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Abstract PERVs are integrated in the genome of all pigs.

Some of them infect human cells and represent therefore a

potential risk for xenotransplantation using pig cells or

organs. Three replication-competent subtypes have been

described, PERV-A, PERV-B and PERV-C. Whereas

PERV-A and PERV-B are polytropic viruses and infect,

among others, human cells, PERV-C is an ecotropic virus,

infecting only pig cells. Recombinant PERV-A/C are able

to infect human cells, they are characterised by high-titre

replication and their proviruses have been found de novo

integrated in the genome of somatic pig cells, but not in the

germ line. This review compares recombinant PERVs with

other recombinant retroviruses in order to evaluate their

potential pathogenicity.

Introduction

Xenotransplantation using porcine cells or organs has been

proposed to alleviate the shortage of human donor organs for

allotransplantation [1], but it may be associated with the risk

of transmission of zoonotic microorganisms. Whereas

transmission of most porcine microorganisms may be pre-

vented by designated-pathogen-free (DPF) breeding of the

animals, porcine endogenous retroviruses (PERVs) cannot

be eliminated in this way [2]. PERVs are integrated into the

genome of all pigs, and while they behave like normal cel-

lular genes in that they are inherited by the offspring, they

may also be transcribed and translated, resulting in the

expression of viral proteins and the release of viral particles

and therefore pose a potentially high risk for xenotrans-

plantation [3]. PERVs belong to the genus

Gammaretrovirus, and they are closely related to feline

leukaemia virus (FeLV), murine leukaemia virus (MuLV),

gibbon ape leukaemia virus (GaLV) and koala retrovirus

(KoRV), all of which induce leukaemia and immunodefi-

ciency in the infected host [4] (Fig. 1). More than one

hundred proviral copies of PERV are integrated in the pig

genome, depending on the pig breed, among them three

different replication-competent subtypes, PERV-A, PERV-

B and PERV-C [5–8]. Most proviruses are defective and

unable to produce replication-competent viruses. Whereas

PERV-A and PERV-B are present in the genome of all pigs,

PERV-C is not ubiquitous. PERVs have been found to be

released from normal pig cells [9–14] as well as from pig

tumour cell lines [15–18]. In contrast to PERV-A and -B,

which infect human cells (human-tropic viruses), PERV-C

infects only pig cells (ecotropic virus) [10, 19–23]. PERV-A

and PERV-B are polytropic viruses infecting cells from

humans, cats, minks and non-human primates, whereas cells

from rats, mice, rabbits and cotton rats could not be infected

[10, 22–26]. When the receptors for PERV-A were identified

[27], it was soon shown that, in mice, a single amino acid

mutation is responsible for resistance to PERV infection

[28]. In contrast, the receptor was functional in rats; how-

ever, its expression appeared to be under a threshold level for

supporting PERV-A infection. Overexpression of the

receptor finally resulted in infection of rat cells. The tropism

of PERVs is determined by two sequences in the receptor-

binding domain (RBD) in the surface envelope protein,

variable region (VR) A and VRB (Fig. 2). These sequences

are different in all three viruses. A third region that shows

some variability, the proline-rich region (PRR) is also

required for binding to cells, in addition to VRA and VRB.

The sequences of all other viral genes, with the exception of
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the long terminal repeat (LTR), are closely related in

PERV-A, PERV-B and PERV-C.

Recombinations of other retroviruses including HIV-1

Recombination plays an important role in the evolution of

retroviruses. Recombination between highly related viruses

reassorts sequences, thereby increasing the diversity of the

population and allowing the emergence of variants that are

fit for the particular selection pressures at a given time.

Recombination can also occur between genetically similar

viruses that are further apart in sequence homology than

those in a viral population, for example, recombination

between different subtypes of human immunodeficiency

virus type 1 (HIV-1). On rare occasions, recombination can

also occur between genetically distinct but distantly related

retroviruses to generate a novel chimeric virus. One

example is the simian immunodeficiency virus of chim-

panzees (SIVcpz), which is the result of a recombination

event between ancestral SIVs infecting red-capped man-

gabey (SIVrcp) and greater spot-nosed monkey (SIVgsn)

[29, 30]. Although still controversial, SIVcpz may be the

progenitor of HIV-1 [31], and it remains unclear whether

this recombination had any influence on the efficiency of

transmission of SIVcpz to humans. HIV-1 appears in three

distinct lineages: groups M, N, and O [32–35]. Group M

viruses, which are primarily responsible for the current

global epidemic, can be subdivided into nine clades, A–D,

F–H, J, and K, and at least 14 circulating recombinant

forms (CRFs). CRFs of HIV-1 have been found in Central

Africa in particular [36–38]. Although there are reports

indicating that CRFs have a higher in vitro replication

capacity than their parental subtypes [39], it remains

unclear whether recombinants have generally advantageous

properties. Recombination between HIV-1 and HIV-2 has

been observed in vitro [40].

Recombination is also common among gammaretrovi-

ruses. Ecotropic FeLV-A is known to recombine with

endogenous FeLV (enFeLV) env elements, yielding poly-

tropic FeLV-B viruses [41]. Whereas FeLV-A viruses are

known to have low pathogenicity, FeLV-B viruses are

overrepresented in lymphosarcomas [41]. FeLV-A, which

is the most transmissible form of FeLV, uses the thiamine

transport protein 1 (THTR1) as cellular receptor [42].

FeLV-B has a broader in vitro host range, which includes

human cells as well as a wide variety of cells derived from

different animal species. FeLV-B utilizes two cell-surface

receptors, PiT1 and PiT2, for infection of target cells [43,

44]. While FeLV-Bs that are able to use feline Pit2 can

evolve by recombination with endogenous sequences, a

subsequent point mutation during reverse transcription may

be needed to generate a virus that can efficiently enter the

cells using the feline Pit2 as its receptor.

Recombinants in the env gene, known as mink cell

focus-inducing (MCF) viruses, play an important role

between the infecting MuLV and endogenous polytropic

sequences. MCF viruses have been found in most leukae-

mias induced by exogenous MuLV [45]. Although MCF

viruses are not absolutely required for leukaemogenesis,

their presence potentiates tumour development. As they

MuLV
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Fig. 1 Phylogenetic tree of gammaretroviruses closely related to

PERVs. The tree was generated on the basis of Friend MuLV

(NC_001362) [60]; FeLV (M18247) [61]; PERV A/C recombinant

(AY953542) [49]; KoRV (DQ174772) [62] and GaLV (NC_001885)

[63] sequences
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Fig. 2 a Schematic presentation of the envelope protein of PERVs,

SU surface envelope protein, TM transmembrane envelope protein,

VRA virus receptor domain A, VRB virus receptor domain B, PRR
proline-rich region. b PERV-A, c PERV-C, d PERV-A/C recombi-

nant found in animals 13910 and 15149, e in animals 13653 and

15150 [55] and f PERV-A/C 50 described in refs. [9, 10, 49]
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infect cells via different receptors than those used by the

ecotropic MuLV, MCF viruses may allow additional

rounds of infection, increasing the probability of insertional

activation of oncogens or inactivation of tumour suppressor

genes. To investigate the interaction between endogenous

and exogenous retroviruses, rat1 cells, containing a

defective rat endogenous retrovirus, were infected with a

defective Moloney-MuLV. Ultimately, an infectious rep-

lication-competent recombinant virus was found in this

experiment [46]. These results confirm the potential for

recombination between viruses from different species. The

activation of PERV by an exogenous retrovirus is also a

concern in the field of xenotransplantation. However, to

fulfil all requirements for a recombination in this case, the

infecting virus should be able to infect human cells and

should contain homology regions enabling a recombination

event. In addition, for retroviral recombination, copack-

aging of two different genomic RNAs has been proven to

be a prerequisite, and therefore the packaging sites of both

viruses should be compatible [47]. The 10A1 strain of

MuLV provides an example of a gammaretrovirus that

arose as a consequence of recombination between the

exogenous 4070A MuLV and endogenous retroviral ele-

ments [48]. The recombinant 10A1 virus has an expanded

host range, which results from the ability to use a novel

receptor (Pit-2) in addition to the 4070A receptor Pit-1. As

few as six residues in the VRA and VRB differ between the

10A1 and 4070A envelopes, and these differences have

been demonstrated to account for the new host range of

10A1 [48].

Recombinant PERV-A/C

The first recombinant PERV-A/C was described by Wilson

et al. [9, 10] after they infected human 293 kidney cells

with supernatants from pig peripheral blood mononuclear

cells (PBMCs) treated with a T cell mitogen and phorbol

12-myristate 13-acetate (PMA). At that time it was unclear

whether the recombination happened in the pig or in the

human cells. The breakpoints were located in the env gene

(Fig. 2). LTR, gag, pol and part of env originated from

PERV-C; however, a domain of env including the RBD

was derived from PERV-A (Fig. 2), thus allowing the virus

to replicate in human cells. Extended characterisation of

this virus showed an increase in titre after repeated pas-

sages on human cells [9, 10]. Further passages resulted in

higher titres, associated with genetic alterations in the LTR

of the virus, mainly due to a multimerisation of transcrip-

tion factor NF-Y binding sites (ATTGG) [49] (Fig. 3).

Similar genetic changes in the LTR have also been seen in

PERV-A passaged on human cells, although the repeats

containing the NF-Y binding sites found in the LTR of

PERV-A are different from the repeats in the LTR of

PERV-C [49, 50] (Fig. 3). Other authors, also comparing

the replication rates of PERV-A and PERV-A/C reported

an isoleucine-to-valine substitution at position 140 in the

RBD and changes in the proline-rich region (PRR) of the

envelope protein [51]. The higher replication capacity of

recombinant PERV-A/C may be associated with a higher

pathogenicity, as was shown in the cases of other retrovi-

ruses, for example, HIV and FeLV.

TATTTTGAAATGATTGGT

TTGTAAAGCGCGGGCTTTG

CCACGAAGCGCGGGCTCTCGA

TATTTTAAAATGATTGGT (PERV-A, PERV-B)

TATTTTGAAATGATTGGT (PERV-C)
18bp

21bp

37bp

PERV-A/C (NIH/30)

1st passage (40)
407 425 426 463 464 500 501 537

488 489 525452407 427 428 451

407 427 428 452 488451

PK15 PERV-A

1st passage

2nd passage

313 330 331 351 352 369

313 330 331 351 352 369 370 390 391 408

313 330331 351 352 369370 390 391408 409 429 430 447

2nd passage (50)
426 463 464 500 538501 537 538 574 611407 427 428 451

AGTTTTAAATTGACTGGTTTGTGA24bp

Fig. 3 Comparison of the genetic changes in the LTR of PERV-A and PERV-A/C during passaging on human 293 cells [49]

Recombinant porcine endogenous retroviruses 1423

123



Similar recombinant PERV-A/Cs were detected after

other co-cultivations of pig PBMCs stimulated by phyto-

hemagglutinin and PMA with human 293 cells [52, 53]

(Fig. 2). The PBMCs were derived from inbred miniature

swine, and the integrated proviruses represented recombi-

nants, all containing the receptor-binding site of PERV-A.

Such recombinants were not detected in the germline of the

animals.

De novo integration of PERV-A/C

Recently, the existence of recombinant PERV-A/C in pigs

was described, and de novo-integrated proviruses of these

recombinants were found in spleen cells of miniature pigs

as well as of melanoma-bearing Munich miniature pigs, but

not in the germ line of these animals [15, 53–55]. Since

recombinant PERV-A/Cs are able to infect human cells,

and since they increase their replication competence when

passaged on human cells [9, 10, 49], they represent a novel

risk for xenotransplantation.

Use of PERV-C-free pigs for a safe xenotransplantation

For xenotransplantation, the risk posed by recombinant

PERV-A/C generated in pigs is obvious, because it does, in

some cases, integrate de novo into the genome of pig

somatic cells. It would be interesting to learn whether these

viruses can infect other pigs. However, the risk coming

from PERV-A/C recombinant viruses for xenotransplana-

tion can easily be eliminated by using pigs that do not

contain PERV-C in their germ line, thereby preventing

recombination with PERV-A. Screening for and selection

of PERV-C-free animals will reduce the risk of PERV-A/C

transmission to humans.

Another reason not to use PERV-C-containing pigs for

breeding to generate animals suitable for donating cells and

organs for xenotransplantation is based on the ability of

gammaretroviruses, including PERV, to infect cells that do

not harbour the specific receptor by receptor-independent

infection [56]. Most gammaretroviruses contain a PHQ

motif at the amino terminus of their surface envelope

protein, which is important for virus infection. In contrast,

PERVs lack the full PHQ motif, having only an H residue.

Mutants in this position were non-infectious but were

efficiently transactivated by adding to the cells a PHQ-

containing surface envelope protein derived from GaLV. A

requirement of this transactivation was a functional GaLV

receptor on the cells. In these experiments, transactivation

by GaLV surface envelope protein enabled wild-type or H

mutant PERVs of all three host-range groups to efficiently

infect cells from humans and rodents that lack functional

PERV receptors [56]. This ability to infect cells lacking

cognate receptors was previously demonstrated for other

gammaretroviruses [57, 58]. Therefore, in the presence of

another retroviral surface envelope protein, for example,

from a human endogenous retrovirus, and its receptor,

PERV-C may infect human cells despite the fact that these

cells do not express a PERV-C specific receptor.

A third reason not to use PERV-C-containing pigs is the

possibility that mutations in the proline-rich domain of the

Env protein of PERV-C may occur and change the tropism.

Mutations in the C-terminal end of the SU protein of

PERV-C have been described that resulted in binding to

and infection of human cells [59].

To summarise, PERVs are, like many retroviruses,

including HIV-1, prone to recombination. The risk of

generating high-titre PERV-A/C recombinants as well as

other risks, such as receptor-independent infection or

mutation in the Env protein, which may change the tropism

of PERV-C towards human cells, strongly argues against

using PERV-C-containing pigs for the generation of ani-

mals intended for use in xenotransplantation.
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