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Abstract Several potyviruses are found infecting sweet

potato (Ipomoea batatas) in Peru, of which sweet potato

feathery mottle virus (SPFMV, genus Potyvirus) is the

most common. However, sequence data for these viruses

are not available from Peru. In this study, the 30-terminal

*1,800 nucleotide sequences of 17 potyvirus samples

collected from the six main sweet potato-producing areas

of Peru over the past 20 years were determined and ana-

lyzed. Results of sequence comparisons and phylogenetic

analysis showed that three of the four recognized SPFMV

strain groups, including the East African strain, are estab-

lished in Peru as well as two other potyviruses: sweet

potato virus G (SPVG) and sweet potato virus 2 (SPV2).

The analysis further revealed that SPFMV, SPVG and

SPV2 are related and form an Ipomoea-specific phyloge-

netic lineage within the genus Potyvirus and identified for

the first time recombination events between viruses from

different strain groups of SPFMV.

Introduction

Sweet potato virus disease (SPVD) is probably the most

devastating disease constraint of sweet potato [Ipomoea

batatas (L.) Lam] worldwide [9]. It is caused by co-infection

of the aphid-transmitted sweet potato feathery mottle virus

(SPFMV, family Potyviridae, genus Potyvirus) and the

whitefly transmitted sweet potato chlorotic stunt virus

(SPCSV; genus Crinivirus; family Closteroviridae) [17, 20,

45]. Single infections of SPFMV usually show mild or no

symptoms, and no appreciable yield reduction can be

observed [12, 20, 33]. However, co-infection with SPCSV

causes SPVD, which is characterized by very severe symp-

toms such as general chlorosis, stunting, leaf strapping, leaf

crinkling and even plant death [17, 23, 45], and yield losses

ranging from 70 to100% [20, 33, 38, 40]. Molecular studies

have shown that co-infection of SPCSV enhances SPFMV

RNA viral titers by at least 600-fold, whereas SPCSV titers

remain equal or are reduced as compared to single infection

[23, 24, 38]. The severity of SPVD, and the degree of

SPFMV titer increase, depends on the strain of SPFMV

involved in the double infection [20, 24]. Besides SPFMV,

several other potyviruses, as well as other, unrelated viruses,

can cause synergistic diseases when co-infecting with

SPCSV [24, 38, 51], although the importance of these

interactions for yield losses in the field are not well known.

SPFMV is one of the most widespread viruses infecting

sweet potato [36]. The CP genomic region of SPFMV has

been used in previous studies to establish phylogenetic

relationships among SPFMV samples. It can be divided

into four phylogenetic lineages [5, 21, 25, 38, 49, 50]: East

Africa (EA), constituted by East African samples; Russet

Crack (RC), comprising samples from Australia, Africa,

Asia and North America; Ordinary (O) containing samples

from Japan, China, Korea, Niger, Nigeria and Argentina;

and Common (C) including samples from USA, China,

Australia, East Africa and Argentina. Unlike the geo-

graphically unrestricted C, RC and O strains, the EA strain

has almost exclusively been detected in the East African

countries, the possible exceptions being two sequences

available from the GenBank from Spain and Portugal [53]
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(Table 1). SPFMV has been reported from sweet potato in

Peruvian fields since 1987 [30], but it was only after 1998

that the prevalence of SPVD emerged, possibly due to the

increase of whitefly populations during the exceptionally

strong El Niño phenomenon of that year [20]. Although the

impact of SPVD on the yield of Peruvian sweet potato

cultivars has been assessed [20], no molecular studies have

been carried out concerning variability of its two causal

agents. Cedano et al. [10] reported that some SPFMV

isolates differed in the severity of symptoms induced in

Ipomoea nil. SPFMV-C1, was collected during the 1980s

[39] and shown to be closely related to the C strain [22,

42], whereas three other isolates, M2-41, M2-44 and C-18,

were obtained from SPVD-infected sweet potato plants and

differed in their symptomatology and serological reaction

with monoclonal and polyclonal antibodies [20].

Studies on other potyviruses infecting sweet potato are

less abundant. These include sweet potato latent virus

(SPLV), found in Asia, Africa and Peru [20, 29], sweet

potato mild speckling virus (SPMSV) from Argentina and

Peru [15, 20], sweet potato virus G (SPVG), identified in

China, Egypt, Ethiopia, Europe and the United States [3, 6,

12, 13, 21, 47] and a potyvirus first reported as sweet potato

virus II [43], and later named ipomoea vein mosaic virus

[47], sweet potato virus Y [4] or sweet potato virus 2

(SPV2) [49], has been identified from the United States

[47], Africa, Taiwan, China, Portugal [49] and Australia

[6]. Since the proposal to refer to this new potyvirus spe-

cies as SPV2 has been favorably considered by the

International Committee on the Taxonomy of Viruses, this

name is used here. SPLV and SPMSV have been reported

in Peru at low frequency [20].

Understanding the molecular variation of viruses is

essential to design knowledge-based strategies to control

them. In the present study, we determine the nucleotide

sequence of the region encompassing the 30-terminal

*1,800 nts of 17 potyvirus samples mostly collected from

SPVD-affected plants from the major sweet potato-pro-

ducing areas in Peru. Most of the viruses were identified as

SPFMV , but we also report for the first time the occur-

rence of SPV2 and SPVG in Peru and South America.

Phylogenetic analysis of SPFMV sequences indicates a

variable population of SPFMV in Peru, including EA, C

and RC strain groups, and provides evidence for the exis-

tence of recombinants between strains.

Materials and methods

Virus-infected plant samples and virus isolates

One symptomless sweet potato plant and 14 with SPVD-

like symptoms were collected at random from six main

Table 1 SPFMV isolates and samples used in this study

Isolate/sample Strain Origin/collection date Acc number

Fe EAa Ferreñafe, Peru/2006 EU021070

C14 EAa Cañete, Peru/2006 EU021071

Ch2 EAa Chimbote, Peru/2006 EU021067

M2-44 EAa Cañete, Peru/2003 EU021069

Piu EAa Piura, Peru/2006 EU021072

SP-33 EAa Huaral, Peru/1987 EU021068

Fio RCa Cañete, Peru/2005 EU021065

KmtMil RCa Cañete, Peru/2005 EU021066

M2-41 RCa Cañete, Peru/1999 EU021064

C1 Ca Lima, Peru/1987 EU021057

Ch4 Ca Chimbote, Peru/2006 EU021062

C18 Ca Cañete, Peru/1999 EU021059

M2-63 Ca Cañete, Peru/1999 EU021060

C21 Ca Cañete, Peru/1999 EU021061

SR Ca San Ramón, Peru/2005 EU021063

YV Ca USA EU021058

Aus5c C Australia AJ781779

Aus4c C Australia AJ781778

C C USA S43450

SOR C Uganda AJ539129

25-4a C Kenya AY523543

51-9S C Kenya AY459591

Nam 12 C Uganda AY459596

Aus6 RC Australia AJ781777

Aus5 RC Australia AJ781776

Aus2 RC Australia AJ781775

Eg1 RC Egypt AJ515378

Eg9 RC Egypt AJ515379

S RC Japan D86371

Bag EA Tanzania AJ781780

Bkb 1 EA Tanzania AJ781781

Bkb2 EA Tanzania AJ781782

Mis1 EA Tanzania AJ781783

Tz1 EA Tanzania AJ539131

Tz2 EA Tanzania AJ539132

Tar1 EA Tanzania AJ781784

Tar2 EA Tanzania AJ781785

Kby 1 EA Uganda AJ781791

Kby 2 EA Uganda AJ781792

Mbl2 EA Uganda AJ781788

Bny EA Uganda AJ539130

Nak EA Uganda AJ781790

Apa EA Uganda AJ781787

Mpg2 EA Uganda AJ781789

Rak6e EA Uganda AJ010706

85-7S EA Kenya AY459593

54-9S EA Kenya AY459592

Canar3 EA Spain AY459600
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sweet potato-producing areas in Peru (Fig. 1). Plants with

SPVD-like symptoms were found in all locations except for

the Chira Valley in Piura, where only symptomless plants

were collected. Details of the samples and isolates, their

names, province of origin and year of collection are shown

in Table 1 (Fig. 4 for SPV2 and SPVG). Stem cuttings of

collected plants were maintained in an insect-proof

greenhouse at CIP headquarters, Lima, Peru, for at least

3 weeks before analysis. Asymptomatic plants were graf-

ted onto the indicator plant I. setosa, which was observed

for symptom development and analyzed by serological

means. The presence and identity of sweet potato viruses

were confirmed using antisera included in the NCM-ELISA

sweet potato virus detection kit from the International

Potato Center (CIP, Lima, Peru) [51], according to the

manufacturer’s protocol. A number of SPFMV isolates

kept in desiccated I. nil leaves for as long as 20 years, as

well as the Peruvian isolate of SPFMV, C1 [39, 42], and

the North American isolate, YV [35], maintained in

Nicotiana benthamiana and I. nil, respectively, as part of

the CIP virus collection, were also included in the study.

Isolation of these viruses was done by three consecutive

single-lesion transfers on Chenopodium amaranticolor [10,

30, 35, 39].

RNA extraction, RT-PCR and cloning

Total RNAs were extracted from approximately 0.2 g

leaves of SPVD-infected sweet potato or SPFMV-infected

indicator plants using TRIZOL reagent (Invitrogen, CA,

USA) according to the manufacturer’s procedure. For

lyophilized samples, the initial amount of tissue was

0.02 g. Although this provided sufficient amounts of total

RNA, a further purification of high-molecular-weight RNA

with 4M LiCl4 significantly improved the subsequent RT-

PCR reaction. The integrity of the isolated RNA was

visually verified after electrophoresis in a standard form-

aldehyde agarose gel and staining with ethidium bromide.

Reverse transcription was performed on extracted RNA

using AMV reverse transcriptase (Promega, WI, USA)

according to the manufacturer’s recommendations, with the

primer FMV10820 (Table 2), corresponding to the last

20 nucleotides of the virus genome excluding the poly A

tail of the ‘SPFMV’ subgroup (see Discussion) of potyvi-

ruses [50]. A fragment comprising the 30-terminal

*1,800 nts of the potyvirus genome including the 30-ter-

minal part of the NIb gene, the complete CP gene and the

30 UTR was amplified by PCR using the potyvirus-specific

forward primer PVD-2 (Table 2) [16] and the reverse pri-

mer FMV 10820. PCR amplifications were carried out in

25-ll volumes containing a 19 PCR buffer (Promega),

0.4 mM each of dGTP, dATP, dTTP and dCTP, 0.3 lM of

each primer, 1 U of Taq DNA polymerase (Promega), and

2.5 ll of the reverse transcription reaction. The cycling

conditions were set as follows: 95�C for 5 min, followed

by 35 cycles at 95�C for 15 s, 52�C for 20 s and 72�C for

90 s , and then one final elongation at 72�C for 10 min.

PCR products were separated on 1% agarose gels andFig. 1 Locations of the sweet potato fields surveyed in Peru

Table 1 continued

Isolate/sample Strain Origin/collection date Acc number

Port EA Portugal AY459599

Zam 1 EA Zambia AY523552S4

Unj1 EA Tanzania AJ781786

O O Japan D16664

TZ4 O Tanzania AY459598

Strain 5 O Argentina U96624

Nig 3 O Nigeria AJ010705

Arua10 O Uganda AY459595

CH O China Z98942

Bau O Nigeria AJ010699

115-1S O Kenya AY523538S3

a Sequence determined in this study
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fragments of interest recovered by using the Wizard SV gel

extraction kit (Promega) according to the manufacturer’s

recommendation. The eluted DNA was ligated into plasmid

vector pCR 2.1 (Invitrogen) according to the manufacturers

instructions and cloned in Escherichia coli strain DH5a.

DNA sequencing, sequence analysis and phylogenetic

relationships

Plasmids containing the amplified viral sequences were

sequenced in both directions (Macrogen, Seoul, Korea).

Internal primers were designed for sequencing as shown in

Table 2. At least two individual clones per sample were

sequenced, and if inconsistencies were detected, then fur-

ther clones were sequenced. In one case in which an

unexpected gap was identified, the fragment was re-

amplified from a new RNA extraction and re-sequenced for

confirmation. Sequences were assembled using ContigEx-

press, included in the Vector NTI software package

(Invitrogen). The alignments and phylogenetic analyses

were performed with the MEGA 4 software package [27]

and included a number of sequences downloaded from the

GenBank database (Table 1, Fig. 4). Distances were cal-

culated using the Kimura 2-parameter model, and trees

were assembled using neighbour joining with 1,000 boot-

strap replicates.

Recombinant analysis

Recombination events were suspected after visual exami-

nation of the nucleotide sequence alignments. To confirm

the putative recombination events we used the Recombi-

nation Detection Program (RDP) 2.0 [31]. To further

confirm the results of the predictions by RDP, sequence

alignments were cut at the predicted recombination

junctions, and phylogenetic analysis of the aligned

sequences corresponding to each side of the junction was

performed. Viruses grouping in different strain groups with

strong ([90%) bootstrap support in the different phylo-

genic trees were considered true recombinants.

Results

Nucleotide (nt) sequences encompassing the 30-terminal

part of the NIb gene, the complete CP gene and the 30UTR

of 14 Peruvian samples infected with SPFMV, the SPFMV

isolate C1 from Peru, and the isolate YV from USA were

determined in this study, as well as those of one sample of

SPV2 and SPVG. RNA was also obtained from 12 desic-

cated leaf samples of SPFMV-infected plants collected in

Peru as far back as 20 years ago. Although this yielded

apparently intact RNA as assessed by gel electrophoresis,

RT-PCR amplicons of the correct size were obtained from

only three of these samples, and only one of these ampli-

fied products could be cloned (SP-33) and proved to be an

SPFMV sequence.

Analyses of SPFMV sequences

Analysis of SPFMV included more than 40 sequences taken

from the GenBank database in addition to the ones deter-

mined in this study (Table 1). The deduced CP sequences of

most SPFMV-infected samples were 315 aa in length with

155 aa showing variability (36.5%), 60 of which were

located in the N-terminal region. With the exception of the

type isolate C, all isolates belonging genetically to strain

group C lacked two amino acid residues at positions 62 and

63, as reported previously by Tairo et al. [50]. In addition,

however, a deletion of 14 aa was found in the CP N-terminal

region (at aa position 42–55) of the Peruvian EA isolate

Table 2 List of synthetic oligonucleotide primers used in this work

Virus Primer name Sequences Reference

SPFMV, SPV2, SPVG (cloning) FMV 10820 50-GGCTCGATCACGAACCAA-30 Tairo et al. [50]

PVD-2 50-GGBAAYAAYAGYGGDCARCC-30 Gibbs and Mackenzie [16]

SPFMV (Sequencing) FMV 9675 F 50-AGATGCIGGWGCRRACCCWCCAG-30 This study

FMV 9675 R 50-CTGGWGGGTYYGCWCCNGCATCT-30 This study

FMV 10244 F 50-CATGCAGTGCCTACTTTTAGGC-30 This study

FMV 10244 R 50-GCCTAAAAGTAGGCACTGCATG-30 This study

SPVG (Sequencing) SPVG-F 50-GGATGAAACCTGGGCAAACAC-30 This study

SPVG-R 50-CGATACACCACACCATGAGACC-30 This study

SPV2 (Sequencing) SPV2-F 50-GGCAGCTTCAAAGAGTTAGGGC-30 This study

SPV2-R 50-TGTGTGTTATCTGGAGACGTGGC-30 This study
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M2-44. Nucleotide and amino acid sequence identities for

different regions are presented in Fig. 2.

Phylogenetic analysis of the aligned sequences split the

SPFMV samples into four strain groups: C, RC, O and EA.

Peruvian SPFMVs were found to correspond to groups EA,

RC and C (Figs. 3, 4). Visual inspection of the alignments

of the complete *1,800 nt fragments suggested that some

SPFMV samples might be the result of recombination

between strain groups; i.e. in isolates C and YV the CP-

encoding region and 30UTR seemed to be derived both

from a C strain and a non-C strain virus, respectively, and

in both of the Egyptian samples, Eg1 and Eg9, the central

part of the NIb gene and the remaining 30 part of the

genome appeared to originate from viruses of strain groups

EA and RC, respectively. To confirm this, recombination

analysis was performed using the various algorithms of the

RDP2.0 program, which all predicted, with high, but

varying probability, the suspected recombination events in

the strains in question. The algorithm Max-Chi Squared

[32] provided by the RDP program predicted the following

breakpoints, in accordance with the suspected points

identified in the sequence alignments: the first one, located

at nt position 9,597 (strain S [44]; nt 570 in our fragment)

within the 30-terminal part of the NIb gene was shared by

SPFMV Eg-9 and SPFMV Eg-1, whereas the second one,

located at nt position 10,500 (nt 1473 in our fragment)

within the 30 terminal region of the CP was present in

SPFMV-YV and -C (Fig. 3a). Further confirmation of

recombination was obtained by construction of phyloge-

netic trees using the segments corresponding to each side

of the predicted recombination breakpoints (Fig. 3b–e).

The topologies of the four trees produced were similar,

distinguishing the four strain groups, except for the tree

created using the sequences encompassing nts 1473-30end,

in which only two well-supported clades could be dis-

criminated; one comprising viruses of the O, RC and EA

strains, and one comprising C strain viruses (Fig. 3c). The

conflicting affinity of the Egyptian viruses between the

trees produced using the different genome regions clearly

confirms the predicted recombination events; i.e. Eg1 and

Eg9 are members of strain group RC when alignments

comprising the nt positions 570-30-end are analyzed

(Fig. 3e), but belong to strain group EA on the basis of the

nt positions 0–570 (Fig. 3d). Similarly, isolates C and YV

belong to the strain group C when the region encompassing

nts 0–1452 is analyzed (Fig. 3b) but group together with

RC, EA and O when 30 nts are analyzed (Fig. 3c).

Analyses of SPV2 and SPVG sequences

A Blast search indicated that sequences closely related to

SPVG and SPV2 had been amplified from two plants from

Huaral showing typical symptoms of SPVD. Infection by

NIb C-terminal (last 208 aa)

96.5 ± 0.3 
98.3 ± 0.3

88.5 ± 1.2  
94.2 ± 1.3

87.6 ± 1.2  
92.9 ± 1.5

75.3 ± 1.7 
84.6 ± 2.3EA

95.4 ± 0.9   
96.6 ± 1.2

87.5 ± 1.2 
92.3 ± 1.6

75.5 ± 1.7 
84 ± 2.3O

98.4 ± 0.3 
98.9 ± 0.4

75.9 ± 1.7 
85.3 ± 2.2RC

93.2 ± 0. 6 
95.9 ± 0. 9C

EAORCC

CP

96.3 ± 0.3 
97.1 ± 0.5

92.3 ± 0.6  
94.8 ± 0.9

93.2 ± 0.6  
96 ± 0.9

77.7 ± 1.1 
82.7 ± 1.9EA

95.4 ± 0.3   
96.2 ± 0.6

91 ± 0.7 
95.1 ± 0.9

76.8 ± 1.1 
81.4 ± 1.9O

98.5 ± 0.2 
98.5 ± 0.4

77.5 ± 1.1 
83.3 ± 1.9RC

96.1 ± 0.3 
96.4 ± 0.5C

EAORCC

98.1 ± 0.4 97.4 ± 0.598 ± 0.5 87.47 ± 2EA

96.7 ± 0.797 ± 0.784.4 ± 2O

99 ± 0.385.2 ± 2.RC

92.9 ± 0.9C

EAORCC

3’UTR

94.3 ± 0.7 
92 ± 1.6

86.1 ± 1.8      
85.4 ± 3.2

87.5 ± 1.8 
87 ± 2.9

60.8 ± 2.9 
62.1 ± 5.3EA

93.5 ± 0.8 
92.1 ± 1.7

83.6 ± 2
86.1 ± 3.2

59.1 ± 3
57.9 ± 5.3O

97 ± 0.6 
95.4 ± 1.4

62.7 ± 3
64.3 ± 5.2RC

93.5 ± 0.8  
91.4 ± 1.5C

EAORCC

CP N-terminal

a b

c d

Fig. 2 Mean nucleotide and amino acid (bold) inter- and intra-group identities (%) calculated for the C-terminal 208 aa of the NIb (a); the entire

coat protein, CP (b); the N-terminal aa of the CP (c) and 30UTR (d). Recombinant sequences were excluded
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these two viruses was confirmed by NCM-ELISA. Phylo-

genetic analysis of the SPV2 sequence showed it was

closely related to sample Thomas 16A from South Africa,

and confirmed the four genetically distinct lineages sug-

gested previously by Ateka et al. [6, Fig. 4). The SPVG

sequence determined here, however, was quite distinct

from other reported SPVG samples, suggesting that SPVG-

Hua2 might represent a novel strain. Thus, SPVG also can

be divided into at least three genetically distinct lineages

represented by the CH2, Hua2 and the remaining samples,

respectively (Fig. 4). Inclusion of additional potyvirus CP

sequences into the analysis further revealed that SPV2,

SPVG, SPFMV and a potyvirus isolated from sweet potato

in Zimbabwe are related, forming a well-supported sepa-

rate phylogenetic lineage within the genus Potyvirus

(Fig. 4).

Discussion

Our study, the first attempt to classify Peruvian sweet

potato potyviruses at the molecular level, demonstrated the

presence of SPFMV strains C, RC and EA, as well as SPV2

and SPVG in the main sweet potato-producing regions.

This is the first time that SPFMV of strain group EA has

been reported from the Americas and SPV2 or SPVG from

South America. Two of the isolates, C1 and SP-33, cor-

responding to strain group C and EA, respectively, were

collected in 1987, indicating that these viruses had been

present in Peru before SPVD occurred at a high incidence

in 1997.

Comparison of the SPFMV sequences with those

available from the database enabled us to identify novel

variations amongst SPFMV strains. The CP aa sequence of

the EA sample M2-44, which, coincidentally, was reported

as one of the most detrimental isolates identified in Peru

[20], lacks 14 amino acids. Although deletions seem rare in

the CP of SPFMV, deletions of 12 aa in the CP region are

common in isolates of yam mosaic virus [2]. Besides the

characteristic 42-nt (14-aa) deletion found in the C termi-

nus of the CP of strain M2-44, we also obtained the first

evidence for recombinants of SPFMV. Four samples con-

taining recombinant segments were detected visually, and

their occurrence was confirmed using specialized software

and phylogenetic analysis (Fig. 3). The 30-terminal

sequences of the recombinant isolate YV were amplified

and cloned from two individual RNA extractions to be sure

that the recombination event detected was not an artifact of

the PCR reaction. The fact that the same recombination is

found in isolate C from the USA, which was cloned and

sequenced using separate primers by a different laboratory,

corroborates that this is unlikely to be a PCR artifact. The

tentative recombinant viruses Eg1 and Eg9 [21] share the

same recombination breakpoint in the NIb-encoding region

and originate from the same geographic region in Egypt. It

is therefore likely that they share a common evolutionary

ancestor. The same can be argued for the two recombinant

North American strains of SPFMV identified in this study.

Recombination in evolutionary history of potyviruses is not

a novelty and has been reported for a number of potyvirus

species, such as Yam mosaic virus [8], Yam mild mosaic

virus [7], Potato virus Y (PVY [18]), Plum pox virus [19],

Turnip mosaic virus [41], Lettuce mosaic virus [26] and

Sugarcane mosaic virus (SCMV [54]), but also between

isolates of closely related species such as Bean common

mosaic virus (BCMV), and Soybean mosaic virus [14],

Bean common mosaic necrosis virus and BCMV [28] and

those of other related viruses [52]. These reports are evi-

dence for an important role for recombination in the

evolution of potyviruses, although their frequency may

vary significantly between virus species. Such recombina-

tion events may lead to more virulent virus strains [18, 54]

and even new species [14, 52] or genera [52].

In a previous study by Gutiérrez et al. [20], the SPFMV

samples M2-44, M2-41 and C18, here shown to correspond

to strains EA, RC and C, respectively, were compared and

found to vary in reaction to different antisera, as well as the

severity of symptoms induced in I. nil and sweet potato. In

both hosts, the EA isolate produced the most severe

symptoms, whereas the RC strain produced the mildest

symptoms. However, Moyer et al. [37] reported that isolate

C (strain group C) caused milder symptoms than isolate RC

(strain group RC), and in Japan an RC isolate (SPFMV-S)

was reported to be the most severe [34]. Although an EA

strain group isolate was not included in these studies, the

contradictory results obtained for severity of C and RC

isolates in the study of Gutiérrez et al. [20], and that of

Moyer et al. [37], suggest that symptom severity may not

necessarily be a characteristic of the strains, but rather that

of individual isolates. Similarly, the ability to infect N.

benthamiana appears to be an isolate-specific rather than a

strain-specific characteristic, as only some isolates from

Fig. 3 Phylogenetic trees calculated from alignments of nucleotide

sequences on either side of recombination breakpoints identified with

the RDP program (see ‘‘Materials and methods’’). a Schematic

representation of the 30 region of SPFMV used for analysis indicating

the regions used and the corresponding trees matching to predicted

recombination breakpoints in isolates C and YV, and Eg1 and Eg9. b–

e Phylogenetic trees of SPFMV sequences encompassing the regions

indicated in a, arrowheads indicate the conflicting groupings of

sequences in which recombination events were predicted. The scale
bar in each figure indicates Kimura nucleotide distances. In b the

sequences corresponding to the NIb genes were not included because

they are not available for isolate C. Similarly, the sequence of the

30UTR is not included in the analysis in (e) as this region is not

available for the isolates Eg1 and Eg9. The percentage of bootstrap

support out of 1000 replicates is given at each of the major nodes in

the trees

c
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NIb CP 3’UTR
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different strain groups (EA and C) are able to infect this

host [20, 37]. Nevertheless, the isolates belonging to strain

group C are genetically distinct from the other strain

groups of SPFMV. Therefore, biological differences are

expected. It has been suggested that strain group C may

represent a separate virus species [50]. Our extended

analysis agrees with the percentage of CP nt and aa

sequence identities previously reported for samples/isolates

of strain group C (Fig. 2b: 75.6–78.7% nt, 79.5–85.2 aa)

[25, 50]. However, these identities do not provide a clue for

classifying the C strain as another viral species, because

they are very close to the CP nt and aa sequence identities

of 76–77 and 82%, respectively, used currently as threshold

values for potyvirus species demarcation [1]. Similarly, the

partial NIb sequences analyzed in this study are at the edge

of the recommended species demarcation criterion of 75%

identity (Fig. 2a). In contrast, the variability found in the

30UTR (80.0–85.4% identity, Fig. 2c) appears well above

that recommended to distinguish different potyvirus spe-

cies (76% identity [1]). The definitive reclassification of

SPFMV-C as a new species is something that can only be

resolved with the help of the entire genome sequence of a C

isolate. Preliminary data from the Peruvian C1 isolate

indeed indicate that variability in other parts of the genome

significantly exceeds those found for strains of the same

species (our unpublished data). This and the fact that

polyclonal or monoclonal antibodies to SPFMV may not

recognize all isolates of strain group C [50] underlines the

need to develop appropriate diagnostic methods for

detection of these viruses. A PCR-RFLP-based method

described by Tairo et al. [49] may be too expensive for

routine detection purposes, especially in developing

countries, which often lack facilities for using molecular

techniques.

The identification of two of the potyvirus-specific

amplicons as pertaining to SPV2 and SPVG presents the

first report of the occurrence of these viruses in Peru and

South America. Hence, all currently recognized sweet

potato potyviruses are endemic to Peru. In routine testing

from CIP’s germplasm collection and from seed production

in Huaral and Cañete using specific antibodies, SPVG is

frequently detected (c. 30% of symptomatic samples) and

appears to be more prevalent than SPV2 (c. 3%). Despite

this, SPFMV is by far the most common virus found (c.

90% of symptomatic samples), and consequently, the other

potyviruses may contribute little to yield losses caused by

SPVD. Although it has been shown that the titers of all

these viruses increases upon co-infection with SPCSV,

titers of SPFMV increase more than those of the other

potyviruses [24, 47, 51]. These higher replication rates

upon co-infection with SPCSV may provide a possible

explanation for the prevalence of SPFMV over the other

potyviruses, which are out-competed. This also implies that

if cultivars with resistance to only SPFMV were deployed,

the other potyviruses could rapidly replace it, causing

similar synergistic virus diseases. Because available anti-

sera to SPFMV show a weak serological cross-reaction in

NCM ELISA with SPVG as well as SPV2, infection with

these viruses may previously in many cases have been

attributed to SPFMV, and their prevalence worldwide may

be greater than previously known. The availability of

SPVG- and SPV2-specific antibodies is now facilitating the

detection of both viruses in samples from different coun-

tries, discriminating them from the presence of SPFMV.

Phylogenetic analysis of various samples of the three

viruses identified in this study, together with a repre-

sentative repertoire of other potyviruses, enabled us to

show that these viruses form a well-supported phyloge-

netic subgroup within the genus Potyvirus (Fig. 4),

together with an unknown virus reported from Zimbabwe

Fig. 4 Phylogentic tree of CP nucleotide sequences of potyviruses.

The Ipomoea-specific ‘SPFMV’ subgroup, as well as previously

identified subgroups are shaded in grey. Sweet potato-infecting

viruses are in bold, proposed virus strain groups are shaded in light
grey with roman numerals, except for SPFMV, which is according to

(25). The scale bar indicates Kimura nucleotide distance. The

percentage of bootstrap support out of 1,000 replicates is given at the

major nodes in the trees where they exceeded 80%. GenBank

accession numbers: SPFMV sweet potato feathery mottle virus (see

Table 1); SPV-Zim: (AF016366); SPLV sweet potato latent virus (Ch:

X84011, Jap: E15420, Tai: X84012); SPMSV sweet potato mild

speckling (U61228); SPVG sweet potato virus G (Ark15: Ref 3, CH2:

X76944, CH: Z83314, Eg: AJ515380, Henan: DQ399861, Hua2:

EU218528); SPV2 sweet potato virus 2 (Aus54: AM050884, Hua3:

EU218529, MD2: AY459606, PD12: AY459607, Thomas16A:

AY459608, VTSBT-Tschilombo: AY459609, XN3: AY459611,

Zambia: AY459610); agropyron mosaic virus (NC_005903); bean

common mosaic virus (NC_003397); bean common mosaic necrosis

virus (NC_004047); bean yellow mosaic virus (NC_003492); beet

mosaic virus (NC_005304); chilli veinal mottle virus (NC_005778);

cocksfoot streak virus (NC_003742); cowpea aphid-borne mosaic

virus (NC_004013); daphne virus Y (NC_008028); East Asian

passiflora virus (NC_007728); hordeum mosaic virus (NC_005904);

Japanese yam mosaic virus (AB027007); johnsongrass mosaic virus

(NC_003606); konjac mosaic virus (NC_007913); leek yellow stripe

virus (NC_004011); lettuce mosaic virus (NC_003605); lily mottle

virus (NC_005288); maize dwarf mosaic virus (NC_003377); narcis-

sus degeneration virus (NC_008824); onion yellow dwarf virus

(NC_005029); papaya leaf-distortion mosaic virus (NC_005028);

papaya ringspot virus (NC_001785); pea seed-borne mosaic virus

(NC_001671); peanut mottle virus (NC_002600); pennisetum mosaic

virus (NC_007147); pepper mottle virus (NC_001517); pepper severe

mosaic virus (NC_008393); Peru tomato mosaic virus (NC_004573);

plum pox virus (NC_001445); potato virus A (NC004039); potato

virus V (NC_004010); potato virus Y (NC_001616); scallion mosaic

virus (NC_003399); shallot yellow stripe virus (NC_007433);

sorghum mosaic virus (NC_004035); soybean mosaic virus

(NC_002634); sugarcane mosaic virus (NC_003398); Thunberg

fritillary virus (NC_007180); tobacco etch virus (NC_001555);

tobacco vein mottling virus (NC_001768); turnip mosaic virus

(NC_002509); watermelon mosaic virus (NC_006262); wild potato

mosaic virus (NC_004426); wisteria vein mosaic virus (NC_007216);

yam mosaic virus (NC_004752); and zucchini yellow mosaic virus

(NC_003224)

c
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[11]. Besides notable sequence similarity (including

identical last 20 nts), this ‘SPFMV’ subgroup distin-

guishes itself by having a narrow host range, mainly

confined to the Convolvulaceae, indicating a likely

common evolutionary ancestor adapted to this family of

hosts. On the other hand, SPLV and SPMSV, the two

sweet potato-infecting potyviruses not belonging to the

‘SPFMV’ subgroup, are phylogenetically distantly related

and have broader host ranges including Chenopodiaceae

and Solanaceae [29]. Other potyvirus subgroups also

have certain host specificities (Fig. 4), such as the

‘SCMV’, ‘BCMV’ and ‘PVY’ subgroups predominantly
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infecting gramineous, leguminous, and solanaceous

plants, respectively [46, 48], suggesting a significant role

for virus host co-evolution in potyvirus speciation. Fur-

ther sequencing of SPV2, SPVG and SPFMV-C genomes

may enable us to shed some light onto the specific

characteristics required for adaptation to convolvulaceous

hosts, although the identification of a highly conserved

region in the P1 protein of SPFMV and the ipomovirus

sweet potato mild mottle virus [52] already alludes to an

important role for that protein in host specificity.
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