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Abstract Culex flavivirus (CxFV) is an insect-specific

flavivirus that has recently been detected in various Culex

spp. mosquitoes worldwide. Here, we report the successful

construction of a full-length infectious cDNA clone of a

Tokyo strain, CxFV-NIID21. The full-length CxFV-

NIID21 cDNA was cloned into the low-copy-number

plasmid pMW119, which was stably amplified in Esche-

richia coli. Transfection of a mosquito cell line with

in vitro-transcribed RNA from the cDNA clone resulted in

the production of recombinant progeny virus with growth

properties, cytopathogenicity, and virion morphology

similar to the parental virus.

Flaviviruses (family Flaviviridae, genus Flavivirus) are

enveloped viruses with a 10–11-kb positive-strand RNA

genome. The genome contains a single open reading frame

encoding three structural (C, preM/M, and E) and seven

nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and

NS5) proteins flanked by 50 and 30 untranslated regions [16,

27]. Most flaviviruses are arthropod-borne viruses that are

transmitted by mosquitoes or ticks, except for a group of

vertebrate-infecting flaviviruses with unknown vectors or

no vectors. A group of flaviviruses that lacks the capacity

to replicate in vertebrates was found in a cell line and/or

natural populations of mosquitoes [4–6, 8, 10–13, 23, 28].

These viruses are now recognized as ‘‘insect-specific flavi-

viruses’’ that are specifically adapted to their host mosqui-

toes and are probably maintained by vertical transmission in

nature [2, 17, 22].

Culex flavivirus (CxFV) is an insect-specific flavivirus

isolated for the first time from Culex pipiens, Cx. trit-

aeniorhynchus, and Cx. quinquefasciatus mosquitoes in

Japan and Indonesia during 2003–2004 [10, 12]. Many

strains of CxFV were subsequently detected in these and

other Culex spp. mosquitoes (e.g., Cx. restuans, Cx. tar-

salis, and Cx. interrogator) worldwide [1, 2, 7, 9, 15, 18,

21]. However, to date, CxFV has not been found in any

other mosquito species, such as Aedes or Anopheles spp.,

suggesting that CxFV is strictly maintained in a host-

genus-specific manner. Insect-specific flaviviruses, includ-

ing CxFV, have often been detected in important vector

species of mosquito-borne flaviviruses worldwide,

although little is known of their own biological character-

istics and their potential ecological effects on other viruses

and host mosquitoes [14, 19].

Reverse genetics is a powerful molecular biology tech-

nique for analyzing the genetic determinants of viral

growth and virulence in positive-strand RNA viruses, such

as flaviviruses [3]. The construction of infectious cDNA

clones and production of recombinant progeny viruses have

been reported for multiple arthropod-borne flaviviruses,

and these constructs have been utilized in molecular

genetic studies or vaccine development. However, the

production of infectious flavivirus cDNA clones is often

difficult because of the genetic instability of the cloned
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viral cDNA in Escherichia coli [20, 24, 29]. To date, there

have been no reports of the successful establishment of a

system for the production of recombinant insect-specific

flaviviruses, including CxFV. In this study, we report the

first successful construction of a full-length infectious

cDNA clone of CxFV.

A CxFV strain NIID21 (designated CxFV-NIID21;

GenBank accession no. AB377213) isolated from Cx. pi-

piens mosquitoes in Tokyo in 2003 was used for the con-

struction of a full-length CxFV cDNA clone. This viral

strain was then propagated in C6/36 mosquito cells as

described previously [10]. Viral RNA was extracted from

the culture supernatant using a QIAamp Viral RNA kit

(QIAGEN, Hiden, Germany) and used for viral cDNA

synthesis with SuperScript III reverse transcriptase (Invit-

rogen, Carlsbad, CA). Four regions of the virus genome

were amplified by PCR using thermostable high-fidelity

DNA polymerase KOD plus ver. 2.0 (Toyobo Co. Ltd.,

Tokyo, Japan) and serially ligated into the low-copy-

number plasmid pMW119 (Nippon Gene Co., Tokyo,

Japan) [25, 26], which was then introduced into E. coli

DH5a or Stbl2 (Invitrogen) as follows (Fig. 1). The 50

terminal-NS1 region of the CxFV genome was amplified

using the primers T7-5T and CV3038r during the initial

PCR and primers SI-AI-T7 and CV3038r during the second

PCR (primers used for the construction of the clones are

listed in Supplementary Table 1). Note that the primers

T7-5T and SI-AI-T7 contained a complete T7 polymerase

promoter sequence for in vitro transcription. The PCR

product was subcloned into pMW119 at SphI-SalI sites

(50T-NS1/pMW119; Fig. 1). The NS1–NS4B region of the

CxFV genome was amplified with the primers CV2426f

and CV6956rBI, and the PCR product was subcloned into

the NheI-BamHI sites of 50T-NS1/pMW119 (50T-NS4B/

pMW119; Fig. 1). The NS5-30 terminal region of the CxFV

genome was amplified with the primers NS5-GSP1 and KI-

3T. The primer KI-3T contained an additional KpnI site

to produce run-off transcripts. The PCR product was

subcloned into the BamHI (blunt-ended)-KpnI sites of

50T-NS4B/pMW119 (50T-NS4B-30T/pMW119, Fig. 1). The

NS3–NS5 region of the CxFV genome was amplified with

the primers CV5925f and CV9925r, and the PCR product

was subcloned into the Eco47III-EagI sites of 50T-NS4B-

30T/pMW119 to construct a complete recombinant CxFV

clone (rCxFV/pMW119, Fig. 1). All transformants were

incubated at low temperature (25–30�C) in the presence of

low levels of antibiotic (25 lg mL-1 ampicillin) to mini-

mize unexpected mutations in the viral sequence of the

recombinant plasmid [24]. The nucleotide sequence of the

viral genome region in the recombinant plasmid was con-

firmed after several passages in E. coli, and no sequence

mutations were detected. This suggested that the full-length

CxFV cDNA clone was stable in E. coli under the culture

conditions.

Fig. 1 Schematic representation of the construction of a full-length

CxFV cDNA clone using the low-copy-number plasmid pMW119.

The upper panel of the figure shows the genome organization of

CxFV and the RT-PCR primers and cDNA fragments used for

cloning. The T7 RNA polymerase promoter and restriction enzyme

sites used for plasmid construction are indicated
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To prepare a template for in vitro transcription, the

rCxFV/pMW119 plasmid was digested at the 30 end of

the viral genome with KpnI and purified using a GenE-

lute PCR Clean-Up Kit (Sigma-Aldrich, St. Louis, MO),

and 1 lg of linearized DNA was transcribed using an

mMESSAGE mMACHINE RNA transcription kit (Am-

bion, Austin, TX) containing m7G(50)ppp(50)G cap analog

according to the manufacturer’s instructions. After DNase

I treatment, synthesized RNA was purified using an

RNeasy MinElute Cleanup Kit (QIAGEN). An aliquot

was electrophoresed on a 1% denaturing formaldehyde

agarose gel to verify the efficient transcription of the full-

length product (Supplementary Fig. 1). C6/36 cells

(1 9 106 cells) were subsequently transfected with 3 lg

of in vitro-transcribed RNA using Lipofectamine 2000

reagent (Invitrogen) as described previously [25, 26], and

the cells were incubated at 28�C in an atmosphere of 5%

CO2 for 6 days. After two additional blind passages to

increase the virus titer, culture supernatants were har-

vested and subjected to RNA extraction. Propagation

of the recombinant progeny virus was confirmed by

RT-PCR using a primer set specific for part of the E

region of CxFV and sequencing the resultant RT-PCR

product (data not shown). The recombinant progeny virus

produced a mild cytopathic effect that was indistinguish-

able from the one caused by the parental virus at 5–6 days

after infection (Fig. 2a-c). Negative-staining electron

microscopy of infected culture supernatant confirmed the

production of the recombinant virus particles, which were

morphologically indistinguishable from the wild-type

parent virus (Fig. 2d and e) [10].

Because plaque formation assays are not applicable to

CxFV [10], the viral titer was measured by quantitative

PCR (qPCR) to determine the copy number of viral

genomic RNA. We initially prepared viral RNA standards.

In brief, a 353-bp region within the E gene (sequence

position 91–443) was initially amplified by RT-PCR. A

second PCR was conducted to add a T7 promoter sequence

at the 50 terminus of the first PCR product, which was

purified and subjected to in vitro transcription as described

above (primer sequences are available upon request). The

resultant transcripts were quantified and serially diluted

10-fold before being used as templates for standard curve

analysis. To examine the growth properties of the recom-

binant progeny virus, C6/36 cells were seeded at a density

of 0.5 9 106 cells per well in a 6-well plate and inoculated

with 1.7 9 109 RNA copies of the parent or recombinant

CxFV. The inoculum was removed after 1 h of virus

adsorption, and cells were rinsed with phosphate-buffered

saline before incubation at 28�C in 2 mL of minimum

essential medium supplemented with 2% fetal bovine

serum. A 140-lL aliquot of the culture supernatant was

collected daily on days 0–8 after infection, and equal

volumes of fresh culture medium were added to maintain

the sample volume. RNA extracted from each culture

supernatant was reverse-transcribed to cDNA using the

PrimeScript RT Master Mix (Takara Bio, Shiga, Japan).

qPCR was performed using 12 lL of reaction mixture

Fig. 2 a-c. Phase-contrast micrographs of control (mock-infected)

C6/36 cells (a), parental CxFV-infected cells (b), and recombinant

CxFV-infected cells (c) at 5 days post-infection. Scale bar, 100 lm.

d and e. Negative-contrast electron micrographs of parental (d) and

recombinant (e) CxFV particles from the culture supernatant at 5 days

post-infection. Scale bar, 20 nm
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containing 1 lL of cDNA solution, 5 pmol of each forward

and reverse primer for the partial E region (E129f and

E280r, Supplementary Table 1), 0.25 lL of ROX Refer-

ence Dye II (Takara Bio), and 6 lL of SYBR premix Ex

Taq II (Takara Bio) on the 7500 Fast Real-Time PCR

System (Applied Biosystems, Foster City, CA). qPCR

conditions were as follows: one cycle at 95�C for 30 s

followed by 40 cycles at 95�C for 5 s and 60�C for 34 s.

Viral RNA levels were estimated from the threshold cycle

and standard curve. As shown in Fig. 3, growth properties

of the recombinant progeny virus were similar to those of

the parental virus. The yields of the parent and progeny

virus reached peak titers within 5–6 days after infection.

In conclusion, we describe the construction of a stable

full-length CxFV cDNA clone using a low-copy-number

plasmid. RNA transcribed from the clone was infectious

when introduced into susceptible mosquito cells. The

recovered progeny virus was indistinguishable from the

parental virus in terms of its growth kinetics, cytopath-

ogenicity, and virion morphology. This is the first report

of the production of an infectious insect-specific flavivirus

clone. This infectious clone provides a useful basic tool

for producing deletion, insertion, and amino acid substi-

tution mutants or chimeric viruses to elucidate the

molecular determinants of replication, virulence, and host

range specificity of CxFV. The reverse genetics system for

CxFV established in this study will offer new opportuni-

ties for molecular genetic studies directed at understand-

ing the biological nature and evolution of insect-specific

flaviviruses.
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