Arch Virol (2005) 150: 2439–2452 DOI 10.1007/s00705-005-0602-1

Molecular epidemiology of African swine fever in East Africa

B. A. Lubisi^{1,2}, A. D. S. Bastos², R. M. Dwarka¹, and W. Vosloo^{1,3}

 ¹ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Onderstepoort, South Africa
 ²Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
 ³Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa

Received February 10, 2005; accepted June 6, 2005 Published online August 1, 2005 © Springer-Verlag 2005

Summary. African swine fever (ASF) a lethal, viral hemorrhagic disease of domestic pigs, first reported from East Africa in 1921, is still widespread in this region. In order to assess field heterogeneity at the regional level, nucleotide sequences corresponding to the C-terminal end of the p72 gene were determined for 77 ASF viruses of diverse temporal and species origin occurring in eight East African countries. The number of sites completely conserved across all East African sequences characterized in this study was 84.2% and 86.8% on nucleotide and amino acid level, respectively. Phylogenetic analysis of a homologous 404 bp region revealed the presence of thirteen East African genotypes, of which eight appear to be country specific. An East African, pig-associated, homogeneous virus lineage linked to outbreaks in Mozambique, Zambia and Malawi over a 23 year period was demonstrated. In addition, genotype I (ESACWA) viruses were identified in East African sylvatic hosts for the first time which is significant as this genotype was previously thought to be restricted to the West African region where it occurs only in domestic pigs. The presence of discrete epidemiological cycles in East Africa and recovery of multiple genotypes affirms the epidemiological complexity of ASF in this region.

Introduction

African swine fever (ASF) is a viral disease of domestic pigs that causes a lethal peracute or acute hemorrhagic fever, or a less virulent chronic disease [22]. It was first described from East Africa in 1921 [19], but subsequently identified in southern, central and West Africa [22]. The aetiological agent, ASF virus

(ASFV), is a large enveloped icosahedral arbovirus of the *Asfivirus* genus in the family *Asfarviridae* and has a linear, covalently close-ended, double-stranded DNA genome, 170–190 kbp in size [6].

The disease is indigenous to the African continent where it circulates in one of three distinct cycles: (1) an ancient sylvatic cycle involving eyeless argasid ticks of the *Ornithodoros* genus and wild suids such as warthogs (*Phaecochoerus aethiopicus* and bushpigs (*Potamochoerus porcus*), (2) a tick – domestic pig cycle and (3) a domestic pig cycle that occurs in the absence of ticks [22]. In the sylvatic cycle, the natural hosts of the virus are wild African suids, which become subclinically infected, and argasid ticks, which when infected, amplify and transmit the virus when feeding on wild or domestic pigs [22, 23, 25, 30]. Once the virus is introduced into a naïve herd, horizontal transmission occurs swiftly among domestic pigs, a factor that was readily appreciated following the introduction of the disease to Europe in 1957 [2].

Although eradicated from most of Europe, ASF remains a disease of worldwide relevance as many countries within and outside the African continent have suitable hosts for ASFV in their pig and wild suid populations. In addition, the threat of virus maintenance posed by diverse globally distributed argasid ticks of the *Ornithodoros* genus is significant [10, 14]. The fact that the virus has high morbidity, is shed in all excretions of clinically ill domestic pigs [19], is extremely resistant to harsh environmental conditions [8, 24], and that there is no vaccine to protect against the disease [31], makes potential ASF introduction to naïve pig herds a serious threat.

In the event of an ASF outbreak, stamping out and movement restriction are the main control measures undertaken and hinge on the rapid laboratory confirmation of ASFV. Initial detection is usually followed by molecular characterization of outbreak strains in order to identify the possible source of the virus, thereby preventing further introductions. PCR amplification and sequencing of the *p*72 gene coding for the major capsid protein is increasingly being used to distinguish viruses from recent outbreaks in sub-Saharan Africa [1, 2, 9] and 10 distinct viral genotypes are presently known to occur in this region [1]. Of these, genotype I comprising viruses from Europe, South America, the Caribbean and West Africa (and termed the ESACWA genotype), represents the most widespread and homogeneous genotype identified thus far.

The epidemiology of ASF in East Africa is complex. Not only is there evidence for a sylvatic cycle, but a domestic pig cycle and a pig-tick cycle have also been described [11, 22]. Despite the presence of all three cycles no extensive molecular database comprising ASFV strains from different host species is available which would assist in clarifying the epidemiology of the disease in this region. This study aims to address this shortcoming by extensive sampling and p72 gene characterization of East African viruses of diverse species and temporal origins so that a comprehensive regional database can be established that will be useful for future outbreak eventualities and that will provide epidemiological insights into historical and contemporary outbreaks of the disease in this region.

Materials and methods

Study area and samples

For the purpose of this study, East African countries are defined as those occurring east of latitude 20°00 E and south of latitude 5°00 N, but excluding Namibia, South Africa, Botswana and Zimbabwe. This area encompasses the following eight countries: Burundi, Democratic Republic of Congo, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia. A total of 77 viruses of diverse species and temporal origin from these eight East African countries were sequenced and characterized in this study, with the majority of viruses being supplied by the World Reference Laboratory, Institute for Animal Health (IAH), Pirbright. Additional strains were isolated at the Onderstepoort Veterinary Institute (OVI), Agricultural Research Council (ARC) from clinical material supplied by the respective departments of veterinary services (summarized in Table 1).

Virus isolation

Primary swine macrophage cultures were prepared in 96 well plates as described by Malmquist and Hay [17] with slight modifications. Inoculum containing 10% (w/v) of sample material in wash buffer consisting of phosphate buffered saline (PBS), antibiotics (Penicillin, Streptomycin, and Neomycin) and normal bovine serum (NBS), was inoculated on the cells in 10 fold dilutions. The cells were examined daily for cytopathogenic effect or haemadsorption. Viruses from positive wells were harvested and stored at -70 °C.

Extraction and genomic amplification of viral DNA

DNA was extracted from 100 μ l aliquots of virus samples or tissue sample homogenates using a silica/guanidium-based nucleic acid extraction method [3]. A diagnostic PCR was used to confirm the presence of ASF viral DNA using ASF-1 and ASF-2 primers and protocols prescribed for ASF diagnosis in Chapter 2.1.12 of the 2000 edition of the OIE Manual of Standards for Diagnostic Tests and Vaccines, whilst *p*72 genotyping was achieved by PCR using P72-U and P72-D primers [1] which amplify a 478 bp C-terminal region of the *p*72 gene. All PCRs were conducted in a final volume of 50 μ l, containing 1 × buffer (Roche), 2.5 U *Taq* polymerase (Roche), 0.5 μ M of each primer and 200 μ M dinucleotide triphosphates (dNTPs) (Roche). Amplification of the C-terminal region of *p*72 was achieved following 40 cycles of denaturation at 96 °C for 12 s, annealing at 50 °C for 20 s and extension at 70 °C for 90 s.

Genomic characterization and phylogenetic analysis

Amplification products were electrophoresed on a 1.5% agarose gel against a 100 bp DNA marker (Promega) and visualized by UV irradiation and ethidium bromide staining. Amplicons of the correct size were excised from the agarose gel and purified using the NucleoSpin Extract 2 in 1 kit (Macherey-Nagel) according to the manufacturer's specifications. Nucleotide sequences were generated with an ABI Prism 310 Genetic Analyzer (Applied Biosystems) using Big Dye v.3.0 cycle sequencing kit ready mix, and aligned using the DAPSA programme [12]. Thirty-five ASF viruses representative of each of the ten previously identified *p72* genotypes [1] were included for phylogenetic analysis purposes, bringing the total number of viruses used in this study to 102. A homologous region of 404 nucleotides was used for Minimum Evolution (ME), Maximum Parsimony (MP) and Maximum Likelihood (ML) methods of phylogenetic analysis. The HKY 85 nucleotide substitution model [13] with parameters recovered from the Akaike Information Criterion of Model Test [26] was used for ML analysis in PAUP [27]. For MP, equal weighting and successive weighting schemes

24	42

B. A. Lubisi et al.

Virus name	Country of origin	Town/District	Year of isolation	Species of origin	GenBank accession number
					number
BAN 91/1	Malawi	Bangula, Lower Shire	1991	Sus scrofa	AY351501
Bartlett II	Kenya	Timau	1959	Phaecochoerus aethiopicus	AY351532
BUR 90/3	Burundi	Muyinga	1990	Sus scrofa	AY351525
CHG 88/1	Zambia	Chaguza, Katete, Eastern Province	1988	Sus scrofa	AY351552
CHJ 89/1	Zambia	Chiphanje, Petauke, Eastern Province	1989	Sus scrofa	AY351519
CHK 89/2	Zambia	Chikuwe, Chipata, Eastern Province	1989	Sus scrofa	AY351526
CHM 88/1	Zambia	Chambula, Petauke, Eastern Province	1988	Sus scrofa	AY351520
⁶ DED 89/1	Malawi	Chiphazi, Dedza District	1989	Sus scrofa	AY351502
DED 91/1	Malawi	Mtenden Campus, Dedza	1991	Sus scrofa	AY351503
Davis	Kenya	Nanyuki	1959	Phaecochoerus aethiopicus	AY351527
Doig	Kenya	Kiganjo	1957	Phaecochoerus aethiopicus	AY351528
⁶ DOWA	Malawi	Moya, Dowa	1986	Sus scrofa	AY351509
Gasson	Kenya	Nanyuki	<1961	Sus scrofa	AY351529
GUL 88/1	Zambia	Gulumule, Katete, Eastern Province	1988	Sus scrofa	AY351521
Hinde I	Kenya	Nanyuki	1954	Suid	AY351530
⁷ KAB 6/2	Zambia	Livingstone game park, south Zambia	1983	Tick*	AY351522
KAC 91/2	Malawi	Kachendere Seminary, Chisengu, Mchinji	1991	Sus scrofa	AY351504
KANA 89/1	Zambia	Kangwero farm 17, Katete, Eastern Province	1989	Sus scrofa	AY351523
Killean I	Kenya	Nanyuki	1959	Phaecochoerus	AY351550
Tunioun T	nenyu	T ully ull	1757	aethiopicus	111551550
Killean II	Kenya	Nanyuki	1959	Phaecochoerus	AY351551
Killean II	Renya	Nanyuki	1757	aethiopicus	11551551
Killean III	Kenya	Nanyuki	1959	Phaecochoerus	AY351531
Kinean III	Renya	Nanyuki	1)))	aethiopicus	11551551
Kimakia I	Kenya	UK	1961	Potamochoerus	AY351533
Killiakia I	Kenya	0K	1901		A1551555
Kimakia II	Kenya	UK	1961	porcus Potamochoerus	AY351534
KIIIIakia II	Kenya	UK	1901		AI 551554
KIRT 89/2	Tanzania	Kiriwira	1989	<i>porcus</i> Tick*	AY351511
		Kiriwira			
KIRT 89/3 KIRT 89/4	Tanzania Tanzania		1989	Tick*	AY351512
	Tanzania Tanzania	Kiriwira Kiriwira	1989	Tick*	AY351513
KIRW 89/1	Tanzania		1989	Phaecochoerus aethiopicus	AY351514
KLI 88/2	Zambia	Kalinda, Petauke, Eastern Province	1988	Sus scrofa	AY351553
⁶ LIL 89/1	Malawi	Mlozi, Lilongwe District	1989	Sus scrofa	AY351505
LIL 90/1	Malawi	Kafere diptank, Lilongwe	1990	Sus scrofa	AY351510
⁷ LIV 5/40	Zambia	Livingstone Game Park, south Zambia	1982	Tick*	AY351536
⁷ LIV 5/4	Zambia	Livingstone Game Park, south Zambia	1983	Tick*	AY351537
LIV 9/31	Zambia	Livingstone Game Park, south Zambia	1983	Tick*	AY351538

Table 1. Summary of the African swine fever virus isolates characterised in this study

(continued)

Molecular epidemiology of ASF in East Africa

Virus	Country	Town/District	Year of	Species	GenBank
name	of origin		isolation	of origin	accession number
LIV 9/35	Zambia	Livingstone Game Park, south Zambia	1983	Tick*	AY351539
⁷ LIV 10/11	Zambia	Livingstone Game Park, south Zambia	1983	Tick*	AY351535
⁷ LIV 12/17	Zambia	Livingstone Game Park, south Zambia	1983	Tick*	AY351524
⁷ LIV 13/33	Zambia	Livingstone Game Park, south Zambia	1983	Tick*	AY494560
LUS 93/1	Zambia	Nawande farm, Lusaka district, Lusaka Province	1991	Sus scrofa	AY351563
Magadi w/hog 1	Kenya	Magadi	1959	Phaecochoerus aethiopicus	AY351548
Magadi w/hog 9	Kenya	Magadi	1959	Phaecochoerus aethiopicus	AY351565
¹ MAL 2002/1	Malawi	Mpemba Quarantine Camp	2002	Sus scrofa	AY494553
MAN 89/2	Zambia	Mangulu, Katete, Eastern Province	1989	Sus scrofa	AY351562
⁶ MCH 89/1	Malawi	Kachebere Seminary, Mchinji	1989	Sus scrofa	AY351506
⁶ MCH 89/3	Malawi	Chisikwa diptank, Lilongwe District	1989	Sus scrofa	AY351507
⁶ Mchinji 075	Malawi	Mchinji	1987	Sus scrofa	AY351508
⁷ MFUE 6/1	Zambia	Mfue, Luangera National Park	1982	Tick*	AY351561
⁵ MOZ 2001/1	Mozambique	Zambezi, Quilemane	2001	Sus scrofa	AY351516
⁵ MOZ 2002/1	Mozambique	Northern Nampula region	2002	Sus scrofa	AY351517
⁵ MOZ 2002/2	Mozambique	Northern Nampula region	2002	Sus scrofa	AY351518
MPI 89/1	Zambia	Mpima Seminary, Kabwe, Central Province	1989	Sus scrofa	AY351540
MPO 89/1	Zambia	Mpoka, Petauke, Eastern Province	1989	Sus scrofa	AY351541
MZI 92/1	Malawi	Euthini, Mzinda District, north Malawi	1992	Sus scrofa	AY351543
NGE 92/1	Malawi	Ngerenge diptank, Karonga District	1992	Sus scrofa	AY351544
NKZ 88/1	Zambia	Nyankonzi, Petauke, Eastern Province	1988	Sus scrofa	AY351554
NYA1/2	Zambia	Kalumo	1986	Tick*	AY351555
PHW 88/1	Zambia	Phwata, Chipata, Eastern Province	1988	Sus scrofa	AY351567
SAL 92/1	Malawi	Chiripa diptank, Salima District	1992	Sus scrofa	AY351546
SIY 91/2	Malawi	Sinyala diptank, Lilongwe	1991	Sus scrofa	AY351566
⁷ SUM 14/11	Zambia	Sumbu National Park	1983	Tick*	AY351542
² TAN/1/01	Tanzania	Dar Es Salaam	2001	Sus scrofa	AY494552
² TAN/2003/1	Tanzania	Arusha	2003	Sus scrofa	AY494550
² TAN/2003/2	Tanzania	Arusha	2003	Sus scrofa	AY494551
TEN 89/1	Zambia	Tenesi, Petauke, Eastern Province	1989	Sus scrofa	AY351556
THY 90/1	Malawi	Comforzi farm, Thyolo District	1990	Sus scrofa	AY351545
TMB 89/1	Zambia	Tembo, Petauke, Eastern Province	1989	Sus scrofa	AY351557
Trench	Kenya	Mweiga	1959	Phaecochoerus aethiopicus	AY351547
⁴ UGA2003/1	Uganda	Maria Village, Masaka District	2003	Sus scrofa	AY351564

Table 1 (continued)

(continued)

B. A. Lubisi et al.

Virus name	Country of origin	Town/District	Year of isolation	Species of origin	GenBank accession number
YEL88/4	Zambia	Yelani, Petauke, Eastern Province	1988	Sus scrofa	AY351558
³ ZAM01/1	Zambia	Lusaka	2001	Sus scrofa	AY494554
³ ZAM01/2	Zambia	Kafue	2001	Sus scrofa	AY494555
³ ZAM01/3	Zambia	Mazabuka	2001	Sus scrofa	AY494556
³ ZAM01/4	Zambia	Namwala	2001	Sus scrofa	AY494557
³ ZAM01/5	Zambia	Monze	2001	Sus scrofa	AY494558
³ ZAM02/1	Zambia	Kyiundi Ranch	2002	Sus scrofa	AY494559
Zaire	DRC	NK	NK	NK	AY351515
ZAM 88/1	Zambia	Gulumule, Katete, Eastern Province	1988	Sus scrofa	AY351559
ZON 88/1	Zambia	Zondola, Katete, Eastern Province	1988	Sus scrofa	AY351560

Table 1 (continued)

Virus supplied by: ¹Dr. Klauz Lorenz (Divisional Veterinary Officer, Blantyre Agricultural Development Division, Malawi; ²Dr. J. I. G. Masambu, ADRI-TEMEKE, Dar-es-Salaam, Tanzania; ³Chief Research Officer, Virology Laboratory, Central Veterinary Laboratories, Lusaka, Zambia; ⁴Food and Agriculture Organization (FAO), Department of Livestock, Health and Entomology, Uganda; ⁵The National Veterinary Institute, Mozambique. Viruses previously characterised by RFLP analysis in the studies of Sumption et al. 1990 and Dixon & Wilkinson 1988, are denoted by the superscript numbers '6' and '7', respectively. NK: Not known, *Indicates *Ornithodoros* ticks collected from warthog burrows, DRC: Democratic Republic of the Congo

were investigated. A ME tree was inferred with MEGA v 2.1 [15], employing the Tamura-Nei nucleotide substitution model [29] with a gamma distribution shape parameter of 0.80. Genotypes were assigned following previously defined criteria [1].

Results

Trees with comparable topology were obtained with all methods of phylogenetic inference. A total of sixteen *p72* genotypes were consistently recovered (Fig. 1), of which thirteen occur within the East African region (Fig. 2). Genotypes I–X correspond to those identified previously [1], whilst *p72* genotypes XI–XVI are reported here for the first time and are therefore regarded as novel (Table 2). Genotype I (also referred to as the ESACWA genotype), initially identified in pig isolates from Europe, South America, the Caribbean islands and West Africa [1], was found in this study to be present in East African sylvatic hosts such as bushpigs and ticks. Similarly, genotype V, X and XII viruses were recovered from both domestic pigs and from wild vertebrate and invertebrate hosts, indicating that the argasid tick vector moves readily between wild and domestic vertebrates within

Fig. 1. Minimum evolution tree depicting the 16 ASFV p72 genotypes from this study (labeled *I-XVI*) and the three main evolutionary lineages (labeled *A-C*). Bootstrap values >50% are indicated next to the relevant node and were obtained following 10 000 replications. Bootstrap values in brackets are those obtained from NJ analysis

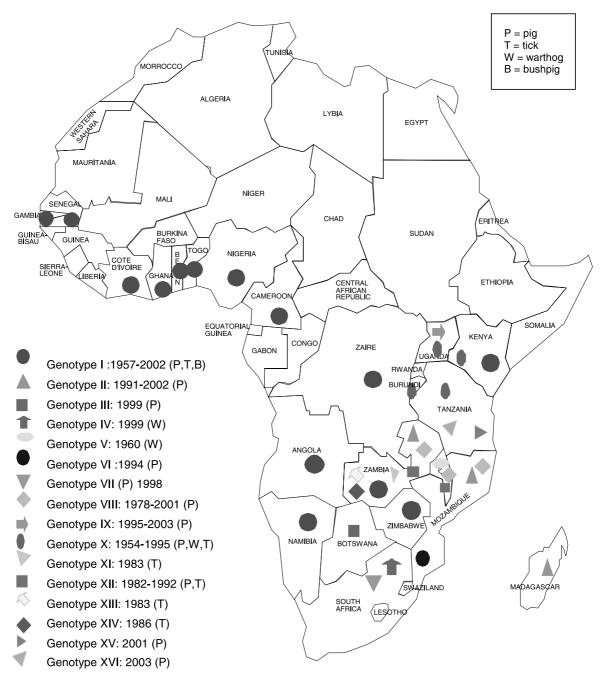


Fig. 2. Geographical distribution of the 16 major *African swine fever virus* genotypes identified by *p72* genotyping

the regions in which these genotypes occur (Fig. 2). These four genotypes I, V, X and XII were shown to be present in three, one, four and two East African countries, respectively (Fig. 2), with some of these genotypes having a field presence of more than four decades (Table 2). Genotypes XI, XIII and XIV appear to be associated

Table 2. D sequences f	Table 2. Distribution, field presence and intra-genotypic variation of the major African swine fever virus p72 genotypes using data of 141 virus sequences from this study and that from previous studies (Lopez-Otin et al. 1990; Yu et al. 1996; Odemuyiwa et al. 2000; Bastos et al. 2003; Bastos et al. 2004)	ttion of the major <i>A</i> pez-Otin et al. 199 Bastos et al. 2004)	r African swine fever vi 1990; Yu et al. 1996; O 04)	<i>irus p72</i> ger demuyiwa e	notypes using et al. 2000; Ba	data of 141 virus astos et al. 2003;
Genotype	Representative countries	Presence in the field	Species affected	No. of viruses	No. of countries	Mean intragenotypic nucleotide variation
Ι	Zambia, Kenya, Zaire, Cameroon, Ghana, Senegal, Nigeria, Gambia, Benin, Côte d'Ivoire, Togo, Angola, Zimbabwe, Namibia, Portugal, Brazil, Spain, Sardinia, Malta, Holland, Belgium, Dominican Republic	1957–2002	Bushpig Domestic pig Tick (warthog)	57	22	0.2%
Π	Mozambique, Zambia, Madagascar	1991–2002	Domestic pig	5	б	0.0%
III	Botswana	1999	Domestic pig	1	1	I
N	Republic of South Africa	1999	Warthog	1	1	I
Λ	Malawi	1960	Domestic pig	4	7	0.4%
			wartnog			
Ν	Mozambique	1994	Domestic pig	m	1	0.0%
ΝII	Republic of South Africa	1998	Domestic pig	1	1	I
VIII	Zambia, Malawi and Mozambique	1978–2001	Domestic pig	39	б	0.1%
IX	Uganda	1995-2003	Domestic pig	0	1	0.0%
X	Uganda, Burundi, Tanzania, Kenya	1954–1995	Domestic pig Tick (warthog) Warthog	22	4	0.6%
XI	Zambia	1983	Tick (warthog)	-	1	I
ΪХ	Malawi and Zambia	1982–1992	Domestic pig	7	2	0.7%
			Tick (warthog)			
XIII	Zambia	1983	Tick (warthog)	1	1	Ι
XIV	Zambia	1986	Tick (warthog)	1	1	Ι
XV	Tanzania	2001	Domestic pig	1	1	I
IVX	Tanzania	2003	Domestic pig	2	1	0.0%

Molecular epidemiology of ASF in East Africa

<pre>CCCCATTA CCTCCATTA CCTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCA ACCTTCCCCCA ACCTTCCCCCCA ACCTTCCCCCCC ACCTTCCCCCCCC</pre>		111222 2679024457	2355667778 9902031285	11111 8899900133 6713658025	1111122222 2223 4568900111 1233 4859817357 9814	22222222222222222222222222222222222222	22222233333 6678990123 4705146246	3333333333333 4455566788 2517836234	3333333334 888899990 5678935680	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IC/3/96 ¹	550					GGCCTCCAT	CGCGTCTTTA	CGGCTCTT	
MIT(W)	Lisbon/57 ¹	•	C		•	•		· · · ·	•	
MT(W) T <th>LIV10/11/ZAM/T(W)</th> <th></th> <th>c</th> <th>••••••</th> <th></th> <th>•</th> <th>•••••••••••••••••••••••••••••••••••••••</th> <th>•••••••••••••••••••••••••••••••••••••••</th> <th>•••••</th> <th></th>	LIV10/11/ZAM/T(W)		c	••••••		•	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••	
MMW T. T. C. A. T. T. C.	VICT90/1			• • • • • • • • •		•	•••••••••••••••••••••••••••••••••••••••	A		
MM(W) T <tht< th=""> T <tht< th=""> <tht< th=""></tht<></tht<></tht<>	LIV9/35/ZAM/T(W)	ΕH		••••••	G.	· · ·		· · · ·	••••••	
MU(0) T_1C A A C C T_1C A T_1C C T_1C A T_1C C T_1C A T_1C C A A C C A A C C T_1C A C C A A C C A A C C A A C C A C C C T T C C C C C C C C C C C C C <th>LIV5/40/ZAM/T(W)</th> <th></th> <th>TC</th> <th>•</th> <th>AA</th> <th></th> <th>•</th> <th>•</th> <th>•••••••••••••••••••••••••••••••••••••••</th> <th></th>	LIV5/40/ZAM/T(W)		TC	•	AA		•	•	•••••••••••••••••••••••••••••••••••••••	
MMTWW T <th>LIV9/31/ZAM/T(W)</th> <th>••••••</th> <th></th> <th>••••••</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>· · ·</th> <th>••••••</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>••••••</th> <th></th>	LIV9/31/ZAM/T(W)	••••••		••••••	· · · · · · · · · · · · · · · · · · ·	· · ·	••••••	· · · · · · · · · · · · · · · · · · ·	••••••	
P C C C C T			، ر.		V.T			••••	• (
P P	ZAMUZI/P	••••••	:	••••••	• • • • • • • • • •	· · ·	••••••	\dots AT	CG.T	
P C.C. C.T. A.T. C.T. T.T. T.T. <t< th=""><th>AF159503⁻</th><th>••••••</th><th> U</th><th>· · · ·</th><th>· · · · · · · · · · · · · · · · · · ·</th><th>· · · ·</th><th>•</th><th>TT</th><th>••••••</th><th></th></t<>	AF159503 ⁻	••••••	 U	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	•	TT	••••••	
CC CCT A G C T	ZAM014/P	•••••	C.A.	••••••	· · · · · · · · · · · · · · · · · · ·	•	•••••	••••••		
P CCT A G C T T T C P CCT A G C T T T C T T C T T T C T T T C T T T C T T T C T T T C T T T C C T T T C T T T C T T T C T T T C C T <tht< th=""> T T T<th>ZAM013/P</th><th>•</th><th>C.A.</th><th>•••••••••••••••••••••••••••••••••••••••</th><th>•••••••••••••••••••••••••••••••••••••••</th><th>· · · · ·</th><th>••••••</th><th>•••••••••••••••••••••••••••••••••••••••</th><th>••••••</th><th></th></tht<>	ZAM013/P	•	C.A.	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	· · · · ·	••••••	•••••••••••••••••••••••••••••••••••••••	••••••	
P C C T <tht< th=""> <tht< th=""> <tht< th=""></tht<></tht<></tht<>	MAD/1/98 ¹	<i>ъ</i>	C.T.	•••••••	ט ייייי	· · ·	• • • • • • • • •	•		
P CTT A G C T	BOT/1/99 ¹	· · · · · · · · · · · · · · · · · · ·	C.T.	G	•	G	C	TC	••••••	
P CT CT A T	RSA/1/99W ¹		C.T.	ט יי		G	:	Τ		
P CT CT CT CT CT T <th>MOZ/94/1¹</th> <th></th> <th>C.T.</th> <th></th> <th>TG</th> <th></th> <th>Τ</th> <th>Τ</th> <th>•</th> <th></th>	MOZ/94/1 ¹		C.T.		TG		Τ	Τ	•	
MUT(W) CT CT AT GT CT T <th< th=""><th>MAL/2002/1/P</th><th></th><th>E C</th><th></th><th>E</th><th></th><th>F</th><th></th><th>A</th><th></th></th<>	MAL/2002/1/P		E C		E		F		A	
Introl	Tengani/60 ¹		C J	C T	E	0	H		A	
Intermediation A C C T <tht< th=""> T T <tht< th=""> <t< th=""><th>MOŽ/1960³</th><th></th><th>L.D.</th><th>C.T.</th><th>Е.</th><th>A</th><th>L</th><th>Τ</th><th></th><th></th></t<></tht<></tht<>	MOŽ/1960 ³		L.D.	C.T.	Е.	A	L	Τ		
MUT(W) A. C.T. A. T.T. GTT.C. T.T. GTT.C. T.T. C. MMUT(W) A. C.C.T. A. T.T. T. C. T.T. C. T.T. C. MMUT(W) A. C.C.T. A. T.T. T. C. T.T. C. T.T. C. MMT(W) A. C.C.T. A. T.T. T. T. T. C. T.T. C. T.T. C. MMT(W) C. A. C.C.T. A. T.T. T. T. T. C. T.T. C. MMT(W) C. A. C.T. A. T.T. T. T. T. T. T. T. C. A. MMP G.T. A. C.T. A. T.T. T.	RSA/1/98 ¹		C.T.		ບ ບ	E.	E.	TC.		
P MMT(W) T GTTCC C T T C T T C C T T C C T T C C T T C C T T C C T T C C T T C C T T C C T T C C T T C C T T C C T T C T T C T T C T T C T <tht< th=""><th>NYA1/2/ZAM/T(W)</th><th>A</th><th>L.D.</th><th>A</th><th>U L</th><th>υ</th><th></th><th>D. F.</th><th></th><th></th></tht<>	NYA1/2/ZAM/T(W)	A	L.D.	A	U L	υ		D. F.		
AMUT(W) A C C T A T <tht< th=""> <tht< <="" th=""><th>TAN/2003/2/P</th><th></th><th>E C</th><th></th><th>. E</th><th></th><th></th><th>C ⊢</th><th></th><th></th></tht<></tht<>	TAN/2003/2/P		E C		. E			C ⊢		
AMUT(W) T </th <th>TAN101/P</th> <th></th> <th>C</th> <th>Τ Τ</th> <th></th> <th></th> <th>F</th> <th></th> <th></th> <th></th>	TAN101/P		C	Τ Τ			F			
UP CT A T	SUM14/11/ZAM/T(W)		υ	A T	U E	U U		T. CGC.	Ċ	
WIT(W) C. A T <tht< th=""> T <tht< th=""> <tht< th=""></tht<></tht<></tht<>	MZI921/MAL/P	: :	50	T	・ で ・ E	10		T TC		
ITT(N)	MFUE6/1/ZAM/T(W)		5	A.T.	0 1		· · ·	T. TC		
UP T_TTA T_TTG T_TTG TTTG TTTTC TTTC TTC TTC	KAB6/2/ZAM/T(Ŵ)		τ,	AT.	:	ъ		TTC	•	
LP TTTA CTT A T T G TA TC A TA TC A TC A TC A TC A TC A TC TA TC TA TC A TC A TC TA TC TC TC TA TC TA TC TA TC TC TC TC	NDA/1/90 ¹	A	Ъ		H			TA TC		
M/P M/P TA <	SAL921/MAL/P	Ε	•		T. T. G. T			TA. T	•	
MIP A. C.T. A. T.	TMB89/1/ZAM/P		C.T.	AT.	С Г	с. 		TA.T	Ċ	
WIP G. T. A. T. T	PHW88/1/ZAM/P	:	C I	A.T.	U F	:		TA TC	U	
MIP G TA T	JON/89/13 ¹	:	C.T.	AT.	ТТ С	:		TA. TC		
I/P A.C C.T. A. T T. T G.T. C. C A. T. T G.T. C. C TA. TC A. T. T G.T. C. C A. T. T G.T C. C A. T. T G.T C. C A. T. T G.T C. C A. C. C A. T. T G. C A. C. C A. T. C A. C. C A. C. C A. C. C A. T. C A. C. C A. T. C A. C. C A. T. C A. C. C A. C. C A. T. C A. C. C A. C. C A. T. C A. C. C A. C. C A. T. C A. T. C A. C. C A. T. C A. T. C A. C. C A. T. C A. T. C A. C. C A. T. C A. C. C A. T. C A. T. C A. T. C A. C. C A. T. C A.	CHG881/ZAM/P	:	C.T.	AT	TTG	:		TA. TC		
L/P G A T	KLI882/ZAM/P	A.	C.T.	AT	С Н	:		TA.TC		
ENW CC.G. T.CCT. C.M.T. T.C.M.	SIY91/2/MAL/P	:	•	:	ъ Б	:		TA. TC		
EN/W CC.G T.CCAT C.A.T.G C.A.T.T G.CC A.T.CCAT C.A.T.CCAT C.A.T.CCAT C.A.T.CCAT C.A.T.CCAT C.A.T.CCAT C.A.T.CCAT C.A.T.CCAT C.A.T.CCAT C.CC A.T.CCAT C.CCAT C.A.T.CCAT C.CC A.T.CCAT C.CC A.T.CCAT C.CC A.T.CCAT C.CC A.T.CCAT C.CC A.T.CCAT C.CC A.T.CCAT C.CC A.T.CCCAT C.CCCAT CCCCAT C.CCCAT C.CCCAT<	UGA/1/95 ¹	י. ט	T.CCT.	Å.	E.	C.C	:	.ATC	C	
N/F C.AG T.CCAT C.A.T.G.C A.T.T.T G. C.A.T.GC AT.CC N/F C.G.G T.CCAT CTAT.G.C C.A.T.T G.C.A.T.CC AT.CC N/F C.G.G T.CCAT CTAT.G.C C.A.T.T G.C.A.T.CC AT.CC W C.G.G T.CCAT CTAT.G.C C.A.T.T G.C.C AT.CC W C.G.G T.CCAT CTAT.G.C C.A.T.T G.C.C AT.CC W C.G.G T.CCAT C.A.T.T G.C.C AT.CC GC W C.G.G T.CCAT CTAT.G.C A.T.T GC AT.CC N C.G.G T.CCAT C.A.T GC AT.CC GC N C.G.G T.CCAT C.A.T GC AT.CC GC AT.CC N C.G.G T.CCAT C.A.T GC AT.CC GC AT.CC N C.G.G T.CCAT CTAT GC AT.CC GC AT.CC N C.G.G T.CCAT CTAT GC CC AT.CC G	MWHOG9/KEN/W		•	 Д.С.	T T	C.C	:	:	C	
INP	BARTLETT2/KEN/W		•	 С. Г.	:		:	:	C	
W CC.G. T.CCAT CTA.T.G. CCA.T.T.T G.C.C. A.T.GCAT CCA.T.CCAT CCA.T.T.T G.C.G. A.T.GCAT CCC A.T.GCAT CCC CCC A.T.GCAT G.C.G. A.T.GCAT CCC CCC A.T.GCAT GCC A.T.GCAT GCC A.T.GCC CCC CCCC CCC CCC C	GASSON/KEN/P	:	•	CTA.T.	TT		:	:	C	
KENW C. G. T. CCAT CTA.T.G. C C. A. T. T G. C.G. A.T. GC AT. CC KENW C. G. T. T.CCAT CTA.T.G. C C. A. T. T G. C.GG AT. GC AT. CC N C. G. T. CCAT CTA.T.G. C A. T. T G. C.GG AT. GC AT. CC N C. G. T. CCAT CTA.T.G. C A. T. T G. C.GG AT. GC AT. CC NW C.G. T.CCAT CTA.T.G. C A. T. T G. C.C. AT. CC AT. CC NW C.G.G T.CCAT CTA.T.G. C A. T. T G. C.C. AT. CC AT. CC NW C.G.G T.CCAT C.A.T.G. C A. T. T G. C.C. AT. CC AT. CC NW C.G.G T.CCAT C.A.T.G. C A. T. T G. C.C. AT. CC AT. CC ANW C.G.G T.CCAT C.A.T.G. C A. T. T G. C.C. AT. CC AT. CC ANW C.G.G T.CCAT C.A.T.G. C A. T. T G. C.C. AT. CC AT. CC	DOIG/KEN/W	G.		 Э. Е.		C.C		:	C	
KEN/W C. G. T. CCAT CTA T.G. C. A. T. T. G. G. AT. GC AT. GC AT. CC N C. G. T. CCAT CTA T.G. C. A. T. T G. CG AT. GC AT. CC N C. G. T. CCAT CTA T.G. C. A. T. T G. CG AT. CC N C. G. T. CCAT CTA T.G. C. A. T. T G. CC AT. CC SNW C. G. T. CCAT CTA T.G. A. T. T G. CC AT. CC SNW C. G. T. CCAT C. A. T. T G. CC AT. CC SNW C. G. T. CCAT C. A. T.G. AT. CC SNW C. G. A. T.G. AT. CC AT. CC ANW C. G. A. T.G. A. T. T G. CC AT. CC ANW C. G. C. C. A. T. T G. CC AT. CC	HindeII/59 ¹	GG.		CTA.T.G.	TT.	C.C.			C	
KENW CC.G T.CCAT C.A.T.G. C.A.T.T.T.G. C.A.T.T.G. A.T.T.G. A.T.CCAT CCAT CCAT <th>Uganda⁴</th> <th>С С</th> <th></th> <th>CTA T G</th> <th>E</th> <th>50 10 10</th> <th></th> <th></th> <th>C</th> <th></th>	Uganda ⁴	С С		CTA T G	E	50 10 10			C	
C.G. T.CCAT CTA.T.G.C A.T.G.T G.C.C. A.T.GC CC. CAG T.CCAT CTA.T.G.C A.T.T.T G.C.C. A.T.GC CC CTG T.CCAT CTA.T.G.C A.T.T.T G.C.C. A.T.GC CC CTG T.CCAT C.A.T.G.C A.T.T.T G.C.C. A.T.CC CC.G T.CCAT C.A.T.G.C T.T G.C.C. A.T.CC C.G.G T.CCAT C.A.T.G.C T.T G.C.C. A.T.CC C.G.G T.CCAT G.C.C. A.TTGC C.C A.T.CC C.G.G T.CCAT G.C.C. A.TTGC C A.T.CC C.G.G T.CCAT G.C.C. A.TTGC C A.T.CC C.G.G T.G.T.G.C T.T.T G.C.C. A.T.CC C C.G.G T.G.C T.T.T G.C.C. T.CC C C CC C	KILLEAN1/KEN/W		•	C.A.T.G.	L L	C C	H		U	
CAG. T.CCAT CTA.T.G.C A.T.T.T G.C.C. A.T.GC C.C. CT.G. T.CCAT C.A.T.G.C A.T.T G.C.C. A.T.GC C. C.G.G. T.CCAT C.A.T.G.C A.T.T G.C.C. A.T.GC C.G.G. T.CCAT C.A.T.G.C A.T.T G.C.C. A.T.GC C.G.G. T.CCAT C.A.T.G.C A.T.T G.C.C. A.T.GC C.G.G. T.CCAT C.A.T.G.C A.T.GC C.G.G. T.CCAT C.A.T.G.C A.T.GC C.G.G. T.G.C T.T.T G.C.C. <td< th=""><th>HINDE1/KEN</th><th>0</th><th></th><th>CTA T.G.</th><th>L .</th><th>с. с.</th><th>F</th><th></th><th>C</th><th></th></td<>	HINDE1/KEN	0		CTA T.G.	L .	с. с.	F		C	
CT.GT.CCAT C.A.T.G.CAT.T.T G.CCCATGC ATCC C.GT.CCAT C.A.T.G.CAT.T.T G.CCCATGC ATCC C.GT.CCAT C.A.T.G.CAT.T G.CCCAGC ATCC C.GT.CCAT C.A.T.G.CAT.T G.CCCAGC ATCC C.GT.CCAT C.A.T.G.CAT.T.T G.CCCAGC ATCC	TRENCH/KEN/W	CAG	• •	CTA T.G.	E.	0.0	Ē		U	
CGT.CCAT C.A.T.GCATT GC.CATGC .ATCC CGT.CCAT C.A.T.GCATT GC.CAGC .ATCC CGT.CCAT C.A.T.GCATT GC.CAGC .ATCC	DAVIS/KEN/W	CT C		C ⊳ T	Ē	U	F		U	
C.G. T.CCAT C.A.T.G.C.A.T. T.G.C.C. AGC.ATCC.	MWHOG1/KEN/W	で て	•	C F ⊲	Ē				J	
CGT.CCAT C.A.T.GCATT GC.CAGC .ATCC.	11GA/3/95 ¹		•		• E					
	KIRW80/1/TAN/W	:	•		- E			•		
	MINTEL TO MAN WIN	:	•	T.A.		· · · · · · · · ·	·A····GC	···	· · · · CA · · ·	

with relevant variable site numbers being shown in bold above master sequence IC3/96. Dots indicate nucleotide sites identical to that of the master sequence, and superscript numbers 1 through 4 indicate those viruses included in the studies of Bastos et al. 2003, Odemuyiwa et al. 2000; Bastos et al. 2004 and Yu et al. 1996, respectively Fig. 3. Nucleotide sequence alignment of the 49 unique sequences identified in this study and in previous studies. Only variable sites are presented

B. A. Lubisi et al.

exclusively with a sylvatic cycle as these viruses, which were collected in Zambia between 1983 and 1986, were all of tick (from warthog burrow) origin. Genotypes II, VI, VIII, IX, XV and XVI comprised exclusively domestic pig strains. Of these, II and VIII were confined to three countries each, and circulated for between 10 and 20 years in the field, genotype IX caused two temporally unrelated outbreaks in domestic pigs in 1995 and 2003, while the remaining genotypes were restricted to one country each and were associated with a single epizootic (and sometimes a single virus). The molecular phylogeny further revealed the presence of three distinct evolutionary groups (labeled A–C in Fig. 1). Viruses sharing a common evolutionary history fall within the following genotype clades:

- (A) Genotypes I–VII (80% bootstrap support)
- (B) Genotypes VIII and XI–XVI (66% bootstrap support)
- (C) Genotypes IX and X (100% bootstrap support)

The 404 nucleotide region sequenced was A-T rich (57.3%) with a transition: transversion (si/sv) ratio of 4.1. There were 71 variable sites (Fig. 3), of which 49 were parsimony informative and 22 were singletons. On amino acid level, 20 of the 134 codon sites were variable and 6 of these variable sites were parsimony informative. Levels of mean intra-genotypic variation ranged from 0% (genotypes II, VI, IX and XVI) to 0.7% (genotype XII), whilst mean inter-genotypic levels of variation ranged from 0.9% (between genotypes V and VI, and between genotypes XI and XII) to 8.0% (between genotypes V and X). The maximum level of sequence divergence between any two isolates was 9.8%.

Discussion

The presence of six more East African genotypes than was previously identified [1] was revealed by the molecular phylogeny. Genotypes I, V, X, XI, XIII and XIV are examples of viruses that are present within a sylvatic cycle (occurring either within eyeless tampans or sylvatic vertebrate hosts, or both), half of which have also caused outbreaks in domestic pigs. Genotype XII which comprised two viruses isolated 10 years apart from a tick and domestic pig may be an example of a pig-tick cycle but this requires confirmation by more intensive screening of sylvatic vertebrates within Malawi and Zambia. The pig-to-pig cycle is however classically exemplified by genotype VIII, which has been in active circulation for at least 23 years and is represented by 39 outbreak strains from three countries. A genetic feature of a domestic pig cycle appears to be a pronounced lack of genetic variation, as both genotype I in West Africa (where it has only been isolated from domestic pigs) and genotype VIII in East Africa have extremely low levels of intratypic variation (0.2% and 0.1%, respectively), with most isolates being identical to each other. This lack of genetic variation was also found following restriction enzyme profiling of some genotype VIII viruses from Malawi [28]. Although sample sizes of the remaining genotypes are inadequate to permit speculation on the epidemiological cycles into which they may be classified, the results indicate that all three ASF epidemiological cycles appear to exist in East Africa. Wherever a sylvatic cycle is confirmed, higher levels of genetic variation are recovered [1, 7].

The East African region is the most genotype rich, with thirteen *p72* genotypes being identified. This far exceeds West Africa, which only contains one genotype in the ten countries previously screened [1]. Southern Africa is intermediate with at least eight genotypes (when Mozambique is excluded from the results) being identified thus far [5]. While many of the East African genotypes are apparently country specific (V, VI, IX, XI, XIII, XIV, XV and XVI), others (I, II, V, VIII, X and XII) are not restricted by national boundaries. In addition, most countries within the East African region have more than one genotype within their borders. Zambia is particularly genotype rich with seven genotypes being identified, followed by Mozambique with four, Malawi and Tanzania with three each, and Kenya and Uganda with two each.

The ASFV introduced to Europe through illicit movement of pig products [17] and which is widespread throughout West Africa [1] may have its origins in East Africa as this study revealed it to be present in the natural sylvatic hosts in Kenya (Kimakia I and Kimakia II viruses) as far back as 1961. As the classical ASFV transmission mode involving a sylvatic cycle could not be proven in West Africa [22], it is likely that the disease was originally introduced from the East of the continent before becoming established in a domestic pig cycle in West Africa. The more widespread distribution of the ESACWA genotype identified in this study makes this genotype the most successful and extensively distributed genotype (being present in 22 countries) described to date.

The low levels of intratypic genetic diversity within the large and homogeneous genotype VIII necessitates an investigation into a more variable gene region in order to clarify within genotype relationships. In addition, the possibility that genotype I, which was previously believed to be confined to West Africa, originated from East Africa should be confirmed through sequencing of an alternative and more informative gene region. By focusing on typing ASFV from domestic pigs in East and Central African countries, where genotype I is present in the sylvatic hosts, it may also be possible to trace the route of entry of this virus into West Africa.

Both the sylvatic and domestic pig cycles appear to play an important role in the epidemiology of ASF in East Africa. The existence of multiple genotypes within countries, trans-boundary distribution of genotypes between countries and regional genotype richness adds to the complexity of ASF epidemiology in East Africa. As genotyping in this study was based on partial characterization of the gene coding for the immunodominant protein VP72, future vaccination campaigns could utilize this information when formulating vaccine for specific countries, since immunizing pigs with antigens from viruses distantly related to those with which they are challenged offers less protection [4, 20]. These factors are important considerations that need to be taken into account for effective control of the disease in East Africa.

Acknowledgements

We would like to express our sincere gratitude to Dr. Comfort Phiri for helpful information on some of the isolates and the late Mr. Simon Mokuwe (both of OVI-EDD), for invaluable technical assistance. Our gratitude also extends to collaborators in Mozambique, Tanzania, Uganda and Zambia for supplying samples and information, Dr. M.-L. Penrith for reviewing the manuscript and two anonymous reviewers for helpful comments. This project was partially funded by the Red Meat Research and Development Trust of South Africa.

References

- 1. Bastos ADS, Penrith M-L, Crucière C, Edrich JL, Hutchings G, Roger F, Couacy-Hymann E, Thomson GR (2003) Genotyping field strains of African swine fever virus by partial *p72* gene characterization. Arch Virol 148: 693–706
- Bastos ADS, Penrith M-L, Macome F, Pinto F, Thomson GR (2004) Co-circulation of two genetically distinct viruses in an outbreak of African swine fever in Mozambique: no evidence for individual co-infection. Vet Microbiol 103: 169–182
- Boom R, Sol CJ, Salimans MMM, Jansen CL, Wertheim-Van Dillen PME, Van Der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28: 495–503
- 4. Boinas FS, Hutchings GH, Dixon LK, Wilkinson PJ (2004) Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J Gen Virol 85: 2177–2187
- 5. Boshoff CI, Bastos ADS, Gerber L, Vosloo W (2004) Determination of the origin and spread of African swine fever outbreaks in southern Africa by genetic characterization of the virus (in prep)
- 6. Dixon LK, Costa JV, Escribano JM, Rock DL, Viñuela E, Wilkinson PJ (2000) Family Asfarviridae. In: Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carestens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RBFA, Murphy CM, Fauquet DHL, Bishop SA, Ghabrial AW, Javis GP, Martelli MD (eds) Virus taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses. Summers Academic Press, San Diego, pp 159–165
- Dixon L, Wilkinson PJ (1988) Genetic diversity of African swine fever virus isolates from soft ticks (Ornithodoros moubata) inhabiting warthog burrows in Zambia. J Gen Virol 69: 2981–2993
- Donaldson AI, Ferris NP (1976) The survival of some airborne animal viruses in relation to relative humidity. Vet Microbiol 1: 413–420
- Gonzague M, Roger F, Bastos A, Burger C, Randriamparany T, Smondack S, Cruciere C (2001) Isolation of a non-haemadsorbing, non-cytopathic strain of African swine fever virus in Madagascar. Epidemiol Infect 126(3): 453–459
- Groocock CM, Hess WR, Gladney WJ (1980) Experimental transmission of African swine fever virus by *Ornithodoros coriaceus*, an argasid tick indigenous to the United States. Am J Vet Res 41(4): 591–594
- 11. Haresnape JM (1984) African swine fever in Malawi. Trop Anim Health Prod 16: 123–125
- 12. Harley EH (1994) DAPSA. DNA and protein sequence analysis, version 2.9. Department of Chemical Pathology, University of Cape Town, South Africa
- 13. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174
- 14. Hays SM (1996) African swine fever poses risk to U.S. hogs. Agricult Res 44: 14-17
- 15. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA 2. Molecular Evolutionary Genetics Analysis software, version 2.0 Pennyslavia State University, USA

- 2452 B. A. Lubisi et al.: Molecular epidemiology of African swine fever in East Africa
- Lopez-Otin C, Freije JM, Parra F, Mendez E, Vinuela E (1990) Mapping and sequence of the gene coding for protein p72, the major capsid protein of African swine fever virus. Virology 175: 477–484
- Malmquist WA, Hay D (1960) Haemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res 21: 104–108
- Manso Ribeiro J, Rosa Azevedo JA, Texeira MJO, Braco Forte MC, Rodrigues Ribeiro AM, Oliveira E, Noronha F, Grave Perreira C, Dias Viagrio J (1958) An atypical strain of swine fever virus in Portugal / Peste porcine africaine provoquée par une souche different (Souche L) de la souche classique. Bull Off Int Epiz 50: 516–534
- 19. Montgomery RE (1921) On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol 34: 159–191
- 20. Neilan JG, Zsak L, Lu Z, Burrage TG, Kutish GF, Rock DL (2004) Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 319: 337–342
- 21. Odemuyiwa SO, Adebayo IA, Ammerlaan W, Ajuwape AT, Alaka OO, Oyedele OI, Soyelu KO, Olaleye DO, Otesile EB, Muller CP (2000) An outbreak of African swine fever in Nigeria: virus isolation and molecular characterization of the VP72 gene of a first isolate from West Africa. Virus Genes 20(2): 139–142
- Penrith ML, Thomson GR, Bastos ADS (2005) African swine fever. In: Coetzer JAW, Tustin RC (eds) Infectious diseases of Livestock. Oxford University Press, Southern Africa, pp 1087–1119
- 23. Pini A, Hurter LR (1975) African Swine Fever: An epizootiological review with special reference to the South African situation. J S Afr Vet Med Assoc 46(3): 227–232
- 24. Plowright W, Parker J (1967) The stability of African swine fever virus with particular reference to heat and pH inactivation. Arch Ges Virusforsch 21(3): 383–402
- 25. Plowright W, Parker J, Pierce MA (1969) The epizootiology of African swine fever in Africa. Vet Rec 85: 668–674
- 26. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. BioInformatics 14(9): 817–818
- 27. Swofford DL (1998) PAUP: phylogenetic analysis using parsimony (and other methods). Sinauer, Sunderland, Mass
- 28. Sumption KN, Hutchings GH, Wilkinson PL, Dixon LK (1990) Variable regions on the genome of Malawi isolates of African swine fever virus. J Gen Virol 71: 2331–2340
- 29. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3): 512–526
- 30. Thomson GR (1985) The epidemiology of African swine fever: the role of free-living hosts in Africa. Onderstepoort J Vet Res 52: 201–209
- 31. Tulman ER, Rock DL (2001) Novel virulence and host range genes of African swine fever virus. Curr Opin Microbiol 4: 456–461
- Yu M, Morrisy CJ, Westbury HA (1996) Strong sequence conservation of African swine fever virus p72 protein provides the molecular basis for its antigenic stability. Arch Virol 141: 1795–1802

Author's address: Dr. A. D. S. Bastos, Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; e-mail: ADBastos@zoology.up.ac.za