLa Low temperature GGI.1 [18]

RD Rotation GGI.1-4, GGII.1-4 [37]

293 Infection by low-speed centrifugation GGI.1 [63, 90]

Adapted and modified from Duizer et al. [19]
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to be required for infection with and replication of feline

and swine norovirus, respectively. However, similar pre-

treatment with supplements did not result in hNoV infec-

tion in the culture. Another possibility is that hNoV

infection is inhibited or promoted by the presence of virus-

specific antibodies. If hNoV particles are coated with

neutralizing antibodies in the feces, viruses might lose

infectivity in the subsequent infections in cultured cells.

However, in some viral infections, the presence of virus-

specific antibodies helps virions infect their target cells.

Examples include, but are not limited to, human cytome-

galovirus [65], foot-and-mouth disease virus [68, 84], and

dengue virus [28, 29, 42]. Therefore, it would be intriguing

to explore antibody-dependent enhancement of viral

infection to test if the binding of neutralizing antibodies to

hNoV renders them infectious under in vitro conditions.

Attempts have been made to infect not only established

cell lines but also human macrophages and dendritic cells

[58]. Murine norovirus (MNV) was first isolated and

identified in immune-compromised mice [49]. MNV was

found to infect and replicate in macrophages and dendritic

cells from STAT1-deficient mice, and the same types of

cells have been reported to be infectible in vitro [14, 109].

As the genome of hNoV is detected in the sera of pediatric

patients [98], human macrophages and dendritic cells were

tested for their ability to be infected in vitro [58]. However,

no indications of infection were observed. Interestingly, it

has been reported that infection with porcine enteric cali-

civirus (PEC) requires the presence of bile acids, which in

turn inhibit the function of STAT1 [11]. Considering that

type I and II interferons inhibit viral replication and protein

expression of MNV, which can infect STAT1-deficient

mice [14, 64], it is possible that STAT1 knockdown with

specific siRNA can render otherwise resistant cells sus-

ceptible. However, the inhibition of STAT1 expression did

not promote viral infection (Mary K. Estes, personal

communication).

Most recently, a breakthrough has finally been made by

Jones et al. in the development of an in vitro hNoV culture

model [43] using B cells in the presence of a commensal

bacterium, Enterobacter cloacae. In fact, it has been

reported that B cells are required for replication of MNV

[5, 73, 113]. Jones et al. [43] showed that while hNoV

infection of B cells required the presence of E. cloacae,

MNV could infect B cells in vitro even in the absence of

the bacteria and that oral antibiotic administration reduced

MNV replication in vivo. It has been established that nor-

ovirus infection in humans is correlated with the histo-

blood group antigen (HBGA) expression profile [38, 66];

however, it remains unclear how the HBGA-expressing

bacteria promote hNoV infection in B cells, especially

considering the fact that HBGA-like molecules expressed

on commensal bacteria would compete for hNoV binding

with HBGA on hNoV target cells. The requirement for

enteric bacteria for hNoV infection of B cells is a

groundbreaking finding in the norovirus field, but it might

not be surprising, as it is known that some enteric viruses,

including mouse mammary tumor virus [46], poliovirus

[55, 83], and reovirus [55] require bacteria for infection

and replication.

Three-dimensional (3-D) cell culture methods

3-D culture techniques have been developed, helping to

promote infections and cultures of various pathogenic

bacteria and viruses. Infection of cells in a monolayer is

very different from that in an in vivo environment. Proper

differentiation of epithelial cells requires apical and baso-

lateral polarization, and two-dimensional (2-D) culture

techniques might not be able to support the same cellular

differentiation found in vivo. 3-D organoid culture tech-

niques were first developed and used to investigate the

infection and pathogenicity of Salmonella enteritica in

INT-407 human intestinal epithelial cells [32, 74, 75].

Similar culture techniques have been exploited for estab-

lishing infections with various bacteria (Escherichia coli

[32, 74] and Pseudomonas species [9]) and viruses (Ep-

stein-Barr virus [62], Kaposi’s sarcoma-associated her-

pesvirus [16], rotavirus [21] and hNoV [93]). This culture

technique was first developed by NASA [75], and the 3-D

organoid culture is basically a bioreactor with a rotating

cylinder. Cell culture medium is added to the cylinder

along with collagen I-coated porous microcarrier beads.

With the addition of cells, the cylinder continues to rotate

to prevent the cells from binding to the walls of the

cylinder. Cells grow in and on the porous beads to form

3-D structures that closely resemble physiological tissues

or organs of the body. INT-407 cells in 3-D cultures have

been shown to differentiate into various cell types, thus

enabling ‘co-cultures’ in a bioreactor [74, 93]. The co-

culture of various cell types in 3-D has been reported to

allow noroviral infection [19, 93], which is not possible in

the 2-D culture of the same cell type. In addition, Straub

et al. [93] also reported that a type of histo-blood group

antigen (i.e., Lewis antigen A), a cellular attachment

receptor for hNoV, was expressed at the apical tip of the

3-D culture. When the 3-D culture of INT-407 was infected

with hNoV, the authors observed a cytopathic effect, and

an increase in the number of viral genome copies was

detected by reverse transcription polymerase chain reaction

(RT-PCR) and fluorescence in situ hybridization (FISH).

Based on these findings, Straub et al. claimed that the 3-D

culture of INT-407 was susceptible to hNoV. However, in

the same report [93], Caco-2 and HT-29 cells were not

susceptible to hNoV, even in 3-D organoid cultures. In

2011, the same group of researchers reported [94] that a
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subclone of Caco-2 cells (C2bbe1) was susceptible. They

claimed that C2bbe1 cells in the 3-D culture were able to

fully differentiate in the 3-D culture, while the parental

Caco-2 cells were not.

These findings, however, have been disputed by the

other research groups: norovirus infection was not detected

in 3-D culture [31]. A joint study conducted by the Nick-

erson and Estes groups reported that norovirus infection

was not detected in a 3-D culture by real-time PCR or

immunofluorescent assay. In addition, histo-blood group

antigens such as Lewis antigen were not expressed. Based

on these and other findings, the joint group concluded that

the CPE in the 3-D culture that was observed upon inoc-

ulation with norovirus was likely due to the toxicity of

contaminating lipopolysaccharides in the virus stock pre-

pared from the fecal samples. The claims of the papers by

Straub et al. [93, 94] could also not be verified by Taka-

nashi et al. [99]. This discrepancy will only be resolved

when virus stocks can be prepared from samples other than

fecal samples.

Challenges to the development of in vitro cultivation

of hNoV

HNoV is known to bind to HBGA to infect the host [38, 39,

50, 60, 66, 67, 77]. Interestingly, the same is true of rota-

virus [40], one of the two major gastroenteritis-causing

viruses in humans. When functional a (1,2) fucosyltrans-

ferase 2 (FUT2) was not expressed, norovirus infection was

not detected in experimental infections in human volun-

teers. FUT2 is an enzyme required for the expression of

HBGA on the surface of epithelial cells, some of which is

secreted in bodily fluids, including saliva [54, 76]. HBGA

type 1 (e.g., Lewis b [Leb]) is mainly expressed on the

epithelial cells at the junction of the stomach and duode-

num, and HBGA type 2 is expressed at the glandular level

[66, 71, 85, 92]. In an experiment using virus-like particles

(VLPs), VLPs bind to HBGA, inducing their internaliza-

tion [66]. In addition, VLPs seem to specifically bind to A,

H1, and Lewis b antigens [17, 30, 35, 66]. Therefore,

functional receptor expression appears to be critical for

successful infection with hNoV in culture. The overex-

pression of FUT2 in Huh-7 cells, a human hepatoma cell

line, resulted in strong binding of viruses to the cells;

however, it did not influence viral internalization or repli-

cation. In fact, many other studies have led to the same

conclusion: overexpression of FUT2 has a negligible effect

on virus internalization, uncoating and viral genome

replication [1, 11, 27, 31, 108]. These results imply that

HBGA expression alone may not be sufficient for viral

infection [31, 100]. Furthermore, the presence of other

proteins may be required for norovirus infection. One

interesting hypothesis is that not only HBGA but also a co-

receptor may be required for norovirus infection [100], the

discovery of which would lead to the development of an

in vitro culture model of hNoV. In fact, this hypothesis has

been proposed by many researchers in the field [31, 105].

Identification and characterization of co-receptor(s) would

provide a breakthrough in the development of a convenient

and reliable hNoV culture model. In addition, to develop a

successful hNoV in vitro culture model, more experimental

infection systems need to be investigated, including pri-

mary human intestinal cells or tissue explants and 3-D co-

cultures of different cell types. An interesting alternative

that has shown promising results in a recent study is the

development of intestinal organoids using pluripotent stem

cells [21].

One of the major barriers to hNoV study is the inability

to prepare purified virus stocks. Virus stocks prepared from

human feces are often contaminated with LPS or other

enteric viruses (e.g., rotavirus), which makes it difficult to

interpret the CPE observed in experimental infections [31].

Therefore, the development of a norovirus producer cell

line that enables the preparation of a large quantity of

purified hNoV will certainly provide a breakthrough in the

field of hNoV research.

Research methods for hNoV

Utilization of norovirus replicons or infectious

cDNA clones

Due to the lack of susceptible cell lines, the development of

preventive vaccines and virus-specific therapies has been

hampered. However, the use of virus replicons containing

part of the viral genome enables screening of antiviral

drugs and efficacy testing. The first of such replicons

expresses neomycin in place of the VP1 capsid protein in

Huh-7 and BHK21 cells (Fig. 1B) [12]. This replicon was

stably maintained over extended passages, and viral protein

expression was detected in those cells. Using the hNoV

replicon, Chang et al. identified interferon alpha, interferon

gamma, ribavirin [13], and peptide-conjugated phospho-

rodiamidate morpholino oligomers (PPMOs) [6] as

antiviral agents. Viral-replicon-containing cells are useful

for identifying antiviral agents against non-capsid proteins

but might not be adequate for studying the full life cycle of

the virus due to the lack of VP1. To overcome these lim-

itations, three independent groups of researchers have

developed systems that harbor the full cDNA of hNoV [2,

45, 52]. The overall experimental designs of two of the

systems are similar. First, the T7 promoter was added to the

5’ end of the full viral cDNA with a poly(A) tract of 26 to

30 nucleotides at the 3’ end (Fig. 1B and C). To regulate

transcription by T7 polymerase, the T7 terminator

782 S. Ha et al.

123



sequence was inserted at the far end of the 3’ end of the

construct (Fig. 1C and D). Between the poly(A) and T7

terminator, the ribozyme sequence was added so that the

full viral genome was precisely processed (Fig. 1C and D).

When the T7 polymerase was expressed using vaccinia

virus, virus particle production was detected by electron

microscopy at a density of 1.318 g/cm3 as determined by

gradient ultracentrifugation. These data suggest that com-

plete virions were formed by the binding of the viral

genome and capsid proteins. However, the infectivity of

the virions could not be determined due to the lack of

susceptible cell lines. Furthermore, these systems require

the presence of a helper virus to express functional T7

polymerase. To overcome this inconvenience, Katayama

et al. [53] developed a plasmid-based hNoV reverse

genetics system (Fig. 1D), which was successfully

exploited to produce GFP-expressing recombinant hNoV.

Development of the long-awaited recombinant hNoV will

certainly help identify susceptible cells in vivo and in vitro.

For example, virus stocks prepared from cell culture

without contamination with endotoxin, as is seen in stocks

prepared from patient stool samples, will effectively help

resolve the debate over whether contaminating endotoxin

in hNoV stocks was the primary cause of the cytopathic

effect observed in the 3-D organoid culture model. In

addition, the use of GFP-expressing recombinant hNoV

will enable investigators to detect low-level hNoV infec-

tions in both primary and established cells, allowing sen-

sitive and high-throughput viral detection using

fluorescence. Furthermore, with the availability of an

in vitro B cell infection model and recombinant hNoV

viruses, the requirement(s) for viral entry in cultured cell

lines can be effectively analyzed and probed.

Utilization of virus-like particles (VLPs)

VLPs are suitable study materials for investigating the

immunological aspects of hNoV infection. VLPs are par-

ticles made of self-assembled viral capsid proteins con-

taining no viral RNA genome. The norovirus genome

encodes two capsid proteins: VP1 and VP2. Of the two,

VP1 alone can be assembled to form VLPs, and the func-

tion of VP2 has only begun to be revealed. Interestingly,

VP2 is not required for VLP assembly but seems to

enhance the expression of VP1 in cell culture and associate

with VP1 within the shell domain, promoting the stability

of VLPs [59, 106]. The outer structure of VLPs made of

VP1 alone is known to be identical to that of complete

virions containing the RNA genome. To date, many protein

expression systems have been exploited, including insect

cells [26, 41], human cells (293T [102], Caco-2 [4]), and

plant cells (tomato [36], and potato [97]). In the absence of

de novo infection systems for hNoV, VLPs have played a

critical role in determining how norovirus interacts with

host cells. VLPs have been shown to bind directly to

HBGA molecules on the surface of host cells in vitro [66],

including A, H type1, and Leb carbohydrates [30]. These

data indicate that the cellular receptor for hNoV is HBGA,

A

B

C

D

Fig. 1 HNoV replicons and

infectious cDNAs

hNoV infection models 783

123



which attests to the usefulness of VLPs. In this regard,

VLPs are invaluable for the study of virus-host

interactions.

Utilization of other animal noroviruses

Due to the lack of cell culture or animal models for hNoV,

other caliciviruses that infect experimental animals repre-

sent useful alternatives. In fact, a large portion of the

known mechanisms of regulation of viral gene expression,

gene function, and genome structure have been extrapo-

lated from animal noroviruses. Animal noroviruses that can

be cultivated in vitro are listed in Table 2. Among them,

the best-characterized model is MNV (MNV) [49, 107,

110]. MNV infection occurs through the same fecal-oral

route as hNoV. MNV is easy to manipulate experimentally,

and it infects murine macrophages and dendritic cells as

well as RAW264.7[109], a macrophage cell line. MNV

belongs to genogroup V, while hNoV belongs to genogroup

I, II, or IV. MNV is especially useful for studying virus-

specific immune responses in a variety of knockout mice

[89]. Using these models, primary and memory responses

to norovirus infection have been extensively studied [3, 69,

73]. Furthermore, MNV has been successfully used for

development of vaccines against norovirus infection [10,

61]. Details are reviewed elsewhere [51, 103, 110].

However, despite its many advantages, the MNV model

has clear limitations as an alternative to hNoV infection.

First, MNV-infected mice do not show symptoms such as

diarrhea or vomiting. Second, mice are chronically infected

[33, 34], which is in stark contrast to acute infection by

hNoV. Third, number of MNV genotypes is limited, and it

thus may not be suitable for the development of vaccines

[104]. Lastly, hNoV does not seem to be able to infect

monocyte-derived macrophages and dendritic cells in vitro

[10]. The availability of a small-animal model that mimics

the pathology of hNoV infections will undoubtedly play a

key role in the development of antivirals and vaccines in

the future.

Conclusion

Since the discovery of hNoV, little progress has been made

regarding its mechanism of infection, replication, or host

immune responses, and the most important reason for this

dearth of understanding is the lack of cell culture or animal

infection models. Thus, it is of paramount importance to

develop a cell culture model to identify antiviral agents and

vaccines against hNoV. As such, the development of a cell

culture model is the key to an explosive expansion of

research on this virus.
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