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Summary

Estimates of the predictability of New Zealand monthly and
seasonal temperature and rainfall anomalies are calculated
using a cross-validated linear regression procedure. Pre-
dictors are indices of the large scale circulation, sea-surface
temperatures, the Southern Oscillation Index and persis-
tence. Statistical signi®cance is estimated through a series
of Monte Carlo trials. No signi®cant forecast relationships
are found for rainfall anomalies at either the monthly or
seasonal time scale. Temperature forecasts are however
considered to exhibit signi®cant skill, with variance
reductions of the order of 10±20% in independent trials.
Temperature anomalies are most skilfully predicted over
the North Island, and skill is greatest in Spring and Summer
in most areas. At the monthly time scale, predictors local to
the New Zealand region account for most of the forecast
skill, while at the seasonal time scale, skill depends strongly
upon `̀ remote'' predictors de®ned over regions of the
southern hemisphere distant from New Zealand. Indices of
meridional ¯ow over the Tasman Sea/ New Zealand region
are found to be useful predictors, especially for monthly
forecasts, perhaps as a proxy for atmospherically-forced sea
surface temperature anomalies. Sea surface temperature
anomalies to the west of New Zealand and in the tropical
Indian Ocean are also useful, especially for seasonal
predictions. Forecast skill is more reliably estimated at
the monthly time scale than at the seasonal time scale, as a
result of the larger sample size of monthly mean data.
While long-term mean levels of skill may be estimated
reliably over the whole data set, statistically signi®cant
decadal-scale variations are found in the predictability of
temperature anomalies. Therefore, even if long-term
forecast skill levels are reliably estimated, it may be

impossible to predict the short-term skill of operational
seasonal climate forecasts. Implications for operational
climate predictions in mid-latitudes are discussed.

1. Introduction

Recent advances in understanding the physics of
the El NinÄo/Southern Oscillation (ENSO) phe-
nomenon and its effect upon the global circula-
tion have generated considerable interest in the
prospect of routine seasonal to interannual
``climate predictions'' (e.g., predictions of
monthly- or seasonal-mean temperature and
rainfall anomalies), for at least some regions of
the globe. Much international effort is now going
into the development of operational seasonal
forecasting products (e.g., World Meteorological
Organization, 1995). The ultimate goal of
research into short-term climate variability and
predictability is model-based prediction of cli-
mate on intraseasonal to interannual time scales
(CLIVAR Scienti®c Steering Group, 1995).
However, there is presently much scope for
empirical prediction procedures, since the phy-
sical basis for much of the observed global
climate variability has yet to be fully understood
(Lau, 1997).

Empirical studies of seasonal climate predic-
tion generally focus on relating surface climate
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parameters to indices of the large-scale circula-
tion and boundary forcings (e.g., upper-level
geopotential height ®elds, sea-surface tempera-
ture ®elds, etc.). The underlying assumption is
that there are features of the mean large scale
circulation which are predictable for periods
much longer than those of individual weather
events (Palmer and Anderson, 1994). Such
circulation features include: ENSO forcing, sea-
surface temperature (SST) forcing, low-fre-
quency variability of the atmospheric circulation,
and persistence effects in local climate variables.
Seasonal predictability is strongly related to the
level of persistence (serial correlation) of climate
anomalies. Persistence is partly a manifestation
of local boundary forcings, such as soil moisture
content, snow cover and local SST anomalies,
and is also related to much larger-scale low-
frequency forcings, typically associated with
ENSO and other tropical SST variability.

A number of studies have investigated the
persistence, predictability, or potential predict-
ability, of the New Zealand (NZ) climate, usually
de®ned in terms of monthly temperature and
rainfall anomalies. The most extensive study of
the persistence of NZ temperatures (Goulter,
1984) found the highest serial correlations in the
warm half of the year, over northern regions, at
the seasonal (120d) time scale. Indices of the
strength of the zonal ¯ow in the NZ region have
also been found to exhibit seasonal persistence
between Spring and Autumn (Kidson and Barnes,
1984). ENSO-related SST and circulation vari-
ability is known to be signi®cantly correlated with
mean sea-level pressure (MSLP) anomalies in the
NZ region and to monthly mean temperature and
rainfall in some regions of the country, notably in
Spring and Autumn (Gordon, 1986; Mullan,
1995). Analysis of the in¯uence of SST on NZ
climate (Trenberth, 1975; Basher and Thompson,
1995; Mullan, 1998) suggests that local SST
variability is generally forced by the atmosphere,
as is typical of mid-latitudes. Despite this, the
possibility exists for remote SST forcing of the
region's circulation anomalies, as reported by
Nicholls (1989), Mullan and Renwick (1996) and
Mullan (1998).

Based on the research described above, the
generation of useful monthly or seasonal fore-
casts of NZ climate anomalies seem possible in
principle. Studies of potential predictability lend

support to this notion. Frequency-domain analy-
sis suggests that, at many locations, up to 50% of
the variance in NZ mean temperatures is
potentially predictable on the seasonal time scale
and approximately 30% is potentially predictable
on the monthly scale (Madden and Kidson,
1997). However, studies attempting to synthesise
the effects on NZ climate of many of the forcings
discussed above (Kidson and Gordon, 1986;
Mullan and Renwick, 1996) have concluded that
no more than around 20% of the variance of
monthly or seasonal temperature and rainfall
anomalies is predictable by linear statistical
means. Kidson (1988) found little month-to-
month predictability in time series of low-fre-
quency modes of the Southern Hemisphere
circulation, concluding that the prospects for
long-range forecasting in the Southern Hemi-
sphere are not bright.

This paper estimates the skill of prediction of
NZ climate anomalies on monthly and seasonal
time scales, through the use of linear statistical
techniques and a limited set of predictor
variables. The main purpose is to identify robust
statistical relationships useful for monthly or
seasonal prediction in an operational environ-
ment. Both local and large-scale predictors are
considered, accepting signi®cant large-scale pre-
dictors only after the inclusion of local pre-
dictors. This approach illustrates the relative
importance of different spatial scales for predic-
tion at different time scales (monthly or seaso-
nal). A cross-validation procedure is employed to
estimate forecast skill in independent trials.
Results of the cross-validation show up apparent
decadal-scale variations in predictability which
may have implications for seasonal predictability
in other mid-latitude locations.

2. Data

2.1 Station Data

The station records used are monthly average
temperature and monthly total precipitation for a
wide range of locations around New Zealand
(Mullan and Renwick, 1996), taken from the
New Zealand Climate Database (operated by
NIWA). While there are over 100 years of data
available from some stations, the total period
used here was limited to the years 1957 to 1991
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inclusive, to match the record of the available
larger-scale circulations indices.

Sites were selected on the basis of the length
and continuity of record. In all cases, the record
was required to be at least 70% complete, with
no break longer than six consecutive months.
Breaks of duration up to three months were ®lled
in by linear interpolation and those between four
and six months in length were ®lled using 1957±
1991 mean monthly values. Breaks of between
four and six months occurred at only a handful of
selected stations, and only once at each of those
stations. On average, less than 2% of observa-
tions were missing at each of the stations
selected (65 rainfall stations and 41 temperature
stations). Figure 1a shows the geographical
spread of stations chosen and the divisions used
for generating regionally-averaged time series.

The annual cycle was removed from the
temperatures by subtraction of the 1957±1991
mean for each calendar month, at each station.
Rainfalls were normalised by conversion to
fraction of the mean, i.e. each monthly total
was divided by the 1957±1991 monthly mean
rainfall, for each station. Seasonal statistics were
formed by the combination of monthly statistics,
where March, April and May are taken as

Autumn; June, July and August as Winter, and
so on.

2.2 Large-scale Data

The large-scale data sets comprise monthly
averages of gridded mean sea-level pressure
(MSLP) and SST, and a monthly time series of
the Southern Oscillation Index (SOI), for the
period July 1957 through December 1991, this
being the maximum period for which all time
series were available. This is a period of 34.5
years, or 414 months in total. There were no
missing values in these data sets for the period
chosen.

The MSLP ®elds were taken from the regional
gridded data set maintained by NIWA (Kidson
and Barnes, 1984) up to December 1979, and
thereafter from analyses issued by the European
Centre for Medium-range Weather Forecasts
(ECMWF). MSLP data are de®ned on a
5��10� latitude-longitude grid, from 5� S to
80� S and 60� E to 150�W. The annual cycle
was removed by subtraction of the 1957±1991
mean pressure for each month at each grid point.
For much of the analysis, we used data over only
the local NZ area (30� S to 55� S, 140� E to

Fig. 1. (a) Map of New Zealand showing location of climate stations used in development of regression equations.
Temperature stations are indicated by crosses are rainfall by open circles. Solid lines indicate the regional divisions used for
calculation of station averages. Regions are: Northland (NLND), Central North Island (CNI), Southwest North Island (SWNI),
East Coast North Island (ECNI), Nelson-Marlborough (NLMB), West Coast South Island (WCSI), East Coast South Island
(ECSI) and Southland (SLND). (b) Boundaries of `̀ local'' MSLP and SST regions used in EOF analysis
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170�W, Fig. 1b), but tests were also carried out
using MSLP information over many other
regions of the grid, as will be described below.
Values of the SOI were calculated by `̀ Troup's
method'' (e.g., McBride and Nicholls, 1983) as
the monthly mean Tahiti minus Darwin MSL
pressure difference, normalised by the monthly
means and standard deviations over the 1941±
1980 base period.

SST data were taken from the U.K. Meteor-
ological Of®ce Historical Sea Surface Tempera-
ture data set (MOHSST4), described in detail by
Bottomley et al. (1990). The data are de®ned on a
5� latitude-longitude grid and are expressed as
anomalies from 1951±1980 monthly means.
There is a great deal of missing data prior to
about 1950, and also south of about 50� S, which
has in¯uenced our choice of study area (12.5�N
to 57.5� S and 47.5� E to 77.5 �W). Again, much
of the analysis concentrates on the local NZ area,
but SST information from many other Southern
Hemisphere and Equatorial regions were exam-
ined in trials of remote `̀ teleconnectivity''.

Missing SST values were handled in much the
same way as with station records (see above).
SST grid points were used only if there were no
breaks of more than 6 months and if no more
than 30% of the total record was missing. Gaps
were ®lled in ®rst by linear interpolation in
space, treating each monthly ®eld separately,
then by linear interpolation in time, treating each
grid point separately (for breaks of no more than
3 months), and ®nally by substitution with long
term mean values at remaining missing locations.
For the NZ region, 40 of the possible 60 points
were retained, mostly north of 50� S (Fig. 1b).

3. Methods and Preliminary Analysis

The main statistical tool used here is multiple
linear regression (Draper and Smith, 1981).
Many of the MSLP and SST predictors were
de®ned in terms of Empirical Orthogonal Func-
tion (EOF) time series (Jolliffe, 1986), to reduce
the number of potential predictors. A forward
stepwise selection procedure was used to choose
predictors from the available set. The cross-
validation approach used to estimate forecast
skill involved dividing the complete data record
into ten-sub-periods. Each sub-period was taken
in turn as an independent subset upon which the

regression equations were tested. Forecast skill
was averaged across all ten independent sets. To
estimate signi®cance, forecast skill was com-
pared to that obtained in a series of randomisa-
tion trials, as described below.

Results are presented for individual stations
and for regional averages (Fig. 1). As will be
shown later, there is no gain in mean forecast
skill from averaging station time series over
geographical regions, which is consistent with
the ®ndings of the potential predictability study
of Madden and Kidson (1997). However, there
are pragmatic advantages to the use of regional
averages, in terms of the ease of carrying out
repeated trials (e.g., Monte Carlo tests) and in the
ease of implementation of the forecast system.

Because of the limited sizes of the samples
used and the tendency for large variability
between dependent samples in the cross valida-
tion, no seasonal strati®cation was used, at the
possible expense of under-estimating forecast
skill at some times of year. While earlier results
®nd seasonal variations in predictability (Goulter,
1984; Gordon, 1986), limited trials that we have
conducted based on seasonally-strati®ed data
(not shown) suggest that it is the skill of the
best prediction equation, rather than its coef®-
cients, that vary seasonally.

3.1 EOF Analysis

An EOF analysis was applied to the monthly
mean MSLP and SST anomaly data sets, to
reduce the number of potential predictors made
available to the regression procedure. In both
cases, EOFs were calculated as eigenvectors of
the matrix of covariances between pairs of grid
points (Jolliffe, 1986). No seasonal strati®cation
was employed, but the mean seasonal cycle was
removed at each grid point, as described above.
EOF analysis separates the total variance asso-
ciated with a multivariate data set into a set of
orthogonal spatial patterns and an associated set
of uncorrelated amplitude time series. Here, the
spatial patterns are referred to as the EOFs and
their amplitude time series as the principal
components (PCs). Most emphasis was given to
the EOFs of MSLP and SST over the New
Zealand region, but EOFs were also calculated
for MSLP in other more distant regions. As the
purpose of the EOF analyses is solely to reduce
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the dimensionality of the predictor data sets, only
very brief results are presented.

For the NZ region, standard tests (Craddock
and Flood, 1969; North et al., 1982) suggest that
at least the leading 6 modes are statistically
signi®cant for both MSLP and SST. We retained
only the leading ®ve EOFs, which account for
94% of the total MSLP variance and 59% of the
SST variance. Figure 2 shows MSLP EOFs 1, 2,
4, and 5, which will be shown later to be the most
useful of the MSLP predictors (for brevity, SST
patterns are not shown). As is typical of EOF
analyses of spatially coherent ®elds over small
domains (Richman, 1981), the leading pattern in
both cases describes an in-phase variation over
the whole grid, followed by dipoles representing
southwest and northwest gradients. The fourth
and ®fth patterns represent smaller-scale fea-
tures, being narrow ridges/troughs across NZ
with opposing centres to the east and west. The
PC time series used as predictors in the
regression analyses are referred to below as
MSLP.PC1, SST.PC1, and so on.

3.2 De®nition of Predictors and Predictands

In all cases, regression equations were developed
for `̀ one-time-period-ahead'' forecasts, either
one month or one three-month season. For any
predictand, predictors were de®ned for several
prior time periods, between 1 and 6 months and
between 1 and 4 seasons. Four predictands were
considered: monthly and seasonal values of
temperature and of rainfall. Results are presented
for predictands at individual stations and for
regional predictands, the latter constructed by
averaging the station predictands over each of the
eight regions shown in Fig. 1a. As noted in the
previous section, no seasonal strati®cation was
used.

The predictors made available to the regres-
sion analyses were categorised into two groups,
the `̀ standard'' predictors and the `̀ additional''
predictors. The standard set has thirteen
members: the leading ®ve PCs of MSLP and
SST anomalies over the NZ region, the SOI for
the current month/season and for the month/

Fig. 2. EOFs 1, 2, 4, and 5 of
monthly mean MSLP anomalies.
Contours are scaled to show the
mean amplitude (hPa) associated
with a principal component va-
lue of �1 standard deviation.
The contour interval is 0.5 hPa
with negative contours dashed.
Explained variance ®gures are in
brackets

A Regression-based Assessment of the Predictability of New Zealand Climate Anomalies 25



season immediately prior to the current time
period (referred to as SOI and SOI.L1), and the
current value of the predictand (PERS, represent-
ing persistence). The additional predictor sets
were used to test additional hypotheses, such as
bilinear relationships with the SOI (Mullan,
1995, 1996) and remote SST and MSLP tele-
connections (Mullan, 1998). For convenience,
additional predictors were evaluated only for
regional predictands. The additional predictors
fall into three distinct groups, as follows.

The ®rst additional group consists of three
predictors derived from the SOI. Mullan (1996)
found that the effect of the Southern Oscillation
on New Zealand climate may be non-linear. In
particular, he established that a bilinear (or
`̀ broken-stick'') form of relationship may exist
between the SOI and some circulation variables.
Thus, the absolute values of SOI and SOI.L1
(denoted ABS.SOI and ABS.SOI.L1) were
considered, since all bilinear functions of SOI
that have their break-points at zero may be
constructed as a linear combination of SOI and
ABS.SOI. The third SOI-related predictor is
SOI.P1, the value of the SOI at the future
validity time of the predictand. Of course this
predictor cannot ever be available for operational
forecasting. However, increasingly good model-
based ENSO forecasts are becoming available
(Chen et al., 1995; Ji et al., 1996) so the aim in
evaluating SOI.P1 is to put an upper limit on the
utility of a forecast SOI as a predictor for
temperature or rainfall.

The second group is made up of MSLP
predictors from the entire area covered by the
NIWA MSLP data set (5� S to 80� S, 60� E to
150�W). Fifty-four of the 256 grid points were
omitted because they contained a large percen-
tage of missing data and the remaining points
were grouped in 29 overlapping sub-grids of 5�5
points each. For each grid, the ®rst ®ve principal
components from an EOF analysis were used.
This makes a total of 145 predictors, referred to
as MSLPi.PCj, for grid region i�1, . . . , 29 and
PC j�1, . . . , 5.

The ®nal group of predictors is a set of SST
variables derived from the work of Mullan
(1998). He de®ned 8 SST `̀ key areas'' that
appear to exert some in¯uence on New Zealand
climate (see his Fig. 13). For both monthly and
seasonal forecasts, a basic set of 8 predictors was

constructed: SST1, . . . , SST8, the monthly or
seasonal mean SST anomaly from each of the
eight key areas. Further, the 8 SST anomalies
were lagged over the previous 5 months for the
monthly forecasts, and over the previous 4
seasons for the seasonal forecasts. Lagged SST
predictors are denoted as SSTi.Lj where i
denoted the key area number and j the lag. This
makes a total of 48 SST predictors for monthly
forecasts and 40 for seasonal forecasts.

3.3 Regression Procedure

It is well known that the `̀ true'' skill of a forecast
system in usually over-estimated if the data set
on which the forecast system is constructed is the
same as that on which its skill is measured (e.g.,
Murphy and Katz, 1985). To reduce this over-
estimation, a cross-validation procedure was
used. The data period was divided into ten parts,
each containing approximately 3.5 years of data.
Ten sets of regression equations were then
developed using nine tenths of the full data set
and were tested on the remaining tenth. An
overall estimate of forecast skill was taken as the
mean skill over the ten independent subsets.

For each predictand, the selection of predictors
from the `̀ standard'' set of 13 was carried out
using the following forward stepwise regression
procedure (Draper and Smith, 1981). Predictors
were selected one at a time; at each step, the next
predictor to be selected was that having the
highest partial correlation with the predictand.
Selection continued until the next predictor failed
one of the two following conditions:

� the predictor must account for at least 1% of
the total variance of the predictand, and
� the F-statistic for the newly-included predictor

must be signi®cant at the 5% level.

Since the additional predictor sets are so large
(nearly 200 variables), making all additional
predictors available to the stepwise regression is
almost guaranteed to result in a number of
spurious relationships being judged signi®cant.
An initial `̀ pre-screening'' step was therefore
carried out, using the full data set. For every
predictand, each additional predictor was con-
sidered in isolation, after inclusion of all the
selected standard predictors. To be selected for a
particular region, an additional predictor was
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required to not only satisfy the above variance
reduction and signi®cance criteria, but also to
increase the forecast skill by at least 0.01 and to
be selected in at least two other regions. The
additional predictors which survived the pre-
screening were then made available to the
regression/cross-validation system in the same
way as the standard predictors.

3.4 Estimation of Skill

The skill, s, of a regression forecast of tempera-
ture or rainfall was measured, relative to a
baseline or `̀ zero-skill'' forecast (usually clima-
tology), as a ratio of sums of squares:

s �
X

i

bi ÿ oi� �2=
X

i

ri ÿ oi� �2

were oi is the observed value of the predictand
(temperature or rainfall) for the ith month (or
season) and ri and bi are the values predicted
using regression and the baseline forecast,
respectively. A skill measurement of s�1 indi-
cates that the regression is no more accurate on
average than the baseline forecast, s>1 indicates
increased accuracy over the baseline forecast,
and s<1 indicates decreased accuracy.

The above skill score was chosen over the
more `̀ standard'' R2 statistic (the square of the
correlation between the observed and forecast
values), since R2 is not in general a good measure
of skill for a forecast (for example, adding a
constant to a forecast does not change R2 but will
change the skill). The percentage of variance
explained (which is equivalent to R2 for regres-
sion forecasts over the dependent data set) was
not used either because, with the cross-validation
procedure, it can take negative values, which are
dif®cult to interpret.

Unless otherwise stated, the results presented
below use a baseline forecast of climatology, the
mean observed value for the given location and
time of year. Some results are given (for
temperature predictands only) with a baseline
of `̀ damped persistence'', a ®rst-order autore-
gressive model (AR(1)) where the only predictor
is the lagged predictand (PERS). When the
baseline forecast is climatology, skill s is related
to percentage explained variance Vexpl on the
dependent data by

Vexpl � 100 � 1ÿ 1

s

� �
In the cross-validation procedure, the forecast
skill sj is calculated for each of the independent
samples Dj; j � 1; . . . ; 10. The overall estimate
of skill, s, is taken as the mean of the ten sj. To
calculate sj a forecast equation is constructed by
regression using only the data in Dj

0, the
complement of Dj. The equation is then applied
to the independent sample Dj and a sum of the
squares of the differences between predictions
and observations is calculated. That is,

s � 1

10

X
j

sj

� 1

10

X
j

X
i

�bij ÿ oij�2=
X

i

�rij ÿ oij�2
" #

Where oij is the observed value of the predictand
for the ith month (or season) of Dj, and rij and bij

are predictions of oij (from the regression and
baseline predictors, respectively) based on fore-
cast equations constructed in D 0j and applied to
Dj. Note that the periods used in the cross
validation apply equally to both the regression
and baseline predictors (i.e., climatology and
damped persistence are de®ned differently for
each Dj).

The signi®cance of any estimate of skill for a
given predictand was assessed using the follow-
ing randomisation procedure. First, a dummy
predictand was created by choosing at random a
predictand of the same averaging period (i.e.,
monthly or seasonal) as the given predictand, and
randomly reordering it in time. An estimate of
skill was then calculated for the dummy
predictand using the same procedure as for the
given predictand. Two hundred such trials were
performed for each predictand and the original
estimate of skill was deemed signi®cant if it was
greater than at least 95% of the dummy values.

4. Results

4.1 Standard Predictors

Using the standard predictor set, the estimated
skill was found to be modest for temperature
stations (median values were 1.12 and 1.09 for
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monthly and seasonal forecasts, respectively) and
poor for rainfall stations (medians were 0.99 and
0.98, Fig. 3). The randomisation tests resulted in
threshold values of 1.014 for monthly forecasts
and 1.026 for seasonal forecasts. Based on these
values forecast skill was signi®cantly greater
than 1 for most temperature stations (40/41
monthly and 32/41 seasonal), but for only a
minority of rainfall stations (7/65 and 14/65,
respectively). For regional forecasts, estimated
skill was typically close to, but slightly less than,
the mean skill over the associated individual
station predictands. Hence, regional forecast skill
was signi®cantly greater than 1 for almost all
temperature predictands (except ECNI and
NLMB seasonal temperatures) but for only 3 of

the 16 rainfall predictands. On the basis of the
standard predictors alone, monthly forecasts
were more skilful than seasonal forecasts. As
will be shown later, the situation is reversed once
the additional predictors are considered.

Mean levels of skill were positively correlated
with latitude and with the mean number of
predictors selected. For monthly temperatures,
forecast skill was signi®cantly correlated with
the mean number of predictors (R�0.73) and
with latitude (R�0.70, Fig. 4a), re¯ecting the
greater predictability of monthly temperature
anomalies in the north of the country. However,
southern stations fared better at the seasonal time
scale, where there is a relatively uniform
latitudinal distribution of forecast skill using

Fig. 3. Distribution of estimated skill of
forecasts using standard predictors, for each
of four predictand types: (a) monthly tem-
perature; (b) seasonal temperature; (c)
monthly rainfall; and (d) seasonal rainfall.
The dashed lines indicate 95% signi®cance
levels calculated from randomised trials.
Printed ®gures (above arrows) indicate the
median skill for each predictand type
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the standard predictors. Seasonal skill is gen-
erally slightly lower than monthly skill for North
Island stations, while the reverse is true in the
South (Fig. 4b). The above results suggest that
intraseasonal variability becomes less predictable
at higher latitudes, presumably because it
becomes more dominated by the unpredictable
internal variability in the higher-latitude atmo-
spheric circulation. Seasonal predictability is
more uniform as it is more strongly controlled
by more remote larger-scale SST forcing (Rowell
et al., 1995).

The skill of monthly temperature forecasts
relative to damped persistence ranged from 0.96
to 1.12 (median 1.03). Skill was greater than 1 at
all but one North Island station and at two thirds
of South Island stations (18 of 24). For seasonal

temperature forecasts however, skill relative to
damped persistence was less than 1 at most
stations (31 of 41). As mentioned above,
inclusion of the additional predictors noticeably
improves the skill of seasonal temperature
forecasts.

For some temperature stations there was a
clear pattern of variation of skill through the
year. This was strongest at the six northern-most
stations, where skill was highest in spring and
was lowest in autumn (Fig. 5a). A slightly
different pattern occurred at the western-most
stations (in the south and west of the South
Island), where skill was lowest in winter (Fig.
5b). At most of the remaining stations, there was
either no clear pattern, or skill was lowest in the
middle of the year. An exception was a single
station on the west coast of the South Island
(Hokitika), where skill was highest in the middle
of the year (Fig. 5c).

The importance of particular predictors (in
terms of how often they were selected) varied
strongly with predictand type (Fig. 6). For
monthly temperature forecasts, the predictor
most commonly selected was MSLP.PC5, which
was chosen in 96% of the regressions. This 5th
MSLP EOF (Fig. 2) represents a ridge/trough just
west of NZ and is associated with anomalous
meridional ¯ow. As de®ned here, a positive value
of MSLP.PC5 is associated with anomalous
northerly (poleward) ¯ow over New Zealand
and anomalous southerly (equatorward) ¯ow
over the western Tasman Sea. Its regression
coef®cient was always negative, implying that
equatorward ¯ow anomalies to the west this
month/season are associated with below normal
temperatures next month/season. The connection
may arise through the effects of the circulation
anomaly upon local SSTs, since circulation
variability appears to lead SST variations in the
NZ region by 1±2 months (Basher and Thomp-
son, 1995). Correlations are strongest in the
southeast of the North Island, the region of the
country where the anomalous surface ¯ow
associated with the EOF is strongest.

The ®ve most frequently selected predictors
(MSLP.PC5, SST.PC1, PERS, MSLP.PC1, and
MSLP.PC4) accounted for almost 90% of
predictor selections for monthly mean tempera-
tures. The same ®ve predictors were also
important for seasonal temperature forecasts

Fig. 4. Skill of Predictions of temperature one month or one
season ahead, based on standard predictors. Each point in
the plots represents one temperature station (`n' and `s'
represent North Island and South Island stations, respec-
tively). (a) Monthly skill plotted against latitude; (b) The
ratio of seasonal skill to monthly skill, plotted against
latitude
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(accounting for 85% of selections) though their
ranking differed. Amongst the SST predictors,
only the ®rst principal component, SST.PC1, was
selected with any frequency for temperature
forecasts, always with a positive regression
coef®cient. For temperature, persistence is rela-
tively more important at the seasonal time scale
than at the monthly time scale, which is
consistent with the results of Goulter (1984). In
contrast to temperature, for rainfall the predictors
important for monthly forecasts were usually not
so for seasonal forecasts, and vice versa. The one
exception was SOI.L1, which was ranked 1st and
3rd for monthly and seasonal forecasts, respec-
tively.

There were some strong geographical trends in
the frequency of selection of some predictors
(Table 1). Some predictors (notably the two SOI
predictors, and the ®rst two MSLP principal
components) were more often selected in the
North Island; others (e.g., SST.PC3) were more
commonly chosen in the South Island. The
preference for the SOI at northern stations,
especially for rainfall (where regression coef®-
cients were always positive), agrees with the
earlier ®ndings of Gordon (1986), who found a
preference for moist northeast ¯ow over the
North Island in La NinÄa conditions.

Fig. 5. Within-year variation in
skill in predicting temperature
one month ahead, for selected
temperature stations: (a) the six
northern-most stations; (b) the
six western-most stations; (c)
one isolated station at Hokitika,
on the west coast of the South
Island. The data were smoothed:
each line represents one tem-
perature station and joins points
which are the mean skill for an
adjacent group of six months
plotted against the mid-point of
the six-month period

Fig. 6. Frequency of predictor selection for monthly (`m')
and seasonal (`s') forecasts of (a) temperature; and (b)
rainfall. The y-axis in both panels shows the proportion of
predictands for which each predictor is selected
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4.2 Additional Predictors

For brevity, the additional predictors are con-
sidered only in regressions upon regionally
averaged temperature and rainfall anomalies,
rather than at individual stations. Given that the
skill of prediction of regionally averaged anoma-
lies is roughly equal to the average of the skill of
prediction of each region's individual station
anomalies, the use of regional averages here is
expected to give a realistic picture of the utility
of new predictor variables.

The pre-screening procedure described in
section 3.3 selected 7 additional predictors for
monthly temperature, 11 for seasonal tempera-
ture, and 1 for monthly rainfall (Table 2). Mean
skill and changes in skill after inclusion of

additional predictors are listed in Table 3. The
additional predictors had very little impact on
monthly forecast skill but showed a large positive
impact on the skill of seasonal forecasts. The
median gain in skill for seasonal temperature
forecasts was 0.18 (0.04 for monthly) and was
negligible for rainfall. The greater impact of the
`̀ remote' predictors at the longer time scale
seems physically reasonable in terms of larger
spatial scales being associated with longer time
scales in the atmospheric and oceanic circulation.
With the inclusion of additional predictors,
seasonal temperature forecasts are more skilful
on average than monthly forecasts, as might be
expected a priori (Rowell et al., 1995). As will be
discussed in Section 4.3, there is considerable
scatter in the skill estimates between different

Table 1. Predictors that were Selected more than Twice as Frequently in the North Island as in the South Island (or vice versa).
Predictors for which the Frequency of Selection was less than 0.1 in Both Islands are omitted

Frequency of selection
(proportion of stations)

Island in which
Predictand type Predictor North Is. South Is. frequency is highest

Monthly temperature
SOI 0.26 0.07 North
MSLP.PCI 0.70 0.26 North
MSLP.PC2 0.32 0.01 North
MSLP.PC3 0.00 0.16 South

Seasonal temperature
SST.PC1 0.64 0.18 North
MSLP.PC1 0.23 0.03 North
MSLP.PC2 0.17 0.01 North
PERS 0.38 0.82 South
MSLP.PC4 0.03 0.14 South

Monthly rainfall
SOI.L1 0.38 0.06 North
SST.PC5 0.25 0.03 North
SST.PC3 0.04 0.18 South
MSLP.PC3 0.07 0.32 South

Seasonal rainfall
SOI.L1 0.25 0.03 North
MSLP.PC3 0.14 0.02 North

Table 2. Predictors Selected from the set of Additional Predictors for each of the four Predictand Types

Predictand Type Selected Predictors

Monthly
Temperature

SST2.L1, MSLP16.PC1, MSLP17.PC2,
MSLP22.PC1, MSLP23.PC3, MSLP24.PC4, MSLP25.PC4

Seasonal
Temperature

SST2.L2, SST6.L3, SST7.L1, SST8.L2,
MSLP1.PC1, MSLP2.PC1, MSLP3.PC2, MSLP8.PC2,
MSLP11.PC4, MSLP12.PC4,MSLP25.PC4

Monthly Rainfall MSLP11.PC4
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independent samples. The occasional decreases
in skill after inclusion of additional predictors
may be attributed to sampling variability, but
may also re¯ect the presence of a few `̀ chance''
relationships.

Most of the selected predictors came from the
set of wide-area MSLP grids but the most
consistently useful were from the SST key area
sets. For monthly temperatures, MSLP regions
over the southern ocean south of Australia and
the Tasman Sea were often selected. The most
useful wide-area MSLP predictor was the index
of a trough/ridge EOF pattern over a region
south of the Tasman Sea, which may be acting as
an indicator of the phase of the dominant pattern
of planetary wave activity in the westerlies. For
seasonal temperatures, an index of meridional
¯ow over the western Tasman Sea was most
commonly selected. Lag correlation maps (not
shown) indicate this index is associated with SST
anomalies near NZ one season later, presumably
through a combination of surface heat ¯uxes and
oceanic advection.

At both time scales, the most commonly
selected SST key area was area 2, in the
Australian Bight/Tasmania region. Variations in
SST2 are positively correlated with monthly
temperatures over northern NZ two months later
and with seasonal temperatures over most of NZ
two seasons later, suggestive of oceanic advec-
tion. Indian Ocean SST variations (key area 7)
were also important for seasonal temperature,
where positive anomalies of SST7 were related
to above-average temperatures in most regions of
New Zealand two seasons later, perhaps related
to the formation of `̀ northwest cloud bands''
(Mullan, 1998), but not directly to advection.

Somewhat surprisingly, none of the additional
SOI predictors were selected. Additional pre-
dictors are considered only if they add signi®cant
information beyond that given by the standard
predictors. Hence, the additional `̀ future'' value
SOI.P1 was perhaps not selected as it is very
highly correlated with the standard predictor SOI
from the previous time period.

4.3 Reliability of Skill Estimates

The predictor selection procedures and cross-
validation approaches used here aim to maximise
the reliability of the results, with a view to
operational use. However, when forecast skill is
modest, as it is here, the ®ne detail of the method
of measuring skill becomes important. Note only
is there considerable variability in skill between
independent samples, but also slight changes in
the method of estimating skill may be suf®cient
to shift the estimated skill from less than to
greater than 1.

For each forecast evaluated above, the esti-
mated skill s the mean of 10 estimates sj, one for
each of the independent sets Dj. An examination
of some patterns amongst these sj is useful in
interpreting the skill of these forecasts. Two
patterns are apparent in Fig. 7. First, as the
estimated skill of a forecast increases, so does the
variability amongst the sj. This means that the
larger the estimated skill for a predictand the less
certain that estimate is. Note also that even when
s is high there are always some of the sj that are
less than one. This has implications for the level
of skill that can be expected from operational
forecasting of these predictands using the
regression technique. Although we can be

Table 3. Estimated Skill by Predictand Type and Region, after the Inclusion of Predictors Selected from the Additional Predictor
set, and estimated Gain in Skill over that from the Standard Predictors Alone

Predictand Type Region

NLND CNI ECNI SWNI NLMB ECSI WCSI SLND Median

Skill
Monthly temperature 1.27 1.17 1.18 1.13 1.14 1.09 1.14 1.12 1.12
Seasonal temperature 1.38 1.19 1.16 1.49 1.22 0.98 1.13 1.35 1.20
Monthly Rainfall 0.98 1.03 1.03 1.03 0.98 0.99 0.97 0.97 0.98
Gain in skill
Monthly temperature 0.04 0.00 0.06 ÿ0.06 ÿ0.02 0.04 0.04 0.04 0.04
Seasonal temperature 0.24 0.15 0.19 0.33 0.26 ÿ0.07 0.10 0.16 0.18
Monthly Rainfall 0.01 0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00
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reasonably con®dent that, in the long run, these
forecasts will be more skilful on average than
climatology, this may not be so in the short term.

The second obvious pattern in Fig. 7, which
follows from the above observation, is that there
is much more variability in skill estimates for
seasonal than for monthly forecasts. One con-
sequence of this is that the proportion of the sj

that are greater than 1 is typically less for
seasonal than for monthly predictands (compare
the height of the dotted lines in the two panels).
Thus, for a seasonal forecast we may have less
con®dence that it will be more skilful than
climatology in the short term than we can for a
monthly forecast of the same estimated skill.
This result will be partly due to the much smaller
samples available for the development of sea-
sonal forecasting equations.

When the data in Fig. 7 are plotted by
independent sample number rather than by mean
skill (Fig. 8) it becomes clear that skill varies
substantially amongst independent sets. The
differences between sets are statistically signi®-
cant: using Mann-Whitney tests to make all
pairwise comparisons of skill estimates in
different independent sets, 34 of 45 results were
signi®cant (p < 0.05) for monthly temperature,
and 35 of 45 were signi®cant for seasonal
temperature. Further, the temporal variations

seen in Fig. 8 are not a result of the somewhat
arbitrary size chosen for the independent sets.
Since each set is not an integer number of years,
the number of relatively unpredictable winters
varies with the set number, which may in¯uence
the results. However, there is little correlation
between the distribution of seasons in each
independent set and the mean forecast skill,
and trials with independent sets covering exactly
three years each produced essentially the same
results.

Thus it is clear that the vertical scatter in Fig. 7
is caused partly by sampling error and partly by
temporal variation in skill. In other words, there
are periods (like the late 1950s ± the ®rst
independent set) when regression forecasts of
temperature could not be expected to be better
than climatology, and other periods (e.g., 1988±
1991) when they would have been substantially
better. The observed decadal-scale variations in
skill are not obviously ENSO-related, but never-
theless are reminiscent of decadal-scale varia-
tions in the skill of ENSO predictions over the
last 15±20 years (Ji et al., 1996). The forecast
skill of statistical and dynamical models of
ENSO was relatively high in the 1980's but
was considerably lower through the extended
`̀ warm event'' of the early-mid 1990's. Such
variations in predictability may be related to

Fig. 7. The relationship between
the skill of a forecast, s, and the
10 skill estimates, sj, of which s is
a mean: (a) for monthly tempera-
ture forecasts; and (b) for sea-
sonal temperature forecasts. For
each predictand (monthly or sea-
sonal temperature at a particular
station) ten sj values are plotted
against their mean, s. The broken
lines are smooth curves ®tted to
the data showing the proportion
of the sj for each station that are
greater than 1 (values shown on
the right-hand axis)

A Regression-based Assessment of the Predictability of New Zealand Climate Anomalies 33



decadal and longer-scale modulation of the
amplitude of ENSO and other low-frequency
elements of the general circulation.

5. Discussion and Conclusions

The main motivation for this work was to provide
tools for, and estimate a lower bound to the skill
of, operational short-term climate predictions for
New Zealand. The average skill of regression-
based rainfall predictions is found to be insig-
ni®cantly different from that of a pure climato-
logical forecast. Temperature forecasts do
however appear to be signi®cantly more skilful
than climatology, with median skill of 1.12 for
monthly anomalies and 1.20 for seasonal anoma-
lies (roughly equivalent to explained variances of
10% and 17% over climatology, respectively). In
broad agreement with earlier studies (Gordon,
1986; Kidson and Gordon, 1986; Mullan and
Renwick, 1996), we ®nd that skill is correlated
with latitude, variability at northern stations
being the most predictable. Skill is generally
highest in Spring and Summer.

Beyond persistence and ENSO-related effects,
the most useful predictors of temperature varia-
tions appear to be SST anomalies to the west
(upstream) of New Zealand, and indices of
meridional ¯ow anomalies around and to the
west of the country. The latter relationships are
suggestive of the role of atmospherically-forced

local SST anomalies in modulating local climate.
Concomitant changes in land surface conditions
such as soil moisture and snow cover may also
play a role. In terms of seasonal prediction,
atmosphere-ocean effects may be more useful
than the pure persistence of atmospheric anoma-
lies alone (e.g., Kidson and Barnes, 1984).
Seasonal temperature anomalies are found to be
predicted more skilfully than monthly anomalies,
but only after the inclusion of MSLP and SST
predictors de®ned over regions remote from NZ.
Slowly-varying features of the global atmo-
spheric and oceanic circulation (ENSO-related
and otherwise) therefore confer a small but
signi®cant amount of predictability upon sea-
sonal-mean NZ climate.

The levels of skill found here are broadly
consistent with those found for a number of other
extra-tropical regions of the globe (e.g., Barnston
and Smith, 1996). The greater predictability of
temperature over rainfall is largely due to the
stronger spatial and temporal coherence of tem-
perature compared to the more localised, episo-
dic nature of rainfall. Even for seasonal
temperature anomalies, forecast skill is modest
using the techniques employed here. However,
given the potential value of climate predictions to
the energy, agricultural and other sectors, even a
small level of skill may be translated into
signi®cant bene®ts in dollar terms. Possible im-
provements in skill are presently being investi-

Fig. 8. Boxplots of skill esti-
mates, sj, grouped by indepen-
dent set for forecasts of (a)
monthly temperature, and (b)
seasonal temperature. Note that
the data plotted are exactly the
same as those in Fig. 7, the
difference being that the hori-
zontal grouping is by indepen-
dent set, rather than by station.
In each boxplot the black box
represents the middle half of the
data, the median is shown as a
white line, and the `̀ whiskers''
extend to 1.5 times the inter-
quartile range. Outliers are in-
dicated by short horizontal bars
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gated, through the use of fully hemispheric data
sets and through the analysis of ensembles of
seasonal climate model integrations, though it is
unlikely that large improvements in skill will
emerge.

Although this study concerns only one rela-
tively small region of the globe, the methodology
is applicable to any region. The more general
®ndings, regarding the linking of longer time-
scale local climate variations with larger spatial-
scale circulation variability, and the temporal
variations found in predictability, are likely to
apply to other regions of the extra-tropics.

On the basis of the above results, it appears
feasible to generate operational monthly and
seasonal temperature predictions, at least for the
warm half of the year. One caveat for operational
forecasting is the observed decadal variability in
overall predictability (Fig. 8), which suggests
that although we may be able to estimate long-
term mean forecast skill, we do not know
whether the near future (next 3±5 years) will be
a period of high or low predictability. Further
research into the processes involved may help
elucidate the reasons for such variations in skill.
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