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Received 3 July 2007; Accepted 18 September 2007; Published online 14 January 2008
# Springer-Verlag 2008

Summary

Rabbit haemorrhagic disease (RHD) is a highly

fatal disease caused by a virus of the family

Caliciviridae. Whereas recombination is well docu-

mented in other members of this family, the extent

of recombination has so far not been studied in

RHDV. To reach a better evaluation of the possible

role of recombination in the evolution of RHDV

virulence, we have searched for recombination

events in RHDV by analysing 43 complete se-

quences of the major capsid gene VP60. Phyloge-

netic analyses revealed two well separated groups.

Clear evidence for recombination was found for the

Hartmannsdorf strain which shows different phylo-

genetic profiles depending on the region of the cap-

sid examined.

�
The disease is highly contagious and is character-

ised by high mortality rates and high morbidity in

both wild and domestic rabbits (Oryctolagus cuni-

culus). Since the first outbreak in China in 1984,

RHD rapidly became endemic in several countries

with consequent economic losses. The aetiological

agent, rabbit haemorrhagic disease virus (RHDV),

is a positive-sense, single-stranded RNA virus. Of

the two open reading frames (ORFs), ORF1 encodes

a polyprotein which is cleaved into non-structural

components and the major structural protein, i.e.,

the capsid VP60 [28, 32]. RHDV belongs to the

genus Lagovirus of the family Caliciviridae [32].

This family includes human pathogens, such as

Norwalk virus, as well as other animal pathogens,

e.g. feline calicivirus (FCV), vesicular exanthema

virus of swine (VEV), San Miguel sea lion virus

(SMSV) and European brown hare syndrome virus

(EBHSV) [16, 33].

Phylogenetic analyses of the RHDV strains col-

lected worldwide showed that they cluster into

several genogroups which were found to be more

correlated with the year of isolation than to the

geographic location [21, 22, 25, 30]. Phylogenetic

studies done so far were based upon the gene of the

major capsid protein VP60 of RHDV. The VP60

protein is usually divided into six regions (A–F),

according to the nomenclature proposed by Neill
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Fig. 1. Split decomposition analy-
ses of the 43 VP60 nucleotide se-
quences (A) including the defined
A–F regions, (B) including only
hypervariable region E, (C) exclud-
ing nucleotide positions 1030–1302,
which correspond to region E
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[29]. In most species of caliciviruses, the C-termi-

nal half of this protein is the most variable [36].

Cryo-electron microscopy studies and a more re-

cent modelling study have revealed that the capsid

is composed of two concentric shells: the inner

shell made by the N-terminal half of the VP60 pro-

tein (S domain), which protects and contains the ge-

nome, and the outer shell composed of the variable

C-terminal half of the protein (P domain), which con-

tains the two highly variable regions, C and E, and the

main antigenic region [3, 7, 8, 26, 28].

Although most genetic diversity in RNA viruses

occurs during RNA replication by point mutations

caused by RNA-dependent polymerases with no

proofreading activity, it appears that recombination,

rather than point mutations, has the most profound

impact (reviewed in Ref. [20]). Thus, understand-

ing recombination can be helpful in unravelling the

evolution of pathogens and drug resistance. In con-

trast to other members of the family Caliciviridae,

where recombination is a well documented (e.g. [9,

16, 34]), in RHDV its occurrence has only been

suggested [12]. In this study, we present evidence

for a recombination event in RHDV.

All of the complete sequences of the major cap-

sid gene VP60 of RHDV available in GenBank

were retrieved and aligned using the BioEdit soft-

ware version 7.0.5.3 [15] (the accession numbers,

location and year of isolation of the 43 sequences

used in this study are listed in Table 1). The most

common tree-building methods implicitly assume

that branches never interact, which is not appropri-

ate for analysing recombination events that produce

networks of branches. The SplitsTree program [17]

allows for these situations, making it a suitable

method for the representation of conflicting phylo-

genetic signals [2]. The split decomposition anal-

yses of the VP60 gene were constructed according

to the Neighbour-Net method [4] and are shown in

Fig. 1. A first analysis using the complete VP60

sequence (Fig. 1A) produced two distant groups

(I and II), one of which can be subdivided into

two well-supported subgroups (a, b). Only one se-

quence, the Hartmannsdorf strain (GenBank acces-

sion number Y15425), could not be assigned to one

of these groups. Then, analyses were performed by

using either the hypervariable region E (setting E,

which is commonly used in phylogenetic studies)

or by using the remaining regions (setting non-

E, i.e. regions A–D and F). In both settings, the

Hartmannsdorf strain could now be assigned to

one or the other group, which, however, differed

according to the setting. Thus, whereas sequence

Y15425 clusters with group II in the E setting

(Fig. 1B), it clusters with group I in non-setting E

(Fig. 1C). This observation strongly supports a chi-

meric origin of this strain, most likely as the out-

come of genome recombination. However, it should

be mentioned that the Hartmannsdorf strain does

not perfectly cluster with the group I viruses in the

Fig. 2. Nucleotide identity plot
for the Hartmannsdorf strain
when compared to all the se-
quences composing the groups I
(grey) and II (black) defined by
the Split decomposition analyses.
The bars define the different re-
gions (indicated at the top). The
arrows indicate the inferred re-
combinationbreakpoints.Window
200 bp; Step 20 bp, Gapstrip On,
Kimura (2-parameter), T=t 2.0
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non-E regions. This could indicate that one of the

parental viruses might be a so-far unknown strain

related to the group I viruses.

Following the methods applied in previous relat-

ed studies (e.g. [16]), we used the SimPlot software

[23] to locate the potential recombination site in the

putative ‘‘recombinant’’ strain, by conducting nu-

cleotide pairwise sequence comparisons between

this strain and all of the sequences composing

groups I and II, respectively (see Fig. 1A). In this

analysis, the putative recombinant strain is com-

pared to the sequences composing the two putative

parental groups that gave origin to it. Therefore, the

recombinant is more similar to one of the parental

groups than to the other up to the site where recom-

bination occurs. Then there will be a marked de-

crease in similarity between the recombinant and

this parental group and an increase in similarity

with the other parental group. The similarity plot

in Fig. 2 shows in the beginning of region B a

decrease in similarity between the ‘‘recombinant’’

strain and the viruses composing both groups I and

II. While there is a marked drop in the overall nu-

cleotide similarity in regions C and D, in region E,

the ‘‘recombinant’’ strain is clearly more similar to

the members of group II (identity similarity be-

tween 94 and 99%) than to those of the other group

(identity similarity between 91 and 94%). In region

F, however, it becomes more similar to the mem-

bers of group I. The analysis indicates a potential

recombination site localized at the beginning of

region E and around nucleotide position 1400 (re-

gion F). The multiple crossings of the lines in the

similarity plot could be explained by the absence of

the true parental virus from group I. Studies on

other caliciviruses have localised a consistent re-

combination site between the polymerase and cap-

sid genes [5, 9, 18, 19, 31], upstream of region E,

while recombination within the capsid gene has

already been reported for the genus Norovirus [34].

At the amino acid level (Table 1) in the VP60 pro-

tein, we recognised only two groups (coincident with

the groups defined by the SplitsTree analyses). The

‘‘mixed’’ origin of the Hartmannsdorf strain is con-

firmed by the sharing of amino acids motifs that are

characteristic for each group (Table 1, highlighted),

in agreement with the similarity plot. Again, in region

E, the Hartmannsdorf strain has more sequence simi-

larity to group II, in contrast to what is observed at

the other regions. Our knowledge of the true RHDV

phylogeny might have been limited by the fact that

most of the phylogenetic studies on RHDV only fo-

cus on region E [1, 8, 10–14, 22, 24, 25, 27, 30],

masking situations like the one reported here.

The fact that the Hartmannsdorf strain is repre-

sented by one single sequence might raise some

questions about its origin. If a mixed population

of viruses was present in the original sample, the

possibility of a recombination event can not be ex-

cluded. Indeed, this strain was isolated from a rab-

bit that had previously been vaccinated [35]. The

commercial inactivated vaccine used, RIKA-VACC

(Riemseir Arzneitmittel AG, Greifswald Riems,

Germany), is made from liver homogenates of rab-

bits infected with the RHDV strain Eisenh€uuttenstadt

(GenBank accession number Y15440). However,

the Hartmannsdorf strain has several character-

istic amino acids that are not shared with the

Eisenh€uuttenstadt strain, ruling out the possibility

of a virus-vaccine recombination. Additionally, as

several recombination events have been reported

for members of the family Caliciviridae (e.g. [9,

16, 34]), it would, a posteriori, not be surprising

that such recombinations do also occur in members

of the genus Lagovirus. Recombination can be re-

sponsible for loss of efficacy of the vaccines so far

developed and may contribute to persistent RHDV

infections. For example, in AIDS, the numerous

circulating recombinant forms of the human immu-

nodeficiency virus (HIV) are one of the major obsta-

cles to controlling its spread (reviewed in Ref. [6]).

In conclusion, gene exchange within the lago-

virus genogroups might be more frequent than

currently perceived. As this can have serious im-

plications for disease diagnosis and control of

RHDV by the host immune response, further re-

search is needed for evaluating the extent of recom-

bination among members of the genus Lagovirus.
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