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Summary

The present study describes a neural network approach for
modeling and making short-term predictions on the total
solar radiation time series.

The future hourly values of total solar radiation for several
years are predicted, by extracting knowledge from their past
values, using feedforward backpropagation neural networks.
The results are tested using various sets of non training
measurements, the findings are very encouraging and the
model is found able to simulate the future values of total
solar radiation time series based on their past values. ‘“Multi-
lag” output predictions are performed using the predicted
values to the input database in order to model future total
solar radiation values with sufficient accuracy. Furthermore,
an autoregressive model is developed for analysing and re-
presenting the total solar radiation time series. The predicted
values of solar radiation are compared with the observed data
series and it was found that the neural network approach
leads to better predictions than the AR model.

1. Introduction

In recent years, there has been a growing interest
in applying intelligent techniques to time series
prediction. The intelligent techniques such as
neural networks of fuzzy logic methods can be
designed and used for predicting the future values
of a non linear dynamic process on the basis of
collected historical data (Farmer and Sidorowich,
1987; Teodorescu, 1990; Cichocki and Unbe-
hauen, 1993; Pham and Liu, 1995).

In fact, predicting the future values of a time
series is a very old and general problem which has
potential applications in several fields working
with time series such as atmospheric sciences,
economic and engineering applications, climatol-
ogy, etc. The most important means of predicting
the future can be presented as follows:

a. One of the most powerful and accurate ap-
proaches of time series prediction is the
development of analytic models based on the
knowledge of a law underlying the analytic
given dynamic process or phenomenon (Wei-
gend et al.,, 1990). These models are able to
give sufficiently accurate estimations, provided
that such a law can be discovered and de-
scribed using, for example, a set of differential
equations or parameterised expressions. How-
ever, the development of such an analytic
model describing a dynamic process is often a
very difficult task taking into account that the
information about a dynamic phenomenon is
often partial and incomplete, the initial and
boundary conditions of the problem cannot
always be completely and clearly specified and
sometimes the analytic model requires a large
number of non available input parameters.

b. Another less powerful approach is the dis-
covery of several strong empirical regularities
or periodicities during the observation of the
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dynamic process (Farmer and Sidorowich,
1988; Cichocki and Unbehauen, 1993). How-
ever, the empirical regularities or periodicities
are not always evident as they are masked by
noise (Chakraborty et al., 1992). Moreover,
many real world processes are described by
chaotic time series for which long-term pre-
dictions are not possible since the uncertainty
of the prediction increases exponentially with
time.

c. There are various stochastic models for time-
series analysis, such as the autoregressive
models, which assume linear processes. The
autoregressive models are predictive models
describing the available data and they represent
a realization of the process to be simulated
using a suitable set of parameters, so that this
set becomes representative of the process itself
(Box and Jenkins, 1970). Autoregressive
models are attractive because they are simple
to use. They come from a large family of time
series models called autoregressive, moving-
average models, (ARMA), (Leite and Peixoto,
1996; Lalarukh and Jafri, 1997). Autoregres-
sive stochastic models are essentially linear
models, simple and understandable but incap-
able of simulating the nonlinear nature of
various dynamic processes of the real world.

d. Fourier techniques have also extensively been
used to analyse and predict time series
(Carson, 1963; Lamba and Khambete, 1991;
El-Shal and Mayhoub, 1995).

e. Although chaos prevents a long-term predict-
ability, a short-time forecasting is possible and
very promising results have been obtained by
using an intelligent technique such as neural
networks of fuzzy logic methods for nonlinear
modeling of multivariate time-series (Li et al.,
1990). Artificial neural networks are computa-
tional models which can be regarded as an
attempt to simulate in a simpler way the
structure and functions of the human brain.
Neural networks belong to the class of “data-
driven” approaches, instead of ‘‘model-dri-
ven” approaches because the analysis and the
results depend on the available data (Chakra-
borty et al., 1992). Relationships between
variables, models, laws and predictions are
constructed after building a machine which
simulates the considered data. The process of
constructing such a machine based on avail-

able data is addressed by certain algorithms
like ‘“‘perceptron” (Rosenblatt, 1961) or
“backpropagation” (Rumelhart et al., 1986).
Various researchers proposed learning algo-
rithms for time series prediction and they
applied them to feedforward multilayered or
recurrent neural networks (Wong, 1991; Hon-
dou and Sawada, 1994; Connor et al., 1994,
Eisenstein et al., 1995; Dash et al., 1995;
Kalogirou et al., 1997).

In the present study a neural network approach
is used for the prediction of future values of total
solar radiation time-series for several years. Solar
radiation measurements are rather sparse and for
this reason theoretical deterministic models and
intelligent data driven approaches are developed
to predict the available solar radiation. Various
atmospheric deterministic models have been
developed for the prediction of solar radiation
using as inputs several meteorological parameters
such as air temperature, relative humidity, sun-
shine duration and cloudiness. These parameters
are usually measured extensively at all the
meteorological stations.

In Santamouris et al. (1999) three models,
one deterministic atmospheric model and two
intelligent data driven models, estimating the total
short-wave radiation using as inputs several
meteorological parameters, were presented and
compared. The atmospheric model is an analytical
approach, based on parameterised expressions,
which requires as inputs several climatological
parameters such as air temperature, relative
humidity, sunshine duration, cloudiness, surface
albedo etc. This model was tested and found able
to give sufficiently accurate estimations provided
that all the required input parameters are avail-
able. The intelligent data driven approaches were
a neural network model and a fuzzy logic method.
From the comparison of the two intelligent
methods results with the results of the atmospheric
model, it was observed that the performance of the
two data driven models is very satisfactory
especially for the summer period.

The main objectives of the present study are to
design a new neural network approach for pre-
dicting the future values of total solar radiation
time series, to examine its ability to model and
forecast the total solar radiation and to investigate
its limitations. The applicability of the neural



The total solar radiation time series simulation in Athens, using neural networks 187

network system in ‘“one-lag” and ‘“‘multi-lag”
output radiation predictions is examined and
discussed. Furthermore, the feasibility of the
system is investigated by comparing its results
with the results of a conventional linear auto-
regressive time series prediction model. The
advantages and disadvantages of the neural net-
work approach as well of the autoregressive
model are presented and discussed. The paper is
organised as follows: In the first section there is an
analytical description of the neural network
architecture. The second section contains the de-
scription of the data base, the presentation of the
neural network methods’s predictive ability as
well as the results from a comparison between the
neural network method and a linear autoregressive
model. Finally, the conclusions are given in the
last section.

2. Modeling the total solar radiation

Artificial neural networks are computing systems
which attempt to simulate the structure and
function of biological neurons. Neural networks
generally consist of a number of interconnected
processing elements or neurons. How the inter-
neuron connections are arranged and the nature

Output Layer ——>

Y1

Hidden Layer ——>

Input Layer ——>

of the connections determine the structure of a
network. Neural networks can be classified
according to their structures into the following
two types (Pham and Liu, 1995):

Feedforward networks: In a feedforward net-
work, the neurons are generally grouped into
layers. Signals flow always from the input layer
through to the output layer via unidirectional
connections, the neurons being connected from
one layer to the next, but not within the same
layer.

Recurrent networks: In a recurrent network, the
outputs of some neurons are feedback to the
same neurons or to neurons in preceding layers.
Therefore, signals can flow in both forward and
backward directions.

A multi-layer feedforward neural network is
shown in Fig. 1. The network consists of three
layers: an input layer, an output layer and an
intermediate or hidden layer. The neurons in the
input layer act only as buffers for distributing the
input signals to the neurons in the hidden layer.
The dashed lines in Fig. 1 mean that there are
more neurons in each layer than the represented
in this figure. Figure 2 shows the basic artificial
neuron of the hidden layer.

Fig. 1. Architecture of a neural
Xin network system
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The time series prediction problem using a
neural network approach can be separated into
three successive steps or subproblems:

e model building or neural network architecture
e the learning or training process
e the testing or diagnostic checking

In the present study a multi-layer feedforward
network based on backpropagation learning pro-
cedure is designed for predicting the total solar
radiation time series. This type of neural network
is extensively used in the time series prediction.
The selected neural network architecture consists
of one hidden layer of 16 log-sigmoid neurons
followed by an output layer of one linear neuron.
This scheme was selected after trying several
ones as it gave the better convergence.

Learning is achieved using the backpropaga-
tion algorithm of Rumelhart et al. (1986) to train
the network.

A learning rate of 0.3 and an error goal of 0.5
were selected while the number of epochs varied
between 3000 and 4000 in all cases.

3. Results and discussion

3.1 Data base

The time series generated in the present paper are
total solar radiation measured on an horizontal
surface at the Institute of Meteorology and
Physics of the Atmospheric Environment of the
National Observatory of Athens. The (IMPAE/
NOE) Institute is situated on a hill at the centre of
Athens (37.967° N, 23.717° E, altidute = 107 m).

Output Fig. 2. Presentation of a basic arti-

ficial neuron

Continuous observations of standard meteorologi-
cal parameters have been performed at this
location, the close surroundings of which remain
unaltered, since 1864.

Integrated hourly, daily and monthly values of
total solar radiation in MJ/m? are measured at the
Observatory with Kipp-Zonen and Eppley actino-
meters and pyranometers respectively. Hourly
values of total solar radiation for twelve years
(1984-1995) and for various months of the year
are used for training and testing the network. The
data are divided into a training set which provides
a fitting approximation function and a testing set
which is used to validate the ability of prediction
of the already trained network (Weigend et al.,
1990). Nine years (1984-1992) were used for
training the neural network and three years (1993,
1994 and 1995) for testing the training data. The
night-time values of total solar radiation, which
probably are zero values, are omitted from the
training and testing sets and therefore they are not
used in the training and testing processes.

Before training, it is useful to scale the inputs
and targets by using a pre-processing procedure.
In the present application the used approach for
scaling network inputs and targets is to normalise
the mean and standard deviation of the training
set. This procedure normalises the inputs and
targets so that they will have zero mean and unity
standard deviation.

3.2 “One lag” predictions

In the “one lag” output prediction the future
values of the total solar radiation time series are
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based only on actual past values. The neural
network is designed to predict the next value of
the time series given a number of past values of
the series. In this case, the network is able to
provide only one step-ahead prediction (“‘one lag”
prediction).

The past eight values of the total solar radiation
time series are used for predicting the next ninth
value by the previously described neural network
(Elsner, 1992; Mihalakakou et al., 1998). For
example, if the series was represented as G(t;)
where i = 1,2,..., N and the first set of inputs is
{G(1),G(2),...,G(8)}, then the predicted output
would be Gy. Similarly, the second set of inputs is
{G(2),G(3),...,G(9)} and the predicted output
is Gio. The selection of the used past values
number for the prediction of the next radiation
value was decided after various trial runs using
five to ten values. The runs indicated that the net-
work efficiency, regarding the obtained outputs,
increased when five up to eight past values were
used as inputs for the radiation prediction, while
for nine or more values, the efficiency remained
unchanged. The network efficiency increases as
the mean squared error between the measured and
predicted data becomes smaller. Training con-
tinues over all training pairs for several thousand
iterations. The network is asked to predict the next
value in the time sequence. The error between the
value predicted by the network and the measured
one is then measured and propagated backwards
along the feedforward connections. The training
process is performed on hourly total solar
radiation data for the first nine years of the whole
set of measurements (1984-1992) and for various
months of the year. As learning occurs the sum-
squared error decreases. Results from trial runs
indicated that adding more hidden layers or nodes
did not significantly improve the network’s pre-
diction capabilities, rather only slowed the con-
vergence.

Calculations are performed for all the months
of the considered data base and the following two
time periods are selected for the presentation of
results:

e The cold period, which consists of the months
of November, December, January and February
and March. The months of January and
February are regarded as representative of the
cold period for the results’ presentation.

e The warm period of the year, which consists of
the months of May, June, July, August and
September. Accordingly, the months of July
and August were considered to be the repre-
sentative months of the warm period for the
presentation of results.

The temporal variation of the predicted and
measured total solar radiation values for four
randomly selected cases containing three con-
tinual days of July 1989, three continual days of
August 1990, three continual days of January
1990 and three continual days of February 1987 is
shown in Fig. 3. The first case consists of the 5t
6™ and 7™ of July 1989, the second case of
the 18", 19" and 20™ of August 1990, the third
of the 2™, 3 and 4" of January 1990 and the
fourth of the 14", 15" and 16" of February 1987.
In this figure, the continual line indicates the
measured total solar radiation values while the
cross symbols indicate the model’s predictions. As
shown, there is a good agreement between the
predicted and the measured data. Quite similar
performance was observed for the whole training
set of data.

Figure 4 shows the comparison of the measured
integrated hourly total solar radiation time series
values with the neural network predicted ones for
two years from the training set of data, (1986,
1990), for the months of July and August and for
two other years from the training set of data,
(1985 and 1989), for January and February. As it
can be seen from Fig. 4, the predicted values
perform well with the measured ones. For most
cases, the radiation differences are less than
0.20MJ /m2 while the root mean squared error
between the measured and the estimated values
is found equal to 0.18 MJ/m* for the month of
July, 0.17 MJ / m® for the month of August,
0.21MJ/ m for the month of January and
0.23M1J/ m”. The correlation coefficient between
measured and predicted values is, in most cases
and for the whole set of training data, better than
0.95. In Fig. 4, the correlation coefficient was 0.97
for the month of July, 0.96 for the month of July,
0.93 for the month of January and 0.94 for the
month of February.

The neural network’s predictions were checked
by comparing its results with the actual values of a
testing set of data which consists of the hourly
total solar radiation measured values for the years
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Fig. 3. Temporal variatioin of the
predicted with the neural network
and of the measured total solar
radiation values for one randomly
selected case of three continual
days of July 1989 (5%, 6, and
7", of August 1990 (18, 19,
and 20"), of January 1990 (2",
31, and 4"), and of February
1987 (14, 15% and 16™)

Fig. 4. Comparison of the mea-
sured with the neural network
predicted total solar radiation
values for two years from the
training set of data for the months
of July, August, January and
February
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1993, 1994 and 1995. The temporal variation of
the predicted from the network total solar
radiation values and of the testing set measured
values for three randomly selected continual days
of July 1993 (1%, 2", 3) of August 1994 (13%,
14t 15", of January 1995 (2", 3, 4™), and of
February 1995 (9", 10", 11") are presented in
Fig. 5. Again, the continual line indicates the
measured total solar radiation values while the
cross symbols indicate the model’s predictions. As
it can be seen the neural network predicted values
perform well on the testing set of measurements.
Quite similar performance has been observed for
the whole set of the testing data. Figure 6 shows
the comparison between the predicted hourly
values and the measured values of total solar
radiation for the testing set of data. The months of
July and August of 1994 as well the months of
January and February 1995 are used in Fig. 6 for
the presentation of the results. The mean squared
errors are found equal to 0.22MJ / m? for July,
0.19MJ/m* for August 0.25MJ/m? for January
and 0.23MJ/ m® for February. The correlation
coefficients are 0.94 for July, 0.92 for August,

oM N
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Jf L JY 1 \ Fig. 5. Temporal variation of the
predicted total solar radiation
X—# &\ J& values and of the testing set
0 1 30

measurements for three continual
days of July 1993 (1%, 2", and
3, of August 1994 (13, 14,
and 15"), of January 1995 (2",
31, 4%y and of February 1995
(9lh’ loth’ llth)
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0.90 for January and 0.91 for the month of
February. Similar performance is observed for the
whole set of the testing data. The present results
are very encouraging and the neural network
approach is found able to simulate and predict the
future values of total solar radiation time series
with sufficient accuracy.

3.3 “Multi-lag” predictions

In order to achieve a prediction several steps into
the future, (“‘multi-lag” prediction), the predicted
output is fed back to the input for the next
prediction and the other input data are shifted
back one unit and so on. For this purpose, a value
is predicted one step into the future and then this
predicted value is used as one of the lagged inputs
for the next prediction two time steps into the
future. Similarly, the predicted value at this
second time step, as well as the previous time
step are used a lagged inputs for the next
prediction three time steps into the future. This
is the “multi-lag” prediction where the predicted
values are appended to the network input database
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and used to predict future values. For instance, the
network is used to predict the seventh value G
from the measured total solar raditaion values
G(1),...,G(6), then the next neural network
prediction Gg 1is made using as inputs
G(2),...,G(6),G7, and the subsequent network
prediction Gy is made using the radiation values
G(3), G(4), G(5), G(6), G; and Gs. In the
beginning, six measured solar radiation values
were used as inputs for the first prediction as in
the “one-lag” prediction, and the ‘“‘multi-lag”
prediction results were not satisfactory. Further-
more, the number of measured values used as
inputs for the prediction of the first output is
increased in order to improve the performance of
the method and the six input values became seven,
eight, etc. Thus, it is estimated that the more
radiation values are appended as inputs for the
prediction of the first output, the better the longer-
term predictions can be made. Six to thirteen past
solar radiation values are used as inputs for the
prediction of the first output. This work has been
done for nearly every month of the whole set of
testing data (1993, 1994 and 1995) and it was
found that using the radiation measured values for
thirteen hours, it is possible to predict with
sufficient accuracy, the total solar radiation values

Measured Radiation (MJ/m2)

August 1994, for January 1995
and for February 1995

ten to twenty days in advance for all the summer
months.

In Fig. 7 the temporal variation of the measured
and predicted total solar radiation values for a
randomly selected case of 14 days of July 1995
(181315 of July 1995), using 13 hourly radiation
measurements as inputs for the first output pre-
diction, is presented. As shown from this figure,
for the first 10 days time period the predicted
values are in close agreement with the measured
data. Figure 8 shows the temporal variation of the
relative error (%RE) between measured and pre-
dicted total solar radiation values for the fourteen
days of July 1995 shown in Fig. 7.

(%RE) = [(Rmeas - Rpred)/Rmeas]>l< 100

where, Ryeas and Rpeq are the measured and
predicted from the neural network model total
solar radiation values respectively. For the first ten
days, 90% of the (%RE) values fall between
—10% and 15%. For the eleventh day, 90% of the
(%RE) values fall between —23% and 31%. For
the twelfth day 90% of the (%RE) values fall
between —49% and 53% while for the thirteenth
day between —80% and —69% and for the
fourteenth day the 90% of the (%RE) values fall
between —123% and 70%, (Fig. 8).
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Table 1. Temporal variation of the root mean squared error
(%) between the measured and the predicted total solar
radiation values for the 14 days of July 1995, (18"-31%)

Root mean squared error
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Table 1 presents the (%) root mean squared
errors calculated between the measured and the
predicted total solar radiation values for the 14
days of July 1995 shown in Fig. 7. As shown, the
predicted results are better for the first ten days
while the predictive ability of the network drops
since the error (uncertainty of the prediction)
increases exponentially with time. Similar results
have been achieved for August 1993, (131"—29t),
using 13 hourly radiation measurements as inputs
for the first output prediction. In this case, for the
first 14 days time period the predicted values are
in close agreement with the measured data.

Using the present neural network system it is
not always possible to predict the total solar
radiation for fifteen days in any case and under
any climatic conditions. However, various clima-
tological parameters such as the total solar
radiation or the air temperature can be predicted
for small periods with very promising results
using a nonlinear method such as neural network
approaches. In the present research the predicted
period is mainly concentrated in the summer
months. Summer months are characterised as
warm and very dry in the Mediterranean area, and
they consist of clear and sunny days, usually
without weather phenomena. So, solar radiation
time series can be modeled and quite longer time
predictions can be achieved for this period of the
year.

For winter months, the results are not similarly
encouraging. Figure 9 shows the temporal varia-

tion of the measured and ‘“‘multi-lag” predicted
total solar radiation values for 8 days of January
1995 (7"-14"), using 9 hourly radiation measure-
ments as inputs for the first output prediction. As
shown, for the seventh, eighth, ninth and thir-
teenth and fourteenth of January the predicted
values perform well with the measured data.
These days can be regarded as clear days. The
results are not satisfactory for the tenth, eleventh,
and twelfth of January which are considered to be
cloudy days. This is explained by the fact that the
network predictions are based on the past 9 solar
radiation values and cannot predict the solar
radiation in various random weather conditions
such as cloudiness or storms, phenomena very
representative of the cold period of the year.

3.4 Comparison of the neural network model
results with the results of a linear
autoregressive system

In order to validate the predictive ability of the
above described neural network model, its results
were compared with the corresponding results of
a linear autoregressive model. A general linear
model for system identification can be described
by the following equations (Ljung, 1987; Soder-
strom and Stoica, 1989):

yplk) = — f:a,-y(k —i)+ f: bju(k — j)

—|—§:cle(k—l) (1)

(k=0,1,2,...)

where u(k) is the scalar input signal, y(k) is the
scalar output signal, e(k) is the disturbance (or
model error) and y,(k) :=y(k) —e(k) is the
output of the model at the time instant #; = k7
(7 is the sampling period, k is the time index or
the cycle number). In this general model the
present output signal y(k) is estimated as a linear
combination of the past inputs and outputs and
the past samples of noises. This model is well
known as an ARMAX model (autoregressive
moving average with an exogenous signal,
(Cichocki and Unbehauen, 1993).

The standard autoregressive model (AR-model)
used in the present study is a special case of the
ARMAX model and is obtained when n, =
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n. = 0. The main characteristic of this model is
that the predicted value y,(k) of the next step is
given in terms of a linear combination of a fixed
number of past values of the time series. There-
fore for the AR model, the Eq. (1) is written as
follows:

yolk) = - _iaiy(k ) @

In this model only past values of the output are
used to predict its present value y(k). The same
data base as in the neural network approach are
also used for fitting the solar radiation data with
the AR method and again the zero night-time
values of total solar radiation are omitted. The
predicted results are compared with the testing
set of measured values. Correlation coefficients
between measured and predicted data have been
used for the presentation of results.

The pearsonian linear correlation coefficient
between two variables (series) X and Y has been
used in the present study, usually denoted by r,,
or simply r. It expresses a numerical measure of

linear relationship between the two variables and
is defined as the ratio of the covariance between
X and Y, Cov(x,y), to the product of the standard
deviations of X and Y.

r = Cov(x,y)/oy0y
Cov(x,y) =1/nE(x —X)(y — y)

If (x1,y1), (x2,¥2),.,(Xu,y,) are n pairs of
observations of the variables X and Y, then

o = [1/n3(x — )%/
oy = [1/25(y — )"

In the present application X and Y variables are
the measured and predicted, by the neural network
and by the AR model, total solar radiation values.

Figure 10 shows the temporal variation of the
correlation coefficients between measured and
predicted total solar radiation values using the
neural network approach and the AR model for
“multi-lag” predictions and for the same fourteen
days of July 1995 (18"-31%") used in Fig. 7 for the
“multi-lag” predictions with the neural network
system. As it can be seen the neural network

(3)
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Fig. 10. Temporal variation of the

0,65 1
8 correlation coefficient calculated be-
tween measured and predicted solar
06 ,‘ ‘ ; ‘ ‘ ‘ : ‘ ‘ ‘ , ! radiation values using an AR model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 and the neural network approach for
Time (Days) fourteen days of July 1995 (18"-31%)
makes significantly better predictions than those 2. “Multi-lag” output predictions were per-

of AR model as prediction time increases. Similar
results are taken from the comparison of the
whole set of AR predictions with the correspond-
ing neural network predicted values. It must be
noted that AR model is essentially a linear model
and then incapable to capture the nonlinear nature
of the time series. The main advantage of the
neural network model is that it enables the user to
approximate or reconstruct any nonlinear activa-
tion function and therefore such a model is
sufficiently flexible.

4. Conclusions

Remarkable success has been achieved in train-
ing the networks to learn the hourly total solar
radiation values and to make accurate predictions
of future vlaues. In more detail:

1. For “one-lag” predictions where the prediction
of future values was based only on past
measured values, it was found that the neural
network approach is able to predict with re-
markable success the total solar radiation
values.

formed using the predicted values to the input
database in order to model future solar radia-
tion. From the calculations, it was observed
that it is possible to predict with sufficient
accuracy, the total solar radiation values ten to
twenty days in advance fr the warm period of
the year. However, for the cold period of the
year the predictions were not so promising as
for the warm period because the results of a
data-driven method such as the neural network
approach depend strongly on the training sets
of data and usually it is very difficult to make
predictions during this period of the year which
is characterised by the high frequency of
different weather phenomena.

3. The results of the neural network model were
compared with the corresponding results of a
linear autoregressive model (AR) and it was
found that the neural network approach leads
to better predictions than the AR model.
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