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Abstract The small RNA segment of some hantaviruses

(family Bunyaviridae) encodes two proteins: the nucleo-

capsid protein and, in an overlapping reading frame, a non-

structural (NSs) protein. The hantavirus NSs protein, like

those of orthobunya- and phleboviruses, counteracts host

innate immunity. Here, for the first time, the NSs protein of

a hantavirus (Tula virus) has been observed in infected

cells and shown to localize in the perinuclear area. Tran-

siently expressed NSs protein showed similar localization,

although the kinetics was slightly different, suggesting that

to reach its proper location in the infected cell, the NSs

protein does not have to cooperate with other viral proteins.
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Hantaviruses (genus Hantavirus, family Bunyaviridae) are

enveloped, negative-strand viruses with a tripartite RNA

genome. The large (L) genome segment encodes the RNA-

dependent RNA-polymerase (the L protein). The medium

(M) segment encodes two surface glycoproteins, Gn and

Gc, generated from a single glycoprotein precursor. The

small (S) segment encodes the nucleocapsid (N) protein,

which encapsidates the genome RNA into three viral seg-

ments [1]. In addition, the S segment of some hantaviruses

carries an overlapping (?1) open reading frame (ORF) for

the nonstructural protein, NSs [2]. In this respect, hanta-

viruses resemble orthobunyaviruses (genus Orthobunyavi-

rus, family Bunyaviridae) with their S segment encoding,

in an overlapping fashion, two proteins: N and NSs [1, 3].

The predicted length of the NSs protein in isolates of dif-

ferent hantavirus species varies from 95 amino acid (aa)

residues in Topografov and Khabarovsk viruses to 52 aa

residues in Rio Segundo virus. The NSs proteins of Tula

(TULV)- and Puumala (PUUV)-like viruses are 88-90 aa

residues long, and those of Sin Nombre-like viruses are

63 aa residues long [2].

Until recently, there was only suggestive evidence that

the hantaviral NSs ORF is functional: the part of the S

segment with double-coding potential appeared more

conserved than the adjacent regions [4–6]. Our data on

TULV and PUUV showed that the hantaviral NSs-ORF is

indeed functional and the protein acts as an interferon

(IFN) antagonist. Transiently expressed NSs proteins of

both TULV and PUUV inhibited the activities of the IFN-

beta promoter and NF-kB- and IRF-3-responsive promoters

in COS-7 cells. The decline in the expression of IFN-beta

mRNA was evident in TULV-infected MRC5 cells or those

transiently expressing NSs protein [7]. The competitive-

ness of two TULV isolates that differ in the length of the

NSs ORF, TULV/Lodz and TULV/Moravia, was evaluated

in IFN-competent and IFN-deficient cells [8]. In Vero E6

cells (which are IFN-deficient), both isolates survived

equally well. In contrast, in the IFN-competent MRC5

cells, the TULV/Lodz isolate, which possesses the NSs

ORF for the full-length protein of 90 aa, survived for more

successive passages than the TULV/Moravia isolate, which

contains the ORF for a truncated NSs protein (66–67 aa).
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It was concluded that expression of a full-length NSs

protein is beneficial for the survival of the virus and its

competitiveness in IFN-competent cells, but it is not

essential in IFN-deficient cells.

Taken together, the data suggest an involvement of the

hantaviral NSs protein in counteracting the innate immune

response of the host. This ability, however, appears to be

much weaker than the corresponding activities of ort-

hobunya- and phleboviruses. For example, the NSs protein

of Bunyamwera virus (BUNV, genus Orthobunyavirus) is a

potent inhibitor of both host transcription and the IFN

response. This protein induces modifications to the C-ter-

minal domain of RNA polymerase II and interacts with the

MED8 component of the Mediator protein complex [9, 10].

The NSs protein of Rift Valley fever virus (RVFV, genus

Phlebovirus) strongly inhibits cellular RNA synthesis by

interacting with the p44 subunit of the basal cellular tran-

scription factor TFIIH and antagonizes IFN-beta gene

expression and IFN production [11, 12]. Perhaps, the

hantaviral NSs protein is a genuinely weak IFN antagonist

because hantaviruses are the only bunyaviruses that cause

persistent, rather than acute, infection in their natural hosts

[13]. The 50 termini of their genomes do not activate RIG-I

[14]. In addition, hantaviral proteins Gn and N have been

demonstrated to inhibit the IFN response as well [15].

The intracellular localization of BUNV NSs protein

remains unknown due to the lack of specific antibodies

(Abs). The NSs protein of RVFV forms filamentous

structures in the nuclei of infected cells [16]. The NSs

protein of another phlebovirus, Uukuniemi virus, shows

granular cytoplasmic staining [17]. In this paper, to gain

more insight on hantaviral NSs protein functions, we study

its distribution in a host cell. Earlier, Abs raised against

TULV NSs peptides showed high background reactivity

(our unpublished observations). Therefore, in this paper,

polyclonal Abs raised against recombinant GST-fused NSs

protein were used for the study of NSs protein localization

in infected cells. In addition, FLAG-tagged NSs was

transiently expressed and detected with anti-FLAG

antibodies.

TULV-NSs-GST fusion protein was expressed in com-

petent E. coli cells by subcloning the NSs ORF of TULV

(strain Moravia02, wild-type, encoding a protein of 90 aa

[7]) into the pGEX2T expression plasmid (GE Healthcare,

Waukesha, WI). NSs-GST fusion protein was purified

using glutathione Sepharose 4B (GE Healthcare) followed

by concentration by Amicon Ultra-4 10 kDa filter centri-

fugation (Millipore, Billerica, MA). As expected, in

SDS-PAGE, the fusion protein appeared as a band of

approximately 37 kDa (Fig. 1a). Polyclonal antibodies

raised in rabbits (Eurogentec, Liege, Belgium) recognized

the fusion protein in immunoblotting (Fig. 1b). In infected

cell culture and tissue samples of infected Microtus arvalis

(European common vole, a natural host for TULV), the

antibodies also recognized a protein of the expected size

(data not shown). Unfortunately, a somewhat weaker,

cross-reacting band in this region was also seen with both

mock-infected cells and non-infected rodents, thus ham-

pering further progress in this direction.

The kinetics of the NSs protein expression and its dis-

tribution in TULV-infected cells was studied using

immunofluorescent techniques. For these experiments,

IFN-competent human umbilical vein endothelial cells

(HUVEC) were grown in Endothelial Cell Basal Medium

with supplement pack (containing FCS, ECGS/H-2, hEGF-

5 and HC-500) (PromoCell, Heidelberg, Germany), gen-

tamycin (50 lg/ml) and amphotericin (0.5 lg/ml). Cells

were infected with TULV strain Lodz (which carried the

full-length NSs-ORF [8]) on coverslips using an MOI of

0.2 FFU/cell. At 12 h, 1d, 2d, 4d, and 8d postinfection

(p.i.), cells were fixed and stained for the NSs protein with

rabbit Abs. FITC-labelled swine anti-rabbit Abs (1:40)

were used as secondary Abs. Staining for the N protein

using rabbit anti N-GST-Abs [18] served as a control

(Fig. 2a). Both proteins were seen already at 12 h p.i., and

expression was sustained for the whole observation period

of 8 days, when it reached maximum intensity (Fig. 2b). In

general, the NSs protein appeared simultaneously with the

N protein but was not restricted to N-positive cells, sug-

gesting that, in some cells, the NSs protein might be

expressed even earlier (Fig. 2c). The NSs protein displayed

a punctate distribution within the cytoplasm and seemed to

accumulate in the perinuclear area (Fig. 2a, b).

Notably, the intracellular distribution of transiently

expressed TULV NSs protein was essentially the same as

in infected cells, although the kinetics of its accumulation

in the perinuclear area was slightly different. Since the NSs

antibodies were much less efficient in detection of the

Fig. 1 a Expression and purification of TULV-NSs-GST fusion

protein (Coomassie blue staining). Lanes: 1 soluble fraction of a cell

lysate, 2 flow-through, 3 TULV-NSs-GST protein bound to Sepharose

beads before washing, 4 TULV-NSs-GST bound to Sepharose beads

after washing, 5 TULV-NSs-GST protein recovered from agarose gel

and concentrated. b Immunoblot with rabbit polyclonal Abs raised

against TULV-NSs-GST protein
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protein in transfected cells (data not shown), the FLAG-

based approach [19] was chosen. COS-7 cells were grown

on coverslips and transfected with pFLAG-cDNA ? 3.1-

TULwtNSs plasmid using Fugene 6 transfection reagent.

At 24 h post-transfection (p.t.), the NSs protein appeared to

be distributed throughout the cytoplasm. At time points 48

and 72 h, it had translocated to the perinuclear area but

seemed not to enter the nuclei (Fig. 3). Staining in the

perinuclear area was intense and mostly punctate or even

granular.

Thus, for the first time, the NSs protein of a hantavirus

has been observed in infected cells and shown to localize in

Fig. 2 a NSs and N proteins in

TULV-infected HUVEC.

Granular staining of NSs was

observed in the cytoplasm of

infected cells at 2d and 4d p.i.

At 8d p.i., NSs staining was

seen in the perinuclear area.

b Higher magnification of a

single NSs-positive cell at

8d p.i., showing accumulation

of NSs outside the nucleus.

c Double staining for the N and

NSs proteins in TULV-infected

HUVEC at 4d p.i. The NSs

protein was seen in N-protein-

positive as well as N-protein-

negative cells, suggesting that

the NSs protein might be

expressed earlier after infection

than the N protein

Fig. 3 Transiently expressed

TULV (wt strain TUL/Moravia/

5302 Ma/94 encoding full-

length 90-aa NSs) NSs protein

in COS-7 cells. After 24, 48 and

72 h, transfected cells grown on

coverslips were fixed with ice-

cold methanol and stained with

mouse anti-FLAG Abs (Sigma–

Aldrich, St. Louis, MO) diluted

1:1,000. At 48 h p.t., NSs

protein started to translocate to

the perinuclear area and showed

some aggregation. At 72 h p.t.,

NSs protein was predominantly

located around the nuclei
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the perinuclear area. Transiently expressed NSs protein

showed a similar localization. Two important conclusions

could be drawn from these observations. First, it seems

that, to find its proper location in the infected cell, the NSs

protein does not have to cooperate with other viral pro-

tein(s). Second, since the hantaviral NSs protein is rather

small (11 kDa, for TULV), it could diffuse through nuclear

pores freely, not requiring assistance from specific nuclear

transport mechanisms [20, 21]. As it accumulates in the

perinuclear area but stays firmly outside the nuclei, one

would assume that the NSs protein either forms oligomers

or is involved in some specific interaction with yet

unknown cellular partner(s). Recent yeast two-hybrid

screening of a mouse cDNA library identified several

promising candidates, including transcription factors (our

unpublished data). Studies of NSs proteins of BUNV and

RVFV demonstrated that bunyaviruses of distinct genera

counteract the host innate immunity response by different

means [12, 22 and references therein]. Interestingly, NSs

proteins of TULV and PUUV failed to interact in the Y2H-

assay with the p44 subunit of the transcription factor TFIIH

complex (M. Bouloy and N. Le May, personal communi-

cation), suggesting that hantaviruses must differ from

RVFV in the mechanisms they employ to antagonize the

IFN response.

It would be interesting to see if the hantaviral NSs

protein co-localizes with specific subcellular structures,

e.g. P-bodies, stress granules, etc. Some of the NSs protein

is colocalized with the N protein (Fig. 2c), which, in turn,

is found abundantly in P-bodies [23]. Further investigations

are on the way.
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