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Abstract
Empirical climate classification is a process that makes environmental conditions understandable to humans by using climatic 
elements. Köppen-Geiger (KG) is a popular climate classification method that uses long-term precipitation and temperature 
data to classify climate into five primary groups. However, long-term continuous meteorological data is heavily exposed to 
data scarcity, particularly in a national scale. This research study addresses this challenge by leveraging satellite imageries, 
multilinear regression models and spatial interpolation within the context of entire country of Iran between 2016 and 2019. 
Accordingly, this study examined statistical relationship between 14 explanatory variables under four main categories of 
MODIS-LST, MODIS-NDVI, MODIS-TVDI, GPM-precipitation and SRTM-DEM against ground-based precipitation and 
temperature data (dependent variables). The spatial interpolation model (i.e. Krigging and Co-krigging) was directly devel-
oped from weather observation station datasets. A total of 332 synoptic stations were selected, 67% of which were used in 
modeling and the remaining 33% in testing. Accuracy assessment was performed with Kappa statistics. Overall, this research 
study developed three KG classification maps. These include a map per precipitation and temperature from regression model 
and spatial interpolation and a point-based maps from unused climate data in modelling. This study identified three KG 
main climate groups of arid, warm temperate and snow and eight KG sub-groups of hot desert, cold steppe, cold desert, hot 
steppe, warm temperate climate with dry hot summer, snow climate with dry hot summer, warm temperate climate with 
dry warm summer and snow climate with dry warm summer. A comparison between those maps (kappa = 0.75) showed the 
higher accuracy of regression-based KG maps against spatial interpolation maps. This study contributes to a more detailed 
monitor of climate change across countries and regions with sparse distribution of weather observation data.

1  Introduction

Climate classification refers to the grouping of similar 
conditions through formulating a set of environmental fac-
tors. The process generates areas with distinct climatic pat-
terns and provides the possibility of finding localities with 

similar climate conditions in different geographical areas. 
Climate classification provides several benefits to agricul-
tural planning, urban planning, risk assessment by insurance 
companies and governance and obviously climate studies 
(Fallmann and Emeis 2020). Various models are adopted 
in climate classification, examples include aridity index, 
Alisov, Köppen, Berg, Holdridge life zones, Lauer, Strahler, 
Thornthwaite, Trewartha, Troll, and Vahl. Amongst, Köppen 
model is widely used across scientific and industry commu-
nity. The method is a vegetation-based climate classification, 
which provides a basis to identify climate similarity and dis-
similarity (Köppen 1936). This method initially relied on the 
botanical zones under the influence of climatic conditions, 
but it was then improved by taking into account meteorologi-
cal data and presenting climate types through arbitrary indi-
ces. Köppen-Geiger (KG) (Geiger 1961) is the final version 
of Köppen model and the most commonly used method of 
climate zonation in any geographical location (Sohoulande 
2024). All that it requires is temperature and precipitation 
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ground datasets (Ascencio-Vásquez et al. 2019; Hobbi et al. 
2022).

The potential of the KG model to quantify climate varia-
tion and change over various periods has been demonstrated 
in previous studies (Cui et al. 2021). Due to its relevance to 
ecological conditions, this method can serve to classify the 
various aspects of the environment objectively from practi-
cal and theoretical points of view, such as photovoltaic cli-
mate zonation (Ascencio-Vásquez et al. 2019; Mazzeo et al. 
2020), development of diffuse irradiation models (Every 
et al. 2020), estimation evapotranspiration in relation to 
Köppen’s method (Akhavan et al. 2018), evaluation of out-
door thermal perception and comfort conditions (Canan 
et al. 2020; Salata et al. 2018), mapping of the last glacial 
maximum, mid-holocene, and present climate zones (Yoo 
and Rohli 2016), and identification of particulate matter 
clusters (Pražnikar 2017).

The best outcome of KG method relies on long-term and 
fine resolution ground-based climatic variables (i.e. air tem-
perature and percipitation) (Ouatiki et al. 2023). The data is 
required for accurate climate zonation, good definition of 
transition areas, and detection of past and future changes 
in climate zones (Bonsoms and Ninyerola 2024). However, 
owing to high costs and accessibility constraints, weather 
stations are characterized with spatially poor coverage and 
nonhomogeneous data (Javanshiri et al. 2021). As a result, 
application of KG method on a massive scale (e.g. national 
scale) is challanged by data inconsistency and scarcity (Beck 
et al. 2018; Zou et al. 2021).

To fill the gaps across the ground-based (i.e. data incon-
sistency and scarcity), two techniques have gained sig-
nificant attention: (1) integrating satellite-derived climate 
variables into supervised machine learning (e.g. multilinear 
regression analysis). This is a statistical model to fill the 
gaps across ground-based data by developing a best-fit line 
between alternative sources of data (e.g. satellite images) 
and available data from weather stations (Aksu et al. 2023; 
de Moraes and Gonçalves 2023); and (2) Geo-statistical 
interpolation methods utilize the spatial relationship/equa-
tion of the measured sample points to create a continuous 
map with point data (Atkinson and Lloyd 2014; Madenci 
et al. 2019). Generally, the principle of spatial prediction 
means that items that are closer to each other tend to be 
more similar and vice versa. Obviously, the use of these 
techniques to generate data for KG method requires con-
sidering a diverse range of parameters such as spatial and 
temporal resolution of data, selection of explanatory vari-
ables (herein temperature, elevation and precipitation), data 
quality of satellite images, and geographical distribution of 
weather stations (Mokhtari et al. 2013). As a result, robust 
comparison between these techniques rarely conducted and 
widely have been limited to small and medium-sized areas 
(Aboutalebi et al. 2018).

Although satellite data provides continuous information 
on the spatial data characteristics of features, comparisons 
indicated a noticeable deviation between satellite precipi-
tation and ground-based measurements in daily, monthly 
and annual timescales and different spatial scales (Ma et al. 
2021). In order to achieve good spatial variation in precipi-
tation and better accuracy than the original image data the 
least squares linear relationship between remote sensing 
precipitation data and ground-observed precipitation has 
been suggested (yosefi kebriya et al. 2021). Therefore, in 
this study, first, the relationship between ground data and 
data from satellite sources was examined through MLR 
method. As a routine procedure, statistical methods based on 
interpolation techniques are applied for spatial gap-filling of 
weather data (Hammann and MacDonell 2022). Therefore, 
the method based on spatial interpolation of point data will 
be evaluated as an alternative in this study.

Accordingly, within the context of the entire country 
of Iran, the objectives of this study are threefold: (1) use 
satellite-derived climate variables within the framework of 
machine learning, particularly multilinear regression analy-
sis (MLR) to generate air temperature and precipitation for 
KG method; (2) use spatial interpolation to fill the ground-
based climate data for KG classification and (3) Compare 
KG maps from two previous methods to enhance detection 
of the climate class boundary and facilitate climate change 
monitoring.

This study is expected to overcome the shortcoming of 
generation climate classification maps within the context 
of an entire country due to unavailability or spatially spars 
distribution of weather stations. In addition, climate change 
is expected to be better monitored due to the availability of 
satellite data on various spatial scales and the advancement 
of remote sensing technology in the near future.

2 � Materials and methods

2.1 � Description of the study area

The study area covers the entire country of Iran located in 
the south-western Asia. It expanses from 25° to 40° North 
latitude and from 44° to 64° East longitude (Fig. 1). The alti-
tude changes from about -25 m to about 5610 m above sea 
level significantly contributes to the climatic heterogeneity 
of this country. (Ghajarnia et al. 2022; Javanshiri et al. 2021; 
Razmi et al. 2017). Iran is mostly located in arid and semi-
arid zones (Fallah et al. 2017). The annual rainfall varies 
from less than 50 mm in the uninhabitable eastern deserts to 
1800 mm on the shores of the Caspian Sea and the Western 
highlands.

The temperature variation has increased over the last 
decades, and the mean annual temperature is predicted to 
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increase in the next decades from 1.5 to 4.5 degrees centi-
grade under the scenarios proposed by the Intergovernmen-
tal Panel on Climate Change (IPCC). Overall, Iran experi-
ences hyper-arid, arid, semi-arid, Mediterranean, and wet 
climate (cold mountainous type) with the spatial coverage 
of 35.5%, 29.2%, 20.1%, 5% and 10%, respectively (Amiri 
and Eslamian 2010).

2.2 � Data

2.2.1 � Satellie Dataset

As shown in Table 1, the satellite dataset for this study 
consists of MODIS/Terra products, GPM IMERG V06 
precipitation and Shuttle Radar Topography Mission 
(SRTM) datasets. The MODIS imageries include LST 
(MOD11A2) and NDVI (MOD13A3) images with 1000 
m spatial resolution for a period from 1 April 2016 to 29 

May 15, 2019 on a monthly basis. In total 171 MODIS 
images were downloaded for this study.

KG method requires monthly base data for climate clas-
sification. Therefore, daily, 8-days average data sources 
were aggregated to be used in KG method. On the other 
hand, for the climate studies, usually, the data indicat-
ing weather patterns at least over the above 30 years are 
required (Francisco 2014). Since this study evaluates the 
capability of the aimed methodology, in order to reduce 
the computational process, the above-mentioned data 
periods were selected. On the other hand, comparisons 
of three climate classification approaches based on KG 
method using the same short-term data, it is expected not 
to affect the research methodology. Therefore, in case of a 
virtuous accuracy of the result, the presented methodology 
can be applied for the data of long-term data to produce 
a real climate classification map over the study area or 
anywhere else.

Fig. 1   Map of the study area and the locations of the synoptic weather stations

Table 1   Specification of the 
satellite imageries used in this 
research study

Date Image data Temporal scale Product type Spatial 
resolution 
(m)

Total images 
downloaded

1.4.2016 – 29.3.2019 MOD11A2 8 Days average LST 1000 135
1.4.2016 – 1.3.2019 MOD13A3 Monthly NDVI 1000 36
1.4.2016 – 29.3.2019 GPM IMERG V06 Daily Precipitation 10,000 1095
29.11, 2014 SRTM –- DEM 1000 1
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The GPM dataset was obtained from the above period 
with the spatial resolution of 10,000 m. GPM has approxi-
mately ten constellation satellites and a core satellite that 
was launched on February 27, 2014, with the multi-channel 
GPM Microwave Imager (GMI). GMI uses a set of frequen-
cies and the first Ku/Ka-band dual-frequency space-based 
precipitation radar as a reference standard to unify precipita-
tion measurements from a constellation of operational satel-
lites (Ma et al. 2021). Finally, SRTM data with the spatial 
resolution of 1000m, created on November 29, 2014, was 
obtained from the USGS official website.

2.2.2 � Meteorological data from weather stations

Precipitation and temperature are critical inputs for KG 
method. Both data are recorded in weather stations and are 
more available than the other types of climate data anywhere 
on the earth. In this study, the ground-based temperature and 
precipitation data were derived from 332 synoptic weather 
stations located in the 32 provinces of Iran. Subsequently, 
the ground-based data were aggregated to produce seven 
meteorological variables including mean temperature of the 
coldest (Tmin) and hottest (Tmax) month, mean annual near-
surface temperature (Tann), accumulated annual precipita-
tion (Pann), precipitation of the driest month (Pmin), lowest 
and highest monthly precipitation values of summer (Psmin) 
and winter (Psmax). The temperature and precipitation data 
was recorded in Celsius degrees (ºC) and millimeters (mm), 
respectively.

It should be noted that through stratified sampling, the 
weather station dataset was split into a modeling dataset 
and a testing dataset (30%-40%), which is a common prac-
tice in research (Deyasi et al. 2021; McGibbon et al. 2023). 
Accordingly, 33% of weather station data (109 stations) was 
selected for the evaluation of maps and remaining dataset 
(223 stations) was used for MLR and spatial interpolation 
purposes.

2.3 � Methods

As shown in Fig. 2, research methodology comprised four 
main courses (1) modelling air temperature and precipitation 
values using MLR models from MODIS and GPM satel-
lite imageries; (2) generate air temperature and precipita-
tion values through spatial interpolation (i.e. Krigging and 
Co-Krigging); (3) produce six KG classification maps. This 
includes a KG classification map per percipitation and air 
temperature from MLR model, spatial interpolation and 
unused meteorological data in MLR model and spatial inter-
polation technique; and (4) comparing the KG classification 
maps to determine the most effective and accurate technique.

2.3.1 � Developing MLR models using MODIS and GPM data
The first course of methodology focused on developing mul-
tiple MLR models between air temperature and precipitation 
from 223 weather stations (dependent variables) and explan-
atory variables from MODIS, GPM, and SRTM imageries. It 
is reported that the linear relationship between remote sens-
ing precipitation products and gauge-measured precipitation 
could be used to correct and predict satellite precipitation 
data (Ma et al. 2021). Generally, the linear regression model 
is presented as follows:

where Yi is ith of dependent variable, �0 is line interception 
coefficient,�i is regression coefficients of ith independent 
variable, that are determined by fitting the equation to the 
data, Xi through Xn are the independent variable and � pre-
sents the difference between observed and predicted value 
of dependent variable. The total variability of dependent 
variable accounted for by multiple linear regression is meas-
ured through coefficient of determination (Tabachnick and 
Fidell 2007):

where ssy is the total sum of squares difference between each 
observed value y and the mean of y over all cases and ssreg is 
the total sum of squared due to regression calculated from 
predicted value 

(

y′
)

 and the mean of y over all cases. The 
squared multiple correlation can also be calculated from the 
sum of the correlation between dependent and independent 
variable, ryi , and standardized regression coefficient, �i of 
independent variable as follow:

where ryi is the correlation between dependent variable and 
ith independent variable and � is the standardized regression 
coefficient that is used to estimate standardized y.

The satellite-based explanatory variables include 20 
variables (see Table 2) which can categorized under 4 land 
surface temperature (LST), normalized difference vegeta-
tion index (NDVI), digital elevation model (DEM) and 
temperature-vegetation dryness index (TVDI). Previous 
studies have documented these explanatory variables to 
be the most effective for conducting regression analysis 
between air temperature and precipitation using data from 
weather stations and satellites (Hooker et al. 2018; Ouma 
et al. 2021).

(1)Yi = �0 +
∑n

j=1
�ixj + �i

(2)R2 =
ssreg

ssy

(3)ssy =
∑

(yi − y)
2
, ssreg =

∑

(y�
i
− y)

2

(4)R2 =

k
∑

i=1

ryi�i
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In order to generate the above data (explanatory vari-
ables), initially, the satellite images underwent required 
reprocessing and processing (i.e. data rescaling and nor-
malization) schemes and finally resampled to 1000 m 
spatial resolution to be used for further analysis. Sub-
sequently, three types of LST products were generated 
from MOD11A2 satellite images. These imageries were 
delivered in an 8-day average; thus, all the image within 
a month were averaged to produce monthly LST images. 
This study also produced yearly LST data as follows:

where MLSTi is the mean monthly LST image of the ith 
month of three years, and LSTi is the mean LST image cal-
culated from the three 8-day images acquired in the ith month 
of the jth year. This study used the data of three years; there-
fore, the term 

∑3

j=1
LSTij was divided by 3.

(5)MLSTi =

∑3

j=1
LSTij

3

Fig. 2   Research procedure to produce KG classification maps within the context of the entire country of Iran
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TVDI is a widely used method to derive the spatial varia-
tion of soil moisture based on the relationship between LST 
and normalized difference vegetation index (Fig. 3) calculated 
from satellite data (Moosavi et al. 2016; Sandholt et al. 2002; 
Wigmore et al. 2019). TVDI values were calculated from fol-
lowing equations:

(6)TVDI =
LST − LSTmin

LSTmax − LSTmin

where LST  is the observed surface temperature, LSTmin is 
the wet edge, and LSTmax is the dry edge that is calculated 
from Eq. 10.

where a and b coefficients are obtained from the linear rela-
tionship between LST and vegetation cover, and NDVI is 
an image calculated from red (R) and near infrared (NIR) 
satellite data as follows:

TVDI was calculated from the MODIS LST product 
image (MOD11A2) and the NDVI image (MOD13A3). Like 
Eq. 2, the monthly NDVI image was calculated from Eq. 6:

where MNDVIi is the mean monthly NDVI image of the ith 
month of three years, and NDVIi is the NDVI image of the 
ith month of the jth year.

In the case of GPM data, the completed half-hourly cal-
ibrated IMERG data provided by “precipitationCal “ with 
the “netCDF” file format were converted to the Tagged 
Image File Format (TIFF). These imageries then used to 
extract precipitation values for the entire country. Finally, 
As shown in Table 5 a total of three regression models 

(7)LSTmax = a + b ∗ NDVI

(8)NDVI =
NIR − R

NIR + R

(9)MNDVIi =

∑3

j=1
NDVIij

3

Table 2   List of satellite-based 
explanatory variables used in 
MLR models

Abbreviation (Explan-
atory variables)

Definition

GPMann Accumulated Annual GPM Precipitation
GPMsmin Lowest Monthly GPM Precipitation Values For The Summer
GPMw Mean Value of Winter GPM Precipitation
GPMwmax Highest Monthly GPM Precipitation Values For The Winter
GPMwmin Lowest Monthly GPM Precipitation Values For The Winter
LSTann Annual Mean Land Surface Temperature
LSTmax Monthly Mean Land Surface Temperature of The Hottest Month
LSTmin Monthly Mean Land Surface Temperature of The Coldest Month
NVDIann Annual Mean Normalized Difference Vegetation Index
NDVImax Monthly Mean Normalized Difference Vegetation Index of The Hottest Month
NDVImin Monthly Mean Normalized Difference Vegetation Index of The Coldest Month
NVDIsmin Lowest Monthly Normalized Difference Vegetation Index Values For The Summer
NVDIwmax Highest Monthly Normalized Difference Vegetation Index Values For The Winter
NVDIwmin Lowest Monthly Normalized Difference Vegetation Index Values For The Winter
NVDIwmin Lowest Monthly Normalized Difference Vegetation Index Values For The Winter
TVDIann Annual Mean Temperature-Vegetation Dryness Index
TVDIsmin Lowest Monthly Temperature-Vegetation Dryness Index Values For The Summer
TVDIwmax Highest Monthly Temperature-Vegetation Dryness Index Values For The Winter
TVDIwmin Lowest Monthly Temperature-Vegetation Dryness Index Values For The Winter
TVDIwmin Lowest Monthly Temperature-Vegetation Dryness Index Values For The Winter

Fig. 3   LST-NDVI triangle space adapted from Sandholt, et al. (2002)
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were generated between Tmin,Tmax and Tann (dependent 
variables); and LSTmax, LSTmin, LSTann.

2.3.2 � Spatial interpolation of guage‑based percipiation 
and temperature data

In the second course, this study applied Ordinary kriging 
(OK) and Co-kriging (Co-K) to fill the gaps in meteoro-
logical data from Weather stations. These methods been 
widely used to interpolate temperature point data (Berndt 
and Haberlandt 2018; Bhunia et al. 2018; Hsu et al. 2017; 
Tan et al. 2021; Tobin et al. 2011) and precipitation point 
data (Tan et al. 2021; Zheng et al. 2017; Zou et al. 2021). 
In this study, data normality was applied to the data of the 
weather stations in the study area to map precipitation and 
temperature across the country.

The Kriging technique uses a semivariogram (half of a 
theoretical variogram) as a measure of variance to detect 
and depict the spatial correlation between observations. 
The mathematical functions for calculating semivario-
grams and describing the degree of spatial dependency are 
as follows (Cressie 1994; Fanchi 2018; Zimmerman 1994):

where γ(h) is an empirical semivariogram, N(h) is the num-
ber of paired observations with distance h, and Z(ui) and Z 
(ui + h) are the observed values in ui and ui + h locations, 
respectively.

After the empirical half-variance variogram is 
calculated, the most appropriate model is fitted to the 
data. The principle of prediction is based on a weighted 
average of observations in the vicinity of the estimated 
point values, i.e. Z (ui). The weight λi depends on the 
distance, and the spatial relationship between observations 
can be determined through different kriging techniques 
such as ordinary kriging and universal kriging (Zůvala 
et al. 2016).

Ordinary kriging as a spatial data interpolator finds the 
best linear unbiased estimate of a second-order stationary 
random field with an unknown constant mean as follows 
(Ali Akbar 2012):

where Ẑ(u0) is the kriging estimate at location u0 ,  Z
(

ui
)

 is 
the value observed at location ui , and λi is the weighting 
factor for Z

(

ui
)

.
The variance of estimation is:

(10)�(h) =
1

2N(h)

∑N(h)

i=1

[

Z
(

ui + h
)

− Z(ui)
]2

(11)Ẑ(u0) =
∑n

i=1
�iZ

(

ui
)

(12)�2

OK
(u) = −�(u, u) +

∑n

i=1
�i�

(

u, ui
)

+ �

where γ(u, u) is the mean of the semivariogram at the esti-
mated location of u,�

(

u, ui
)

 is the mean of the semivariogram 
between location u and the ith location of observation, and 
μ is the lagrangian coefficient used to minimize the kriging 
variance. Estimation variance measures the uncertainty of 
the estimation at a desired point.

The estimation error variance by ordinary kriging is as 
follows:

where Z
(

u0
)

 is an unknown true value at u0 , and R
(

ui
)

 is the 
estimation error. An estimator is unbiased; therefore:

The co-kriging technique uses a secondary variable that 
is spatially interdependent on the main variable. Considering 
a secondary variable, a classic co-kriging semivariogram is 
defined as (Cahn et al. 1994):

where γ12 is a mutual semivariogram serving as the function 
of the distance (h), and N is the number of pairs of points Z1 
(xi) and Z2 (xi) at a stepped distance (h + dh). The co-kriging 
estimate of the Zi attribute at position X0 is calculated by the 
following equation:

where λ1i is the weight associated with Z1 (xi), and λ1i is the 
weight of Z2 (xi).

It should be noted that the purpose of performing the 
regression method in this study was to estimate gauge obser-
vations from satellite measurement whereas, interpolation 
was performed to fill the data gaps between spatially known 
ground point data. However, in case spatial data is missing, 
both methods can also be used for data gap filling, and they 
are conceptually closely related. In most cases, regression 
methods are used to identify a generalized function defining 
the dependent variable from the independent variables at any 
given point, while interpolation methods used to estimate 
the values by using the known values at surrounding input 
points using a function that fairly describes the spatial/tem-
poral distribution of a variable (Madenci et al. 2019).

As the results of the previous two tiers, this study devel-
oped four raster maps of air temperature and precipitation 
were developed for the entire Iran.

(13)Ẑ
(

u0
)

− Z
(

u0
)

= R
(

ui
)

=

n
∑

i=1

λZ
(

ui
)

− Z
(

u0
)

(14)E
[

R
(

x0
)]

= 0and

n
∑

i=1

λi = 1

(15)

�12(h) =
1

2N(h)

N(h)
∑

i=1

(
[

Z1
(

xi + h
)

− Z1
(

xi
)][

Z2
(

xi + h
)

− Z2
(

xi
)]

)

(16)Zi(x0) =

N(h)
∑

i=1

�1iZ1(xi) +

N(h)
∑

i=1

�2iZ2(xi)
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2.3.3 � Implementation of KG classification scheme

As developed by (Kottek et al. 2006), the KG classification 
scheme was adopted under the criterion in Tables 2 and 3. 
Accordingly, five main climate groups are defined each pre-
sented with a letter as: (A) tropical climate, (B) arid climate, 
(C) warm temperate climate, (D) snow climate, and (E) polar 
climate. Then, each of the climates is divided into smaller cli-
matic zones based on the seasonal variation of precipitation in 
an area. As a result, there are several classes to define, includ-
ing dry summer (s), dry winter (w), and no dry season or com-
pletely humid climate (f) (Peel et al. 2007). Definitions of these 
main groups are based on the criterion presented in Table 3.

As shown in Table 3, the first letter describes the climate 
in term of the temperature condition, and the second letter 
describes the climate in term of the precipitation conditions 
in an area. Also, Tmin, Tmax, Pann, Pmin, Psmin, Psmax, Pwmin, and 
Pwmax represent the monthly mean temperature of the coldest 

month, monthly mean temperature of the hottest month, 
accumulated annual precipitation, precipitation of the driest 
month, lowest monthly precipitation values for the summer, 
highest monthly precipitation values for the summer, low-
est monthly precipitation values for the winter, and highest 
monthly precipitation values for the winter, respectively. The 
third letter in the KG method is defined based on the criteria 
shown in Table 3. Note that, for type (b), a threshold tempera-
ture value of + 10ºC is set for at least four months, as defined 
in the third column of Table 4 (Kottek et al. 2006).

The KG method applies dryness threshold (Pth) values for 
class B climate based on the absolute measure of the annual 
mean temperature and the annual cycle of precipitation. The 
following equations show how this threshold is set.

(17)

P
th
= 2 × T

ann
if at least 2∕3 of the annual precipitation occurs in winterP

th

= 2 × T
ann

+ 28 if at least 2∕3 of the annual precipitation occurs in winterP
th

= 2 × T
ann

+ 14 otherwise

Table 3   The main types of 
climate in the KG climate 
classification, descriptions and 
identification criteria (Kottek 
et al. 2006)

Type Description Criterion

A Equatorial climates Tmin ≥ +18˚C
Af Equatorial rainforest, fully humid Pmin ≥ 60 mm
Am Equatorial monsoon Pann ≥ 25(100-Pmin)
As Equatorial savannah with dry summer Pmin < 60 mm in summer
Aw Equatorial savannah with dry winter Pmin < 60 mm in winter
B Arid climates Pann < 10Pth
Bs Steppe climate Pann > 5 Pth
Bw Desert climate Pann ≤ 5Pth
C Warm temperate climates -3˚C < Tmin <+18 ˚C
Cs Warm temperate climate with dry summer Psmin < Pwmin,Pwmax > 3Psmin and Psmin < 40 mm
Cw Warm temperate climate with dry winter Pwmin < Psmin and Psmax > 10 Pwmin

Cf Warm temperate climate, fully humid Neither Cs nor Cw
D Snow climates Tmin ≤ -3 ˚C
Ds Snow climate with dry summer Psmin < Pwmin,Pwmax > 3Psmin and Psmin < 40 mm
Dw Snow climate with dry winter Pwmin < Psmin and Psmax > 10 Pwmin

Df Snow climate, fully humid neither Ds nor Dw
E Polar climates Tmax <+10 ˚C
ET Tundra climate 0 ˚C ≤ Tmax <+10 ˚C
EF Frost climate Tmax < 0˚C

Table 4   Determination of the 
third letter for the temperature 
conditions in the KG climate 
classification method

Type Description Criterion

h Hot steppe /desert Tann ≥+18 ˚C
k Cold steppe /desert Tann <+18 ˚C
a Hot summer Tmax ≥+22 ˚C
b Warm summer not (a) and at least 4 Tmon ≥  + 10 ◦C
c Cool summer and cold winter not (b) and Tmin >  − 38 ◦C
d extremely continental like (c) but Tmin ≤  − 38 ◦C
Tann is the annual mean near-surface temperature
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In total, this study produced six maps in a raster format 
with spatial resolution of 1000 m. The four maps resulted 
from MLR models and spatial interpolation per precipita-
tion and temperature. These maps cover the entire country 
of Iran. This study also produced two further KG clas-
sification maps from unused ground-based meteorologi-
cal data (109 stations) in MLR and spatial interpolation 
techniques. In line with four other maps, the ground-based 
KG maps were generated with spatial resolution of 1000 
m. However, those only identify the KG classification of 
each weather observation station. The ground-based maps 
were used to assess the accuracy of the four other maps 
against the real meteorological data from weather obser-
vation stations.

2.4 � Evaluation of model performance

Since the result of practicing the KG method was a nominal 
classified map, the final results were evaluated with over-
all accuracy and the Kappa coefficient (K). The arbitrary 
Kappa of 0.75 was considered excellent. It was calculated 
with Eq. 18 as follows (Fleiss et al. 2013):

The Kappa coefficient is a measure of the accuracy of 
maps and is calculated for each matrix using diagonal and 
marginal elements. It indicates how well the classification 
agrees with the real data.

(18)

K =

[

%agreementobsereved
]

−
[

%agreementexpectedbychance
]

100% −
[

%agreementexpectedbychance
]

3 � Results and discussion

3.1 � Satellie‑based regression analysis

The strength of relationship between meteorological val-
ues and satellite-based data was inspected statistically with 
Pearson’s correlation test. Figure 4 shows the relationship 
between air temperature and three types of MODIS- LST 
data. The highest correlation was found between Tmin and 
LSTmin followed by the Tann-LSTann and Tmax-LSTmax pairs 
at a ground station. The correlations were significant based 
on Pearson’s correlation test at P-value < 0.01.

As shown in Table 5, there was a significant and positive 
linear correlation between Tmin and LST values at the sig-
nificance level of 0.01. In addition, value of variance infla-
tion factor (VIF) for all the linear models were less than the 
determined cut-off point value (VIF < 10). This indicates the 
non-collinearity in the models.

In the case of statistical relationship between ground-
based precipitation data and GPM data, correlation 
generally declined when precipitation decreased. As 
shown in Fig. 5, the highest correlation belonged to the 
Pwmax-GPMwmax pair, followed by Pann-GPMann, Pw-GPMw, 
Pwmin-GPMwmin, and Psmin-GPMsmin. This result also indi-
cated overestimation of GPM values among all the devel-
oped regression models. Collectively, Pearson’s correla-
tions were significant (2-tailed P value < 0.01) for all the 
pairs (Fig. 5).

Table 6 shows MLR models between ground-based par-
ticipation (depended variable) and GPM data, TVDI data 

Fig. 4   Relationship between 
Tann-LSTann, Tmax-LSTmax and 
Tmin-LSTmin pairs at a ground 
station

Table 5   Statistics for the 
regression model output 
based on the ground-based 
temperature data

LSTann annual mean LST, LSTmin monthly mean LST of the coldest month, LSTmax monthly mean LST of 
the hottest month, DEM digital elevation model

KG input IV Equation R2 Sig VIF(s)

Tmin DEM, LSTmin -0.002*(DEM) + 0.493*(LSTmin) + 3.250 0.82 0.000  < 5.1
Tann LSTann, DEM -0.003*(DEM) + 0.522*(LSTann) + 5.001 0.78 0.000  < 02.1
Tmax DEM, LSTmax -0.004*(DEM) + 0.449*(LSTmax) + 14.609 0.65 0.000  < 1.0
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and DEM (independent variables). According to Table 2, 
with the increase of overall rainfall in a time scale, the corre-
lations between ground data and satellite data are increased. 
For example, Psmin and Pann show the lowest and highest cor-
relation with GPMsmin and GPMann respectively. However, 
the TVDI as an ancillary independent variable improves the 
correlations to some extent. Also, VIF values indicated in 
this table reject collinearities between independent variables.

Figure 6 shows TVDI maps derived from MODIS LST 
and NDVI products. LST and NDVI on the same time 

scale were plotted against each other, and LSTmin and 
LSTmax parameters (Table 6) were derived from the tri-
angulated graph presented in Fig. 2. The monthly scat-
ter plots of April, June, August, and October as well as 
the equations used to calculate LSTmax and LSTmin values 
for mapping TVDI are presented in Fig. 7 and Table 7, 
respectively. As shown in Fig. 6, most wet areas on all 
the time scale maps are located in the north and west of 
the country, but they reduce from the northwest to the 
southeast. In the eastern and southern regions, the lack of 

Fig. 5   Relationship between the pairs Pann-GPMann, Psmin-GPMsmin, Pw-GPMw, Pwmin-GPMwmin, and Pwmax-GPMwmax

Table 6   Statistics for MLR 
models output based on the 
ground-based precipitation data 
and GPM data, TVDI data and 
DEM

Pann accumulated annual precipitation, Psmin the lowest monthly precipitation values for the summer, 
Pwmin  lowest monthly precipitation values for the winter, Pwmax highest monthly precipitation values for the 
winter, and Pw  mean value of winter precipitation

KG input IV Equation R2 Sig VIF(s)

Psmin GPMsmin TVDIsmin 2.962* (TVDIsmin) + 0.121*(GPMsmin)-0.951 0.27 0.000  < 5.3
Pwmin GPMwmin TVDIwmin 0.253*(GPMwmin) + 22.648*(TVDIwmin)-4.235 0.43 0.000  < 4.0
Pwmax GPMwmax TVDIwmax 2.920*(TVDIwmax) + 1.009*(GPMwmax)-2.81 0.68 0.000  < 1.5
Pw GPMw TVDIw 34.63*(TVDIw) + 0.818(GPMw)-16.564 0.66 0.000  < 3.4
Pann GPMann TVDIann 114.91*(TVDIann) + 0.809(GPMann)-48.38 0.70 0.000  < 5.1
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rainfall and the increase in temperature lead to a decrease 
in soil moisture. In addition, TVDI accounts for the veg-
etation conditions influenced by precipitation (Hussain 
et al. 2023). Briefly, the effect of rainfall is first reflected 
as the soil moisture, which varies with climate change. 
Soil moisture, as a storage for precipitation, is one of the 
key climate variables owing to its significant role in the 
hydrological cycle (Gruber et al. 2019) as well as energy 
and biogeochemical cycles. Regarding the role of soil 
moisture in the climate system, it is known as a basic prop-
erty for interpreting for monthly to seasonal climate vari-
ations and for climate change studies (Jiang et al. 2023). 
The large-scale alteration in soil moisture availability is a 
relatively fast response to the climate variation and a sig-
nificant sign of regional climate change (Allan et al. 2020; 
Berg and Sheffield 2018). TVDI is a function of soil mois-
ture and vegetation. As vegetation increases, the surface 
temperature decreases because the leaves absorb the heat 
for transpiration and cause a reverse process between the 
surface temperature and the vegetation. However, TVDI 
reproduces the variation in moisture on a finer scale than 
can be derived from ground-based data in the study area.

Figure 8 shows modelled precipitation and temperature 
resulted from regression analysis. As shown, the hottest 

region of Iran is located mainly in the south and south-
east, and the coldest region is in the Northwest part of 
the country. The mean air temperature is increased from 
the north to the south and from the west to the east. The 
increase of temperature in the West–East direction is due 
to the existence of mountains and the topographic condi-
tions of western Iran. The increase of temperature in the 
north–south direction is due to the proximity to the equa-
tor, the increase in the angle of the sun, and the moisture 
richness of the atmosphere on the southern coasts.

3.2 � Spatial interpolation

Additionally, the ground-based data of rainfall and air tem-
perature were interpolated statistically on different time 
scales as the required parameters for the KG method. The 
interpolation was conducted after data normalization, which 
is a pre-requisite for interpolation (of kriging and Co-krig-
ing types). Considering Root Square Mean Error ((RMSE) 
values, Tmax, Tmin, Tann, Pswin, Pwmax, Pann and Pwmin were 
interpolated through Co-Krigging method using DEM as 
an ancillary data. Whereas, ordinary kriging had better 
performance than Co-kriging method in interpolating Pw 
point data. Figure 9 shows the maps of geo-statistically 

Fig. 6   TVDI maps for different time scales: (A) TVDIann, (B) TVDIsmin, (C) TVDIwmin, (D) TVDIwmax, and (E) TVDIwmin
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interpolated ground-based precipitation and air tempera-
ture data.

3.3 � Demonstration of KG classification maps

Figure 10 shows KG classification maps generated from 
satellite-based data (KGs) and ground-based geo-statistically 
interpolated data (KGgs). Overall, this study identified three 
main groups and eight sub-groups of KG climate classes in 
Iran. Based on this classification, the three main types of 
climates in Iran during 2016–2019 were B (arid climate), 

C (warm temperate climate), and D (snow climate). Moreo-
ver, the Bwh subgroup (characterized by dry and very hot 
desert conditions) dominates the largest area of the country, 
encompassing most of the central parts, southeast, parts of 
the northeast, and the hillside of the Zagros mountains in the 
study region. The Bsk subgroup, representing semi-arid and 
cold desert climates, extends over the east and northeast, as 
well as parts of the south to southwest, including areas of the 
Zagros mountains. The Bwk subgroup, associated with dry 
and cold conditions, covers the northern and western edges 
of the central part of the country. Following in the hierarchy 

Fig. 7   Scatter plots of LST and NDVI maps on different time scales (for a sample of four months including April, June, August and October)

Table 7   Equation derived from LST-NDVI space in the calculation of LSTmax and LSTmin values

Dry  Dry edge, Wet  Wet edge

Month Edge 2016 2017 2018

April Dry y = -46.316(NDVI) + 340.06 y = -33.19(NDVI) + 337/15 y = -26.984(NDVI) + 334.14
Wet y = 12.599(NDVI) + 274.49 y = 18.473(NDVI) + 272/45 y = 23.756(NDVI) + 272.34

June Dry y = -50.339(NDVI) + 346.6 y = -39.558(NDVI) + 342/77 y = -44.485(NDVI) + 343.46
Wet y = 13.348(NDVI) + 283.03 y = 4.423(NDVI) + 294/05 y = 18.869(NDVI) + 284.99

August Dry y = -41.208(NDVI) + 341.96 y = -32.913(NDVI) + 338/44 y = -29.587(NDVI) + 336.28
Wet y = 5.725(NDVI) + 294.74 y = 12.882(NDVI) + 294/87 y = -12.091(NDVI) + 299.84

October Dry y = -34.044(NDVI) + 327.68 y = -39.118(NDVI) + 331.81 y = -35.632(NDVI) + 330.1
Wet y = 6.783(NDVI) + 281.13 y = 14.875(NDVI) + 278/56 y = 12.849(NDVI) + 274.42
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of Group B, the Bsh subgroup, characterized by dry and very 
hot semi-desert climates, spans from the center to the south 
and southwest regions. The Csa subgroup, the sole repre-
sentative of Group C, signifies the Mediterranean climate 
with dry and very hot summers, spanning from the north to 
the northwest and southwest of the country. Additionally, the 
Dsa subgroup, belonging to the cold climate (D), covers the 
north and northwest regions. Figures 10 and 1 indicate that 
Dsa, Dsb, and Csb cover only a small portion of the country.

Additionally, Fig. 11 shows a comparison between simi-
larity and differences of the KG main group and sub-group 
between KGgs and KGs maps. Overall, the greatest output 
difference between the two methods belongs to C and D 
main groups. However, based on the results, the Bwh climate 
group covers a major part of the country.

Considering KGgs (Figs. 10 and 11), in the main group, 
similar to KGs, climate B has the largest area covering above 
90% of the country, and the predominant sub-climate of the 
three groups is Bwh, which covers about 55.73% of the 
country. Bsk, the second dominant climate which covers 
about 20.47% of the country, has the average annual tem-
perature below 18ºC and is extended in the northeastern, 
northern, and western regions up to the Zagros Mountain-
ous. In terms of area coverage, the third dominant climate 
of the country is Bwk followed by the sequence of Bsh, Csa, 
Dsa, Csb and Dsb.

In terms of area coverage, the two methods showed 
almost similar results. The maximum and minimum area 
differences between classes of KGgs and KGs were about 
3% (Bwh) and 0.2% (Bsh), respectively. In general, the same 

Fig. 8   Regression-based near-surface temperature and precipitation maps
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trend of change can be seen in the areas on both KGgs and 
KGs maps.

3.4 � Assessment of model performance

As indicated in Table 8, the overall accuracy values of 
92.66% and 84.4% and the Kappa coefficients of 0.75% 
and 0.41% were obtained for KGs and KGgs, respectively. 
Although the kappa values are obviously different in the 
main groups, the values obtained by the two methods are 
closer to each other in the sub-groups. In addition to the 
kappa, disagreement indices including quantity disagree-
ment (QD) and allocation disagreement (AD) were calcu-
lated in this study. The details of equations in calculating 

QD and QD have been presented by Pontius and Millones 
(2011). The inverse behavior of total disagreement (sum of 
QD and QD values) in contrast to the kappa and total accu-
racy can be seen in Table 8.

If the point-wise climate classification map (derived from 
223 synoptic stations) is overlaid with the GPM and LST 
images, KG (Tables 9 and 10) can be proposed for the study 
area

The Kappa accuracy was improved where the modified KG 
criteria were applied on LST and GPM data (Table 11). The 

(19)
P
th
= 2 × LST

ann
if at least 3∕4 of the annual precipitation occurs in winter

(20)Pth = 2 × LSTann + 38 otherwise.

Fig. 9   Geo-statistically interpolated precipitation and air temperature maps based on the ground data of the study area
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accuracy assessment was performed using the same dataset as 
in the regression and interpolation methods.

4 � Conclusion

This study provided a comprehensive assessment between 
regression analysis and spatial interpolation techniques in 
the use of developing Köppen-Geiger (KG) classification 
maps on a national scale. Both techniques are popular to 
overcome data inconsistency and scarcity. In the case of 
regression analysis, this research examined the relation-
ship between MODIS-LST, MODIS-NDVI, MODIS-
TVDI, GPM-precipitation and SRTM-DEM (explanatory 
variables) and ground-based precipitation and temperature 

(dependent variables). The spatial interpolation model 
(Krigging and Co-krigging) was developed from a weather 
observation station. Overall, this study identified three 
main groups and eight sub-groups of KG climate classes 
in Iran. Based on this classification, the three main types 
of climate in Iran during 2016–2019 were B (arid climate), 
C (warm temperate climate) and D (snow climate). Also, 
the results showed that the area coverage of the sub-groups 
(Bwh, Bsk, Bwk, Bsh, Csa, Dsa, Dsa, Dsb and Csb) in the 
maps obtained from the two studied methods follow each 
other to a large extent.

This research study thus obtained a Kappa of 66% for 
the sub-group on the KGgs map. The results also revealed 
that the KG map generated from satellite data was more 
accurate than the map generated from geostatistically 

Fig. 10   Main-group and sub-group areas on KGs and KGgs maps
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Fig. 11   Comparison of the 
percentages for different main-
group and sub-group areas on 
KGs and KGgs maps

Table 8   Kappa statistics, the 
overall accuracy, QD and AD of 
KGs and KGgs maps based on 
the test data

Classifications Overall Accu-
racy (%)

Kappa (%) Quantity disa-
greement (%)

Allocation 
disagreemet

Total disa-
greement
(%)

KGs KGgs KGs KGgs KGs KGgs KGs KGgs KGs KGgs

The main grouping 92.66 84.40 75 41 7 10 0 6 7 16
Subgroup (subgroups) 77.98 73.64 71 66 12 13 11 13 23 26

Table 9   Determination of the KG main group and criteria in case of 
using LST and GPM satellite data

Type Description Criterion

B Arid climates GPMann < 6Pth 
Bs Steppe climate GPMann > 3pth
Bw Desert climate GPMann ≤ 3pth
C Warm temperate climates -5 ˚C < LSTmin < 30 ˚C
Cs Warm temperate climate with dry 

summer
GPMsmin < GPMwmin, 

GPMwmax > 3* 
GPMsmin, 
GPMsmin < 40 mm

D Snow climates LSTmin ≤ -5 ˚C
Ds Snow climate with dry summer GPMsmin < GPMwmin, 

GPMwmax > 3* 
GPMsmin, 
GPMsmin < 40 mm

Table 10   Determination of the third letter (temperature conditions) in 
the KG climate classification method with LST data

Type Description Criterion

h Hot steppe / desert LSTann ≥ 32 ˚C
k Cold steppe /desert LSTann < 32 ˚C
a Hot summer LSTmax ≥ 30 ˚C

Table 11   Kappa statistics for the overall accuracy of climate classifi-
cation based on the modified KG criteria

Classifications Overall Accuracy(%) Kappa(%)

The main grouping 99.38 0.88
Subgroup (subgroups) 93.37 0.86
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interpolated ground data. Due to the operational applica-
bility of remotely sensed data, this study claims to be of 
insight for climate classification based on remote sensing 
imageries. The spatial trends of climate change can also 
be detected with continuous pixel-based data. However, 
with the Kappa of at least 75%, this study showed that 
satellite data can be used for KG climate classification, 
although GPM data and point data are not homologous. 
The dissimilarity of satellite data and point data may be 
due to the high spatial variation of precipitation in arid and 
semi-arid regions, whereas satellite data estimate precipi-
tation with 10-km spatial resolution. Satellite data helps 
to define a new threshold, modify the criteria, and offer a 
new approach to examining climate globally.

Continuous pixel-based climate maps created from 
the presented methodology are expected to reveal better 
climate transition zones than the point data. Moreover, 
overlying time series climate maps generated from long- 
term satellite data the maps of future climate zones can be 
generated and the hotspots of environmentally susceptible 
areas due to climate change and climate warming can be 
identified. Due to the global coverage of satellite data, a 
unique and globally high temporal and spatial resolution 
climate map can be generated, and significant regional and 
temporal climate change can be portrayed. However, this 
study recommends employing techniques such as artificial 
intelligence for data gap filling of climate data with the 
purpose of climate classification. This study also suggests 
the evaluation of the performance of the presented meth-
odology in the area covering KG climate classes other than 
classes existing in the study area of this research.

Acknowledgements  Thank you for evaluating our submitted 
manuscript.

Author contribution  All authors contributed in writing the main manu-
script text, preparing figures and tables and all authors reviewed the 
manuscript as well.

Data availability  No datasets were generated or analysed during the 
current study.

Declarations 

Competing interests  The authors declare no competing interests.

References

Aboutalebi M, Torres-Rua AF, Allen N (2018) Spatial and Tempo-
ral Analysis of Precipitation and Effective Rainfall Using Gauge 
Observations Satellite, and Gridded Climate Data for Agricultural 
Water Management in the Upper. Colo River Basin Remote Sens 
10:2058

Akhavan S, Mousabeygi F, Peel MC (2018) Assessment of eight ref-
erence evapotranspiration (ETo) methods considering Köppen 

climate class in Iran. Hydrol Sci J 63:1468–1481. https://​doi.​org/​
10.​1080/​02626​667.​2018.​15136​54

Aksu H, Yaldiz SG, Taflan GY, Akgül MA (2023) Frequency analysis 
based on Peaks-Over-Threshold approach for GPM IMERG pre-
cipitation product. Theoret Appl Climatol 154:275–289. https://​
doi.​org/​10.​1007/​s00704-​023-​04555-5

Ali Akbar D (2012) Reserve estimation of central part of Choghart 
north anomaly iron ore deposit through ordinary kriging method 
International Journal of. Min Sci Technol 22:573–577. https://​doi.​
org/​10.​1016/j.​ijmst.​2012.​01.​022

Allan RP et al (2020) Advances in understanding large-scale responses 
of the water cycle to climate change. Ann N Y Acad Sci 1472:49–
75. https://​doi.​org/​10.​1111/​nyas.​14337

Amiri MJ, Eslamian SS (2010) Investigation of climate change in Iran. 
Environ Sci Technol 3:208–216

Ascencio-Vásquez J, Brecl K, Topič M (2019) Methodology of Köp-
pen-Geiger-Photovoltaic climate classification and implications 
to worldwide mapping of PV system performance. Sol Energy 
191:672–685. https://​doi.​org/​10.​1016/j.​solen​er.​2019.​08.​072

Atkinson PM, Lloyd CD (2014) Geostatistical Models and Spatial 
Interpolation. In: Fischer MM, Nijkamp P (eds) Handbook of 
Regional Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 
pp 1461–1476. https://​doi.​org/​10.​1007/​978-3-​642-​23430-9_​75

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, 
Wood EF (2018) Present and future Köppen-Geiger climate clas-
sification maps at 1-km resolution. Sci Data 5:180214. https://​doi.​
org/​10.​1038/​sdata.​2018.​214

Berg A, Sheffield J (2018) Soil Moisture-Evapotranspiration Cou-
pling in CMIP5 Models: Relationship with Simulated Climate 
and Projections. J Clim 31:4865–4878. https://​doi.​org/​10.​1175/​
JCLI-D-​17-​0757.1

Berndt C, Haberlandt U (2018) Spatial interpolation of climate vari-
ables in Northern Germany—Influence of temporal resolution and 
network density. J Hydrol: Reg Stud 15:184–202. https://​doi.​org/​
10.​1016/j.​ejrh.​2018.​02.​002

Bhunia GS, Shit PK, Maiti R (2018) Comparison of GIS-based inter-
polation methods for spatial distribution of soil organic carbon 
(SOC). J Saudi Soc Agric Sci 17:114–126. https://​doi.​org/​10.​
1016/j.​jssas.​2016.​02.​001

Bonsoms J, Ninyerola M (2024) Comparison of linear, generalized 
additive models and machine learning algorithms for spatial cli-
mate interpolation. Theor Appl Climatol 155:1777–1792. https://​
doi.​org/​10.​1007/​s00704-​023-​04725-5

Cahn MD, Hummel JW, Brouer BH (1994) Spatial Analysis of Soil 
Fertility for Site-Specific Crop Management. Soil Sci Soc Am 
J 58:1240–1248. https://​doi.​org/​10.​2136/​sssaj​1994.​03615​99500​
58000​40035x

Canan F, Golasi I, Falasca S, Salata F (2020) Outdoor thermal percep-
tion and comfort conditions in the Köppen-Geiger climate cat-
egory BSk One-Year Field Survey and Measurement Campaign 
in Konya, Turkey. Sci Total Environ 738:140295. https://​doi.​org/​
10.​1016/j.​scito​tenv.​2020.​140295

Cressie N (1994) 4 - Models For Spatial Processes. In: Stanford JL, 
Vardeman SB (eds) Methods in Experimental Physics, vol 28. 
Academic Press, pp 93–124. https://​doi.​org/​10.​1016/​S0076-​
695X(08)​60254-9

Cui D, Liang S, Wang D, Liu Z (2021) A 1&thinsp;km global dataset 
of historical (1979–2013) and future (2020–2100) Köppen-Geiger 
climate classification and bioclimatic variables. Earth Syst Sci 
Data 13:5087–5114. https://​doi.​org/​10.​5194/​essd-​13-​5087-​2021

de Moraes RBF, Gonçalves FV (2023) Comparison of the performance 
of estimated precipitation data via remote sensing in the Midwest 
Region of Brazil. Theoret Appl Climatol 153:1105–1116. https://​
doi.​org/​10.​1007/​s00704-​023-​04523-z

Deyasi A, Bhattacharjee AK, Mukherjee S, Sarkar A (2021) Multi-
layer Perceptron based Comparative Analysis between CNTFET 

https://doi.org/10.1080/02626667.2018.1513654
https://doi.org/10.1080/02626667.2018.1513654
https://doi.org/10.1007/s00704-023-04555-5
https://doi.org/10.1007/s00704-023-04555-5
https://doi.org/10.1016/j.ijmst.2012.01.022
https://doi.org/10.1016/j.ijmst.2012.01.022
https://doi.org/10.1111/nyas.14337
https://doi.org/10.1016/j.solener.2019.08.072
https://doi.org/10.1007/978-3-642-23430-9_75
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1175/JCLI-D-17-0757.1
https://doi.org/10.1175/JCLI-D-17-0757.1
https://doi.org/10.1016/j.ejrh.2018.02.002
https://doi.org/10.1016/j.ejrh.2018.02.002
https://doi.org/10.1016/j.jssas.2016.02.001
https://doi.org/10.1016/j.jssas.2016.02.001
https://doi.org/10.1007/s00704-023-04725-5
https://doi.org/10.1007/s00704-023-04725-5
https://doi.org/10.2136/sssaj1994.03615995005800040035x
https://doi.org/10.2136/sssaj1994.03615995005800040035x
https://doi.org/10.1016/j.scitotenv.2020.140295
https://doi.org/10.1016/j.scitotenv.2020.140295
https://doi.org/10.1016/S0076-695X(08)60254-9
https://doi.org/10.1016/S0076-695X(08)60254-9
https://doi.org/10.5194/essd-13-5087-2021
https://doi.org/10.1007/s00704-023-04523-z
https://doi.org/10.1007/s00704-023-04523-z


	 A. Tayebi et al.

and Quantum Wire FET for Optimum Design Performance Solid 
State. Electron Lett 3:42–52. https://​doi.​org/​10.​1016/j.​ssel.​2021.​
12.​003

Every JP, Li L, Dorrell DG (2020) Köppen-Geiger climate classifica-
tion adjustment of the BRL diffuse irradiation model for Austral-
ian locations. Renewable Energy 147:2453–2469. https://​doi.​org/​
10.​1016/j.​renene.​2019.​09.​114

Fallah B, Sodoudi S, Russo E, Kirchner I, Cubasch U (2017) Towards 
modeling the regional rainfall changes over Iran due to the climate 
forcing of the past 6000 years. Quat Int 429:119–128. https://​doi.​
org/​10.​1016/j.​quaint.​2015.​09.​061

Fallmann J, Emeis S (2020) How to bring urban and global climate 
studies together with urban planning and architecture? Dev Built 
Environ 4:100023. https://​doi.​org/​10.​1016/j.​dibe.​2020.​100023

Fanchi JR (2018) Chapter 2 - Geological Modeling. In: Fanchi JR (ed) 
Principles of Applied Reservoir Simulation (Fourth Edition). Gulf 
Professional Publishing, pp 9–33. https://​doi.​org/​10.​1016/​B978-
0-​12-​815563-​9.​00002-1

Fleiss JL, Levin B, Paik MC (2013) Statistical Methods for Rates and 
Proportions. Wiley

Francisco E (2014) A New Methodology for Building Local Climate 
Change Scenarios: A Case Study of Monthly Temperature Projec-
tions for Mexico City. Atmósfera 27:429–449. https://​doi.​org/​10.​
1016/​S0187-​6236(14)​70040-2

Geiger R (1961) Überarbeitete Neuausgabe von Geiger, R.: Köppen-
Geiger Überarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger 
/ Klima der Erde. (Wandkarte 1:16 Mill.) – Klett-Perthes, Gotha

Ghajarnia N et al (2022) Evaluating the Evolution of ECMWF Precipi-
tation Products Using Observational Data for Iran: From ERA40 
to ERA5. Earth Space Sci 9:e2022EA002352. https://​doi.​org/​10.​
1029/​2022E​A0023​52

Gruber A, Scanlon T, van der Schalie R, Wagner W, Dorigo W (2019) 
Evolution of the ESA CCI Soil Moisture Climate Data Records 
and Their Underlying Merging Methodology. Earth Syst Sci Data 
11:717–739. https://​doi.​org/​10.​5194/​essd-​11-​717-​2019

Hammann AC, MacDonell S (2022) Regression-based gap-filling 
methods show air temperature reductions and wind pattern 
changes during the 2019 total eclipse in Chile. Sci Rep 12:7718. 
https://​doi.​org/​10.​1038/​s41598-​022-​10623-z

Hobbi S, Michael Papalexiou S, Rupa Rajulapati C, Nerantzaki SD, 
Markonis Y, Tang G, Clark MP (2022) Detailed investigation of 
discrepancies in Köppen-Geiger climate classification using seven 
global gridded products. J Hydrol 612:128121. https://​doi.​org/​10.​
1016/j.​jhydr​ol.​2022.​128121

Hooker J, Duveiller G, Cescatti A (2018) A Global Dataset of Air Tem-
perature Derived from Satellite Remote Sensing and Weather Sta-
tions. Sci Data 5:180246. https://​doi.​org/​10.​1038/​sdata.​2018.​246

Hsu S, Mavrogianni A, Hamilton I (2017) Comparing Spatial Interpo-
lation Techniques of Local Urban Temperature for Heat-related 
Health Risk Estimation in a Subtropical City. Procedia Engineer-
ing 198:354–365. https://​doi.​org/​10.​1016/j.​proeng.​2017.​07.​091

Hussain A et al (2023) Corrigendum to “Assessment of precipitation 
extremes and their association with NDVI, monsoon and oceanic 
indices over Pakistan.” Atmos Res 294:106973. https://​doi.​org/​
10.​1016/j.​atmos​res.​2023.​106973

Javanshiri Z, Pakdaman M, Falamarzi Y (2021) Homogenization and 
trend detection of temperature in Iran for the period 1960–2018. 
Meteorol Atmos Phys 133:1233–1250. https://​doi.​org/​10.​1007/​
s00703-​021-​00805-1

Jiang K et al (2023) Combined Influence of Soil Moisture and Atmos-
pheric Humidity on Land Surface Temperature under Different 
Climatic Background. iScience 26:106837. https://​doi.​org/​10.​
1016/j.​isci.​2023.​106837

Kebriya Y, Nadi M, Jamei M (2021) Combining interpolation meth-
ods and precipitation products of TRMM satellite to increase the 
accuracy of rainfall maps in Mazandaran province. J Water Soil 

Conserv 28:49–70. https://​doi.​org/​10.​22069/​jwsc.​2022.​19286.​
3477

Köppen W (1936) Das geographische System der Klimate. Handbuch 
der Klimatologie vol 1. C. Verlag von Gebrüder Borntraeger, 
Berlin.

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map 
of the Köppen-Geiger climate classification updated. Meteorol Z 
15:259–263. https://​doi.​org/​10.​1127/​0941-​2948/​2006/​0130

Ma Q, Li Y, Feng H, Yu Q, Zou Y, Liu F, Pulatov B (2021) Per-
formance evaluation and correction of precipitation data using 
the 20-year IMERG and TMPA precipitation products in diverse 
subregions of China. Atmos Res 249:105304. https://​doi.​org/​10.​
1016/j.​atmos​res.​2020.​105304

Madenci E, Barut A, Dorduncu M (2019) Interpolation, Regression, 
and Smoothing. In: Madenci E, Barut A, Dorduncu M (eds) Peri-
dynamic Differential Operator for Numerical Analysis. Springer 
International Publishing, Cham, pp 57–90. https://​doi.​org/​10.​
1007/​978-3-​030-​02647-9_4

Mazzeo D, Baglivo C, Matera N, De Luca P, Congedo PM, Oliveti G 
(2020) Energy and Economic Dataset of the Worldwide Optimal 
Photovoltaic-Wind Hybrid Renewable Energy Systems. Data Brief 
33:106476. https://​doi.​org/​10.​1016/j.​dib.​2020.​106476

McGibbon M, Money-Kyrle S, Blay V, Houston DR (2023) 
SCORCH: Improving structure-based virtual screening with 
machine learning classifiers, data augmentation, and uncer-
tainty estimation. J Adv Res 46:135–147. https://​doi.​org/​10.​
1016/j.​jare.​2022.​07.​001

Mokhtari MH, Adnan R, Busu I (2013) A new approach for developing 
comprehensive agricultural drought index using satellite-derived 
biophysical parameters and factor analysis method. Nat Hazards 
65:1249–1274. https://​doi.​org/​10.​1007/​s11069-​012-​0408-x

Moosavi V, Talebi A, Mokhtari MH, Hadian MR (2016) Estimation of 
spatially enhanced soil moisture combining remote sensing and 
artificial intelligence approaches. Int J Remote Sens 37:5605–
5631. https://​doi.​org/​10.​1080/​01431​161.​2016.​12443​66

Ouatiki H, Boudhar A, Chehbouni A (2023) Accuracy assessment and 
bias correction of remote sensing–based rainfall products over 
semiarid watersheds. Theor Appl Climatol 154:763–780. https://​
doi.​org/​10.​1007/​s00704-​023-​04586-y

Ouma Y, Tjitemisa T, Segobye M, Moreri K, Nkwae B, Maphale L, 
Manisa B (2021) Urban land surface temperature variations with 
LULC, NDVI and NDBI in semi-arid urban environments: case 
study of Gaborone City, Botswana (1989–2019), vol 11864. SPIE, 
SPIE Remote Sensing

Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of 
the Köppen-Geiger climate classification Hydrol Earth. Syst Sci 
11:1633–1644. https://​doi.​org/​10.​5194/​hess-​11-​1633-​2007

Pontius RG Jr, Millones M (2011) Death to Kappa: birth of quantity 
disagreement and allocation disagreement for accuracy assess-
ment. Int J Remote Sens 32:4407–4429. https://​doi.​org/​10.​1080/​
01431​161.​2011.​552923

Pražnikar J (2017) Particulate matter time-series and Köppen-Geiger 
climate classes in North America and Europe. Atmos Environ 
150:136–145. https://​doi.​org/​10.​1016/j.​atmos​env.​2016.​11.​056

Razmi R, Balyani S, Mansouri Daneshvar MR (2017) Geo-statistical 
modeling of mean annual rainfall over the Iran using ECMWF 
database Spatial. Inf Res 25:219–227. https://​doi.​org/​10.​1007/​
s41324-​017-​0097-3

Salata F, Golasi I, Treiani N, Plos R, de Lieto VA (2018) On the out-
door thermal perception and comfort of a Mediterranean sub-
ject across other Koppen-Geiger’s climate zones. Environ Res 
167:115–128. https://​doi.​org/​10.​1016/j.​envres.​2018.​07.​011

Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of 
the surface temperature/vegetation index space for assessment of 
surface moisture status. Remote Sens Environ 79:213–224. https://​
doi.​org/​10.​1016/​S0034-​4257(01)​00274-7

https://doi.org/10.1016/j.ssel.2021.12.003
https://doi.org/10.1016/j.ssel.2021.12.003
https://doi.org/10.1016/j.renene.2019.09.114
https://doi.org/10.1016/j.renene.2019.09.114
https://doi.org/10.1016/j.quaint.2015.09.061
https://doi.org/10.1016/j.quaint.2015.09.061
https://doi.org/10.1016/j.dibe.2020.100023
https://doi.org/10.1016/B978-0-12-815563-9.00002-1
https://doi.org/10.1016/B978-0-12-815563-9.00002-1
https://doi.org/10.1016/S0187-6236(14)70040-2
https://doi.org/10.1016/S0187-6236(14)70040-2
https://doi.org/10.1029/2022EA002352
https://doi.org/10.1029/2022EA002352
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.1038/s41598-022-10623-z
https://doi.org/10.1016/j.jhydrol.2022.128121
https://doi.org/10.1016/j.jhydrol.2022.128121
https://doi.org/10.1038/sdata.2018.246
https://doi.org/10.1016/j.proeng.2017.07.091
https://doi.org/10.1016/j.atmosres.2023.106973
https://doi.org/10.1016/j.atmosres.2023.106973
https://doi.org/10.1007/s00703-021-00805-1
https://doi.org/10.1007/s00703-021-00805-1
https://doi.org/10.1016/j.isci.2023.106837
https://doi.org/10.1016/j.isci.2023.106837
https://doi.org/10.22069/jwsc.2022.19286.3477
https://doi.org/10.22069/jwsc.2022.19286.3477
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1016/j.atmosres.2020.105304
https://doi.org/10.1016/j.atmosres.2020.105304
https://doi.org/10.1007/978-3-030-02647-9_4
https://doi.org/10.1007/978-3-030-02647-9_4
https://doi.org/10.1016/j.dib.2020.106476
https://doi.org/10.1016/j.jare.2022.07.001
https://doi.org/10.1016/j.jare.2022.07.001
https://doi.org/10.1007/s11069-012-0408-x
https://doi.org/10.1080/01431161.2016.1244366
https://doi.org/10.1007/s00704-023-04586-y
https://doi.org/10.1007/s00704-023-04586-y
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1016/j.atmosenv.2016.11.056
https://doi.org/10.1007/s41324-017-0097-3
https://doi.org/10.1007/s41324-017-0097-3
https://doi.org/10.1016/j.envres.2018.07.011
https://doi.org/10.1016/S0034-4257(01)00274-7
https://doi.org/10.1016/S0034-4257(01)00274-7


Revisiting Iran's climate classification: A fresh perspective utilizing the köppen‑geiger…

Sohoulande CDD (2024) Vegetation and water resource variability 
within the Köppen-Geiger global climate classification scheme: 
a probabilistic interpretation. Theoret Appl Climatol 155:1081–
1092. https://​doi.​org/​10.​1007/​s00704-​023-​04682-z

Tabachnick BG, Fidell LS (eds) (2007) Using Multivariate Statistics. 
F I F T, H. Pearson Education, Boston

Tan J, Xie X, Zuo J, Xing X, Liu B, Xia Q, Zhang Y (2021) Coupling 
random forest and inverse distance weighting to generate climate 
surfaces of precipitation and temperature with Multiple-Covari-
ates. J Hydrol 598:126270. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2021.​
126270

Tobin C, Nicotina L, Parlange MB, Berne A, Rinaldo A (2011) 
Improved interpolation of meteorological forcings for hydrologic 
applications in a Swiss Alpine region. J Hydrol 401:77–89. https://​
doi.​org/​10.​1016/j.​jhydr​ol.​2011.​02.​010

Wigmore O, Mark B, McKenzie J, Baraer M, Lautz L (2019) Sub-
metre mapping of surface soil moisture in proglacial valleys of 
the tropical Andes using a multispectral unmanned aerial vehicle. 
Remote Sens Environ 222:104–118. https://​doi.​org/​10.​1016/j.​rse.​
2018.​12.​024

Yoo J, Rohli RV (2016) Global distribution of Köppen-Geiger cli-
mate types during the Last Glacial Maximum Mid-Holocene, 
and Present Palaeogeography, Palaeoclimatology. Palaeoecol-
ogy 446:326–337. https://​doi.​org/​10.​1016/j.​palaeo.​2015.​12.​010

Zheng Y, He Y, Chen X (2017) Spatiotemporal pattern of precipita-
tion concentration and its possible causes in the Pearl River basin 
China. J Clean Prod 161:1020–1031. https://​doi.​org/​10.​1016/j.​
jclep​ro.​2017.​06.​156

Zimmerman DL (1994) 13 - Statistical Analysis of Spatial Data. In: 
Stanford JL, Vardeman SB (eds) Methods in Experimental Phys-
ics, vol 28. Academic Press, San Diego, pp 375–402. https://​doi.​
org/​10.​1016/​S0076-​695X(08)​60263-X

Zou W-y, Yin S-q, Wang W-t (2021) Spatial interpolation of the 
extreme hourly precipitation at different return levels in the Haihe 
River basin. J Hydrol 598:126273. https://​doi.​org/​10.​1016/j.​jhydr​
ol.​2021.​126273

Zůvala R, Fišerová E, Marek L (2016) Mathematical aspects of the 
kriging applied on landslide in Halenkovice (Czech Republic). 
Open Geosci 8:275–288. https://​doi.​org/​10.​1515/​geo-​2016-​0023

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1007/s00704-023-04682-z
https://doi.org/10.1016/j.jhydrol.2021.126270
https://doi.org/10.1016/j.jhydrol.2021.126270
https://doi.org/10.1016/j.jhydrol.2011.02.010
https://doi.org/10.1016/j.jhydrol.2011.02.010
https://doi.org/10.1016/j.rse.2018.12.024
https://doi.org/10.1016/j.rse.2018.12.024
https://doi.org/10.1016/j.palaeo.2015.12.010
https://doi.org/10.1016/j.jclepro.2017.06.156
https://doi.org/10.1016/j.jclepro.2017.06.156
https://doi.org/10.1016/S0076-695X(08)60263-X
https://doi.org/10.1016/S0076-695X(08)60263-X
https://doi.org/10.1016/j.jhydrol.2021.126273
https://doi.org/10.1016/j.jhydrol.2021.126273
https://doi.org/10.1515/geo-2016-0023

	Revisiting Iran's climate classification: A fresh perspective utilizing the köppen-geiger method
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Description of the study area
	2.2 Data
	2.2.1 Satellie Dataset
	2.2.2 Meteorological data from weather stations

	2.3 Methods
	2.3.1 Developing MLR models using MODIS and GPM data
	2.3.2 Spatial interpolation of guage-based percipiation and temperature data
	2.3.3 Implementation of KG classification scheme

	2.4 Evaluation of model performance

	3 Results and discussion
	3.1 Satellie-based regression analysis
	3.2 Spatial interpolation
	3.3 Demonstration of KG classification maps
	3.4 Assessment of model performance

	4 Conclusion
	Acknowledgements 
	References


