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Abstract
Droughts pose serious threats to the agricultural sector, especially in rainfed-dominated agricultural regions like those 
in Argentina’s Humid Pampas. This region was recently impacted by slow-evolving and long-lasting droughts as well 
as by flash droughts, resulting in losses reaching thousands of millions of US dollars. Improvements of drought early 
warning systems are essential, particularly given the projected increase in drought frequency and severity over southern 
South America. The spatial and temporal relationship between precipitation deficits, soil moisture and vegetation health 
anomalies are crucial for better understanding and representation of the agricultural droughts and their impacts. In this 
context, the Combined Drought Indicator (CDI) considers the causal and time-lagged relationship of these three variables. 
The study’s objective is twofold: (1) Analyze the time-lagged response between precipitation deficits, soil moisture and 
satellite fAPAR anomalies; and (2) Evaluate the CDI’s capability to characterize the severity of drought events on the 
Humid Pampas against agricultural yield estimations and simulations, as well as agricultural emergency declarations. 
The correlation among the variables shows strong spatial variability. The highest Pearson correlation values (r > 0.42) are 
observed over parts of the Humid Pampas for time lags of 0, 10, and 20 days between the variables. Although the CDI 
has limitations, such as its coarse spatial resolution and monthly temporal resolution of precipitation data, it effectively 
tracks the progression of major drought events in the region. The CDI’s performance aligns well with estimations and 
simulations of soybean and corn yields, as well as official declarations of agricultural emergencies. Insights from this 
study also provide a basis for discussing potential improvements to the CDI. This study highlights the global and regional 
significance of evaluating and enhancing the CDI for effective drought monitoring, emphasizing the role of collaborative 
efforts for future advancements in drought early warning systems.
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1  Introduction

Droughts can impact the agricultural sector, causing major 
socio-economic repercussions over different regions around 
the globe (e.g. Kim et al. 2019). As one of the climate disas-
ters with the most extensive global impact, droughts have 
affected around 1.4 billion between 2000 and 2020 (Donatti 
et al. 2024). These impacts can be exacerbated when the 
agricultural activities are carried out under rainfed condi-
tions, as in the Humid Pampas of Argentina. This region 
has been recently affected by both slow evolving and long 
lasting droughts (2008–2009, 2011–2012 and 2020–2023, 
Naumann et al. 2021, 2023), as well as by fast developing 
droughts commonly referred to as flash droughts (Otkin et 
al. 2018). The combined 2008–2009 and 2011–2012 events 
generated losses of nearly USD 8000 M related to just the 
soybean production (Thomasz et al. 2019). The 2017–
2018 flash drought that took place during the austral sum-
mer also caused considerable economic impacts of nearly 
USD 1500 M, related to corn and soybean yield reductions 
(Kucheruk et al. 2024; GAR, 2021). Several institutions 
and organizations, such as the SISSA project of the Centro 
Regional del Clima para el sur de América del Sur (CRC-
SAS), as part of the World Meteorological Organization 
region III, the European and Global Drought Observatory 
(EDO/GDO) of the European Commission, and the United 
States Drought Monitor (USDM, Svoboda et al. 2002) seek 
to reduce vulnerability to droughts by improving early 
warning systems. This goal acquires even more relevance 
for Argentina, as an increase in the frequency and sever-
ity of droughts under warming climate projected scenarios 
is expected in the region (e.g. Spinoni et al. 2020; GAR, 
2021).

The characteristics and impacts of droughts depend on 
multiple factors, such as climate variability, vegetation 
types, and human activities (e.g., GAR, 2021; Hendrawan 
et al. 2022; Rossi et al. 2023; Thi et al. 2023). Therefore, 
the importance of properly characterizing the different tem-
poral scales and regional features of droughts, requires the 
use of several indices and indicators as mentioned in WMO 
and GWP (2016). Cammalleri et al. (2021) discuss three 
main approaches for drought monitoring systems based 
on: (1) Several indices (e.g. Standardized Precipitation 
Index SPI, Mckee et al. 1993; Standardized Precipitation 
Evapotranspiration, Vicente-Serrano et al. 2010) as in the 
Drought Information System for South America (SISSA, 
for its Spanish acronyms); (2) Single indices that are a com-
bination of several indices (e.g. Soil Moisture Agricultural 
Drought Index SMADI, Sánchez et al. 2016); (3) Hybrid or 
composite indicators/indices. This last approach is used, for 
example by the USDM and by the EDO/GDO systems. In 
particular, the USDM uses several indices based on stream 

flow, precipitation and soil moisture (Svoboda et al. 2002) 
from observational data and land surface models, that are 
then blended together assigning different weights to each 
index depending on the temporal scale of interest, as each 
index is meant to represent different drought types (e.g. 
meteorological, agricultural). Then, based on the spatial 
superposition of the different indices a drought category is 
assigned depending on the estimated severity. The EDO and 
GDO systems, instead, use the Combined Drought Indica-
tor (CDI), developed by Sepulcre-Canto et al. (2012) and 
updated by Cammalleri et al. (2021).

The CDI uses a nested approach, considering the causal 
temporal relationship between precipitation deficits and 
subsequent negative anomalies in soil moisture and vegeta-
tion. In other words, this relationship is based on the fact 
that a precipitation shortage will lead to an eventual soil 
moisture deficit, which in turn could affect water availabil-
ity for vegetation. As such, it seeks to represent the propaga-
tion of the water deficit signal across the terrestrial branch 
of the hydrological cycle and its potential impacts on veg-
etation and crop production/health, focusing on agricultural 
droughts. Sepulcre-Canto et al. (2012) analyzed the different 
temporal responses between the 3-month accumulated SPI 
(SPI-3), soil moisture simulations and fraction of Absorbed 
Photosynthetically Active Radiation (fAPAR) anomalies. 
The best agreement, over 12 meteorological stations across 
Europe, was found with lags of 10 and 20 days (1 and 2 
dekads) between these variables. The authors concluded 
that this first version of CDI was able to represent the major 
drought events, identifying areas under agricultural drought 
which were coherent with observed yield reductions and 
emergency declarations. Cammalleri et al. (2021) pro-
posed a new version of the CDI (v2). The authors focused 
on improving the temporal consistency of the CDI over 
Europe, throughout the evolution of long lasting drought 
events, by decreasing the cases showing temporal shiftings 
between categories from drought to no-drought conditions. 
In this regard, the CDI-v2 demonstrated a superior perfor-
mance compared to its predecessor by effectively captur-
ing the spatiotemporal manifestation of droughts and their 
resulting impacts on yield reductions. Additionally, a more 
coherent sequence of the category stages was observed, rep-
resenting an improvement over the previous version of CDI.

The representativeness of the variables within the CDI 
over southern South America and the Humid Pampas, and 
the drought signal propagation through the terrestrial branch 
of the hydrological cycle are key aspects to better under-
standing the different time response between precipitation 
deficits, soil moisture and vegetation health anomalies. 
In this sense, a recent study by Rossi et al. (2023) high-
lighted that, depending on the varying characteristics of 
climate, vegetation, and other factors across three Brazilian 
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biomes, the temporal drought propagation signal can vary 
significantly.

Assessing the direct and indirect impacts of drought 
poses great challenges, differing from other meteorological 
hazards (e.g. floods) due to its multifaceted temporal and 
spatial scales, as well as its cross-sectoral and cascading 
effects (GAR, 2021). This study focuses solely on the direct 
impact of drought on the agricultural sector, examining crop 
yields and agricultural emergency declarations, consistent 
with the approach in Sepulcre-Canto et al. (2012). Further-
more, a complementary method for estimating agricultural 
drought impacts involves leveraging crop models to simu-
late yields in specific locations. Simulating the crop phenol-
ogy cycle under various soil and climate conditions offers 
the key advantage of isolating and assessing the climatic 
impact on yield variations, thereby eliminating other adverse 
effects on crops, such as pests. However, it is essential to 
consider local management practices and soil characteristics 
to enhance model representativity. In this sense, Aramburu 
Merlos et al. (2015) utilizing the DSSAT model with local 
soil information and farming practices, documented a good 
representation of corn and soybean yield simulations in the 
Humid Pampas region. Therefore, these datasets can be 
used as a reference to evaluate the performance of drought 
indices, as drought severity should be negatively correlated 
with crop yield anomalies in regions affected by droughts 
in predominantly rainfed agricultural regions (e.g. GAR, 
2021; Kim et al. 2019).

The objective of this study is twofold: (1) Analyze the 
lagged relationship between precipitation deficits, soil 
moisture and satellite-based fAPAR anomalies over south-
ern South America and the Humid Pampas region, to detect 
similarities and differences with the regions where the CDI 
was originally developed; and (2) Evaluate the CDI (ver-
sion 2, Cammalleri et al. 2021) operational configuration 
performance in characterizing the severity and evolution of 
drought events on the Humid Pampas in terms of crop yield 
estimations and simulations, and agricultural emergency 
declarations.

2  Data and methodology

2.1  Study region

This study focuses on two spatial domains: the first one 
corresponds to the CRC-SAS region, i.e. the area in South 
America south of 10°S (see Fig. 1); the second one, a subset 
of the first, corresponding to the Argentinian Humid Pampas 
(65°W 56°W and 42°S 22°S). The latter region is one of the 
major global breadbaskets (GAR, 2021).

2.2  Data

The dataset used for the CDI-v2 (hereafter CDI) computa-
tion is based on the operational Copernicus Global Drought 
Observatory (GDO, https://edo.jrc.ec.europa.eu/gdo/php/
index.php?id=2001) data. Precipitation, soil moisture data-
sets and vegetation index are summarized in Table S1 and 
briefly described below. The Global Precipitation Climatol-
ogy Centre (GPCC, Schamm et al. 2014) dataset is a com-
bination of gauge station and satellite estimations, and it is 
used in GDO to construct the monthly SPI over different 
accumulation periods (e.g. SPI-1 and SPI-3). The GPCC 
monthly precipitation was validated over Argentina (e.g. 
Spennemann et al. 2015) and showed a good representation 
compared to ground station observations from the Argen-
tinean National Weather Service (SMN, for its Spanish 
acronym).

The soil moisture ensemble product, used in the opera-
tional CDI, is based on the Triple Collocation (TP) meth-
odology (Gruber et al. 2016; Kim et al. 2023). The TP 
approach uses three independent soil moisture anomaly 
sources, as described in Cammalleri et al. (2017), to esti-
mate the average relative error of each one of them com-
pared to the unknown truth. Then a weighted average is 
computed, with weights for each pixel that are assigned 
proportionally to the inverse of the local relative errors. The 
three independent data are anomalies of: (1) Satellite Land 
Surface Temperature (LST) from MODIS (Wan et al. 2002), 
(2) Microwave satellite surface soil moisture (0–5 cm) com-
bined active/passive estimations from ESA-CCI (Gruber 
et al. 2019; Dorigo et al. 2017), and (3) LISFLOOD (De 
Roo et al. 2000) root zone soil moisture simulations. The 
anomalies for each product are calculated for each 10 day 
period, using a 30  day moving window, using a common 
climatological period (2001–2017). Subsequently, the three 
product anomalies are merged through the TP methodol-
ogy as mentioned above. Both, LISFLOOD simulations and 
ESA-CCI estimations were evaluated over the Humid Pam-
pas against in situ soil moisture observations, showing to be 
able to accurately represent the observed dry and wet events 
(Spennemann et al. 2020). .

The fAPAR anomalies from MODIS are used as a vegeta-
tion biomass indicator. They are calculated for each 10 day 
period, after removing the corresponding 10  day mean 
value and dividing by the standard deviation (i.e. standard-
ized anomalies), based on the 2001–2021 period. This index 
has shown to be reliable for detecting droughts and their 
impacts on vegetation (e.g. Gobron et al. 2005; Cammalleri 
et al. 2021; Peng et al. 2019).

In order to generate the operational CDI, the soil mois-
ture and fAPAR datasets were spatially resampled, with 
a bilinear method, to a common and coarser resolution of 
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Fig. 1  Regions of interest and location of 
the 14 meteorological stations are shown 
in the upper panel, the second row shows 
the SPI-3 for January 2009 and the SPI-1 
for January 2009, the third row shows 
the soil moisture anomaly (SM) for the 
1st dekad of February and the fAPAR 
anomalies for the 2nd dekad of Febru-
ary, the fourth row shows the CDI for 
the 2nd dekad of February and the CDI 
for the 3rd dekad of February 2009. All 
variables are shown below − 1 threshold, 
except for SPI-1 which is below − 2, and 
were interpolated to the 1°x1° GPCC 
precipitation spatial resolution
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correspond to the ALERT category, which is related to SPI-3 
and fAPAR anomalies below − 1. In this example, it is clear 
how the drought signal already moved from a precipita-
tion deficit to below normal soil moisture and vegetation 
stress conditions. In addition, the 14 meteorological sta-
tions where crop simulation were performed (see Sect. 2.3) 
are also shown in Fig. 1. To complement Fig. 1, Figure S1 
shows the temporal evolution of the different variables and 
the resulting CDI category for the 2008–2009 drought event 
at Rio Cuarto station in central Argentina, illustrating how 
the CDI works.

The CDI is designed to reproduce the cascading effect 
of drought from precipitation to soil moisture and vegeta-
tion, exploiting regularly updated soil moisture and fAPAR 
data with dekad (10 day interval) frequency, and monthly 
SPI-3 and SPI-1. In order to evaluate the delay in response 
in dekadal soil moisture and fAPAR anomalies to monthly 
SPIs, a simultaneous and lagged Pearson correlation was 
carried out as in Sepulcre-Canto et al. (2012): SPI of a spe-
cific month is compared with the anomalies of soil mois-
ture and fAPAR of the 2nd and 3rd dekad of that month 
(lags − 1d and 0 respectively) and with the 1st, 2nd and 3rd 
dekads of the following month (lags + 1d, +2d and + 3d 
respectively). This was performed for the austral warm 
months (September-March, from 2001 to mid-2022). Only 
warm months were analyzed since the fAPAR better repre-
sents the crop phenology during this period (Sepulcre-Canto 
et al. 2012) and summer crop yields are used in the subse-
quent evaluations. The time period under analysis (2001–
2022) is restricted by the satellite data availability.

2.4  Crop estimations and simulations, and 
agricultural emergency declarations

Yearly corn and soybean yield estimations from the Secre-
taría de Agricultura, Ganadería y Pesca (SAGyP 2022) over 
the 2001/02-2021/22 summer crop campaigns were used. 
The crop yield estimates correspond to a department spatial 
scale (second level administrative divisions), which include 
each of the 14 locations shown in Fig. 1 and listed in Table 
S2. In addition, the widely-used DSSAT v4.5 model suite 
(Hoogenboom et al. 2010) was employed to simulate corn 
and soybean yields based on meteorological observations, 
crop characteristics, and soil properties. Daily values of 
meteorological parameters, such as solar radiation, mini-
mum and maximum temperatures, and precipitation from 
Argentina’s National Weather Service (SMN by its Spanish 
acronym) were used to perform the simulations. Soil data 
were retrieved from the Soil Atlas of Argentina, produced 
by the National Institute of Agricultural Research (INTA 
by its Spanish acronym). Dominant soils were selected for 
each location, and their physical and chemical properties 

1°x1° corresponding to the GPCC spatial grid. In this study 
the period analyzed spans from 2001 to 2022.

2.3  Combined drought indicator

The CDI consists of 6 categories: WATCH, WARNING, 
ALERT, TEMPORARY SOIL MOISTURE RECOVERY, 
TEMPORARY VEGETATION (fAPAR) RECOVERY and 
FULL RECOVERY. As shown in Table  1, the WATCH 
category represents a precipitation deficit and corresponds 
to a SPI-3≤-1 or SPI-1≤-2; the WARNING category cor-
responds to a WATCH category + SM anomaly≤-1; mean-
while, the ALERT category implies a SPI-3≤-1 or SPI-1≤-2 
and fAPAR anomalies≤-1.

This definition, which is the same introduced by Sep-
ulcre-Canto et al. (2012), was expanded in Cammalleri et 
al. (2021) to account for the CDI category in the previous 
time step in order to determine how the drought conditions 
are evolving (e.g. recovering to non-drought conditions). 
In addition, to improve the temporal consistency of the 
drought assessment, temporary classes are added to handle 
short periods during which an indicator falls below the given 
drought threshold. For instance, the TEMPORARY SOIL 
MOISTURE RECOVERY category is defined when soil 
moisture anomalies are between 0 and − 1 and with a previ-
ous CDI under a drought category (e.g. WATCH or WARN-
ING). The TEMPORARY VEGETATION RECOVERY is 
defined similarly as the TEMPORARY SOIL MOISTURE 
RECOVERY. Meanwhile FULL RECOVERY category cor-
responds to the condition over all variables/indices being 
above the − 1 threshold. A complete description of the dif-
ferent combinations between the variables/indices and the 
previous CDI category can be found in Fig. 1 of Cammalleri 
et al. (2021) and the related text. To give an example on how 
the CDI corresponding to the 3rd dekad of February 2009 
is composed, in its operational configuration, Fig. 1 shows 
the spatial distribution of SPI-1 (January, 2009) and SPI-3 
(November-January, 2008–2009), soil moisture and fAPAR 
anomalies for the 2nd (second) and 3rd (third) 10 day-period 
of February 2009 respectively, and previous CDI category 
(2nd dekad of February). It follows from Fig. 1, that in the 
region of eastern Argentina and Uruguay the red values 

Table 1  The CDI (v2) threshold combination of SPI-1 and SPI-3, soil 
moisture (SM) and fAPAR anomalies that define the drought catego-
ries
CDI category No Drought WATCH WARNING ALERT
SPI SPI-1 > -1 

and SPI-3 
> -1

SPI-1 < 
-1 and 
or SPI-3 
< -1

SPI-1 < -1 
and or SPI-3 
< -1

SPI-1 < 
-1 and 
or SPI-3 
< -1

SM Anom > -1 > -1 ≤ -1 ≤ -1 or 
> -1

fAPAR Anom > -1 > -1 > -1 ≤ -1
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soil moisture from month M + 1 and 1st dekad; more detail 
in Table S3), with a spatial median of r = 0.46, encompass-
ing the whole domain. For the − 1d and 0 lags, the SPI-3 
relationship with soil moisture (i.e. SPI-3 of month M, soil 
moisture from month M and 2nd and 3rd dekad) shows 
higher values compared to SPI-1- soil moisture. But, for 
lag + 1d, +2d, and + 3d, both SPI showed similar correla-
tion values with soil moisture. Over the Humid Pampas, 
the correlation between SPI-3 and fAPAR was positive and 
higher than the correlation between SPI-1-fAPAR, specifi-
cally for the first two time lags (-1d and 0 lag). For lags + 2d 
and + 3d, both SPI accumulations showed high positive cor-
relation values with fAPAR. The correlations between soil 
moisture and fAPAR showed the highest positive values for 
lag + 2d, particularly in central and central-north Argentina, 
including the Humid Pampas region with a median value 
of r = 0.28. It is worth noting that over the Humid Pampas 
there was an overall good agreement, except for SPI-1 and 
fAPAR (lag − 1d and 0), between the different variables and 
time lags with significant correlation values above r = 0.40.

The same approach described earlier was adopted to cal-
culate correlations across the 14 selected locations within 
the Humid Pampas (see Fig. 1 and Table S2). Table S3 shows 
the median, maximum and minimum correlation of the 14 
sites. Notably, the median correlation between SPI-3 and 
soil moisture anomalies surpasses the correlations depicted 
in Fig. 2, indicating also variations in the time lags that max-
imize the relationship between these variables. SPI-3 and 
soil moisture exhibited the highest median value (r = 0.64) 
at lag 0, closely followed by lag − 1d, lag + 1d, and lag + 2d, 
which based on a bootstrap test and a 95% confidence inter-
val (95CI, see supplementary section) do not showed sig-
nificant differences. The highest correlation was shown at 
lag + 1d (r = 0.72), while among the minimum correlation 
values, lag 0 exhibits the highest value over the 14 sites. 
Similarly, the median correlation between soil moisture and 
fAPAR anomalies peaks at lag 0 and + 1d (r = 0.54), with no 
significant differences for lag − 1d and lag + 2d (95CI). The 
correlation between SPI-3 and fAPAR showed the highest 
correlation at lag + 2d. It is interesting to note that all time 
lags showed correlation values that are not significantly dif-
ferent (95CI). The maximum correlation for SPI-1 and soil 
moisture anomalies was observed for lag + 1d with similar 
values for lag 0 and + 2d (95CI). Lag + 1d also coincides 
with both the highest maximum and highest minimum cor-
relation values. Regarding SPI-1 and fAPAR anomalies, the 
highest correlation occurred at lag + 2d, showing no statis-
tical differences compared to lag + 1d and lag + 3d, with 
the maximum and highest minimum for the same lag + 2d. 
A significant difference arose in the correlations between 
SPI-1 and SPI-3 with fAPAR, particularly at time lags of 
-1d and 0. Specifically, when comparing the correlations 

were used. The predominant soils in the study area are 
deep mollisols with high physical and chemical fertility. 
Simulations were initiated with three varying soil moisture 
contents (20%, 50% and 100% of the field capacity), and 
it was assumed that biotic factors such as pests or weeds 
were controlled by the farmer. Consequently, yield varia-
tions are attributed solely to climate variability in each 
growing season. Management practices were agreed upon 
with experts for each simulated location, and crop coeffi-
cients were calibrated and validated using field experiments 
in Argentina based on previous studies (Aramburu Merlos 
et al. 2015; Monzon et al. 2012; Mercau et al. 2007) and 
personal communications with members of the Regional 
Agricultural Experimentation Consortium (CREA, https://
www.crea.org.ar). In summary, each simulation consists of 
an ensemble between 90 and 200 members for corn and soy-
bean yields, based on 3 different soil moisture initial con-
ditions, varying number of sowing dates according to the 
location, and 3 typical soils for each location.

Crop yields were complemented by agricultural emer-
gency declarations data from the SAGyP, which also cor-
responds to the department spatial scale. The agricultural 
emergency declarations are the primary governmental 
response to droughts and other natural hazards affecting the 
agricultural sector, and they are issued by the National Sys-
tem for the Prevention and Mitigation of Agricultural Emer-
gencies and Disasters to specific regions and timeframes 
(GAR, 2021).

It is important to specify the difference in the spatial scale 
of crop estimations and simulations, as the DSSAT simu-
lations represent a specific idealized location whereas the 
SAGyP estimates correspond to a spatial area that ranges 
from 2,253 km2 to 18,394 km2 over the 14 departments.

3  Results

To determine the simultaneous and lagged linear relation-
ship between the monthly SPI-1 and SPI-3, dekadal soil 
moisture and fAPAR anomalies, the Pearson correlation 
was calculated. The correlation coefficients were calculated 
for different time lags for the warm months as considered in 
this study (September to March), and are shown in Fig. 2. 
The findings affirm the anticipated positive correlation 
among SPI, soil moisture, and fAPAR anomalies. How-
ever, the strength of this relationship varies by region and is 
influenced by the temporal lag between these variables. The 
highest and positive values were observed in Central Argen-
tina (i.e. Humid Pampas), Uruguay, and the Northeastern 
part of the La Plata Basin located in Brazil. In particular, 
SPI-1 and soil moisture anomalies showed the highest posi-
tive correlations at lag of + 1 dekad (i.e. SPI-1 of month M, 
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a qualitative analysis, comparing the more severe CDI cat-
egories with agricultural emergency declarations. In gen-
eral, there was a good agreement between periods marked 
by WARNING and ALERT categories and the periods 
coinciding with emergency declarations (e.g. 2008–2009). 
The temporal evolution of CDI reveals certain years when 
severe drought events (characterized by a higher number of 
ALERT categories) affected only northern sites within the 
Pampas domain (2011, 2012, and 2013) while in other years, 
droughts affected mostly southern sites (2006 and 2007). 
Noteworthy is the 2008–2009 event, well represented by 
the high number of ALERT categories per dekad coinciding 

r(SPI-1, fAPAR)=-0.01 and r(SPI-3, fAPAR) = 0.33 for 
lag-1d. In summary, the highest median correlations were 
observed between SPI-3 and soil moisture anomalies, while 
the lowest were found for the first temporal lags of SPI-1 
and SPI-3 with fAPAR anomalies.

Figure  3 illustrates the temporal evolution of different 
drought categories in CDI across the 14 sites. The configu-
ration used for CDI is derived from its operational formula-
tion shown in Table S4. The bottom panel is accompanied 
by emergency declarations from SAGyP for each of the 
departments containing the 14 sites. This figure allows for 

Fig. 2  Pearson correlations between the different variables and tem-
poral lags represented by dekads (d, i.e. +1d = 10 day period). Black 
contour represents the r = 0.40 value and points with no significant cor-
relation values were masked out (p < 0.05). Warm months September 
to March for 2001-mid 2022 period. Sample size for correlations with 

SPI was n = 150, and between soil moisture and fAPAR was n = 450. 
The median spatial correlation is shown in the lower right corner of 
each panel, where the bold represents the highest correlation for each 
column
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departmental corn and soybean yield estimates, alongside 
point-based simulations for each site. The simulations are 
represented by the ensemble median for each site. In gen-
eral, there was a good agreement between WARNING and 
ALERT categories in CDI and negative anomalies in corn 
and soybean yields in different sites. This pattern is evident 
not just during the 2008–2009 and 2017–2018 events, where 
a clear alignment is observed between drought categories 
and the estimated negative yield anomalies, but also across 
most northern stations (Pilar, Marcos Juárez, Río Cuarto, 

with emergency declarations across all sites. In some fast-
evolving events (e.g. 2017–2018), the natural and expected 
progression of the drought classes was not observed over 
some sites, as the event reached directly the WARNING or 
even ALERT class. The 2017–2018 event also showed a sig-
nificant percentage of sites reporting agricultural emergen-
cies (64%).

To further analyze the impacts on agricultural yields, 
complementing the analysis of agricultural emergency 
declarations, Fig.  4 displays standardized anomalies for 

Fig. 3  Heat map of the CDI 
(version 2) drought categories 
(WATCH, WARNING and 
ALERT) temporal evolution 
over the 14 locations (ordered 
from north to south) for the 
2001–2022 period (upper panel). 
Heat map of periods where 
agricultural emergencies were 
issued (SAGyP, lower panel). The 
rectangles denote the 2008–2009 
and 2017–2018 drought events
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there was concurrence, albeit with simulations showing 
greater deviations from the mean than yield estimations. 
Río Cuarto stands out due to having the highest median har-
vested area for both corn and soybean among the analyzed 
sites (refer to Table S2). In most cases, both the 2008–2009 
and 2017–2018 events exhibit higher absolute negative 
anomalies in corn and soybean simulations compared to 
estimations. A comparison of ensemble crop simulations 

and Laboulaye) during 2011, 2012, and 2014. Notably, Pilar 
issued an agricultural emergency declaration for a portion 
of this period (2011–2012), further corroborating the CDI’s 
effective performance.

A reasonable agreement was observed between yield 
anomaly estimations and simulations. For instance, in Río 
Cuarto, both datasets indicated soybean negative anomalies 
less than − 2 during the 2017–2018 event, while for corn, 

Fig. 4  Heatmap plots of corn and soybean yield standardized anomaly 
estimations (a) and (b) respectively) and corn and soybean standard-
ized anomaly simulations (c) and (d) respectively) for the 14 locations 

(ordered from north to south) over 2001–2022. The rectangles denote 
the 2008–2009 and 2017–2018 drought events
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simulation across the entire phenological cycle compared to 
the critical growth period.

Both 2008–2009 and 2017–2018 drought events that 
affected the Humid Pampas, exhibit remarkably different 
characteristics in severity, temporal evolution, and intensi-
fication rate, however, all had significant impact on agricul-
tural yield. Therefore, the spatial and temporal evolution of 
these two events based on CDI were analyzed in the follow-
ing sections.

3.1  2008–2009 drought event

The 2008–2009 drought persisted over a prolonged period, 
exhibiting a gradual onset, ranking among the most severe 
droughts with respect to spatial extension and severity 
between 1970 and 2010. It impacted nearly 50% of Argen-
tina’s population and nearly 30% of cropland, experienc-
ing moderate drought conditions (Naumann et al. 2019). 
Initially linked to an intense La Niña event, which later 
persisted as a moderate La Niña event accompanied by 
inter-decadal, decadal and intraseasonal variability modes 
that collectively favored the lack of rainfall over the region 
(Fossa Riglos et al. under review).

Figure 5 illustrates the temporal and spatial evolution of 
the event based on CDI. It can be observed how the event 
begins first in the north of the Argentine Humid Pampas 
(Fig. 5a), followed by a considerable spatial expansion in 
the next 2 and 4 months (Fig.  5b and c), encompassing 
13%, 23%, and 36% of the area, respectively, based on the 
total number of pixels in the domain. In December 2008 
(Fig. 5e) the maximum spatial extension under all 3 drought 
categories was observed, mainly linked to an increase in the 
grid cells in ALERT (22%) in the northeast of the domain, 
located in Brazil. By February 2009 (Fig.  5f), coinciding 
with the critical growth periods of corn and soybean, most 
of the Humid Pampas were affected by drought conditions, 
showing also a high spatial percentage for grid cells in 
ALERT drought category (17%).

Subsequent months continued to exhibit constant 
ALERT conditions for the region. Particularly noteworthy 
is the consistent high ALERT percentage (17%), once again 
observed during the critical growth period of summer crops 
in December 2009 (Fig. 5k). The drought severity, based on 

and estimations for corn and soybean is provided for 3 loca-
tions (see Figure S1). In general, the yield simulations show 
a positive bias for both summer crops. However, during 
drought events, they both consistently depict lower yield 
values, exhibiting a median Spearman correlation of r = 0.57 
for soybeans and r = 0.52 for corn across the 14 locations. 
When analyzing these correlation values, it must be taken 
into account that the median of the ensemble simulations 
was used for each location, along with the different spatial 
scales associated with each crop yield dataset.

In summary, there is an overall good consistent pattern 
observed between periods with a higher number of dekads 
in CDI’s WARNING and ALERT categories, periods with 
agricultural emergency declarations, and the estimated and 
simulated yield anomalies of soybean and corn.

To quantitatively assess CDI performance, the relation-
ship between the cumulative frequency of CDI drought 
categories (WATCH + WARNING + ALERT) and annual 
yield anomalies was evaluated using the ranked Tau cor-
relations over the entire 2001–2022 period and for each 
site. The median of these correlations was then calculated 
for the 14 sites. To identify periods of high sensitivity, the 
correlation between CDI drought categories and crop yields 
were analyzed in 2 cases outlined in Table 2: (1) considering 
the entire crop growth cycle and (2) focusing only on the 
critical growth months for each crop. This analysis encom-
passed both yield estimations and ensemble simulations of 
corn and soybean anomalies.

A stronger negative correlation was observed, indicating 
a higher number of dekads under drought category asso-
ciated with reduced yield values, when considering only 
the critical growth months for both crops against the CDI 
drought categories. This behavior is consistent for both soy-
bean and corn yield estimations and simulations. Notably, 
during the critical period, the median correlation is higher 
for soybean (r=-0.46) compared to corn (r=-0.40) yield 
estimates. Conversely, for yield simulations, the same cor-
relation value (r=-0.50) was obtained for both crops dur-
ing the critical growth period. Additionally, it is important 
to highlight that median correlations are relatively stron-
ger in simulations compared to estimations. Furthermore, 
the variability among sites based on the data range is more 
pronounced for both corn and soybean estimations and 

Table 2  Median, maximum and minimum Tau correlations, over the 14 location sites, between corn and soybean yield estimations/simulations and 
the frequency /sum of dekads under CDI categories of WATCH, WARNING and ALERT. The complete crop campaign (September-March) and 
the critical growth periods for both summer crops were considered over the 2001–2022 period

Yield estimations Yield simulations
Crop Period Median Max Min Median Max Min
Corn 2001/02 to 2021/22 -0.30 -0.61 -0.06 -0.36 -0.61 -0.14
Corn Dec to Feb -0.40 -0.66 -0.13 -0.50 -0.55 -0.20
Soybean 2001/02 to 2021/22 -0.28 -0.49 -0.18 -0.29 -0.61 -0.05
Soybean Dec to Mar -0.46 -0.60 -0.29 -0.50 -0.60 -0.23
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Fig. 5  CDI evolution during the 2008–2009 
drought event. Panels show the CDI category 
evolution, with a time interval of 2 months. 
The central panel represents the % of pixels 
under each drought category based on the total 
amount of pixels of the domain. Shaded blue 
represents the critical growth period for corn 
and soybean together (December-February and 
December-March respectively)
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In Fig. 6, the evolution of the CDI is shown, similarly 
to Fig.  5, but in this case with monthly intervals. Early 
evidence on the emergence of drought conditions can be 
observed in northern Argentina (Fig. 6a), with a rapid inten-
sification of the drought conditions reaching the WARNING 
class in January 2018 (Fig. 6b). Concurrently, WATCH cat-
egories start appearing in the southern part of the Humid 
Pampas domain. By February 2018 (Fig. 6c), some WATCH 
areas escalate to WARNING conditions, with a worsening 
in terms of the surface area under WARNING (7%) condi-
tions during March (Fig. 6d). The drought severity peaks in 
April and May 2018 (Fig. 6e and f), impacting vegetation 
over 10% of the total area according to CDI.

the CDI, is consistent with the agricultural emergency dec-
larations issued across all locations (refer to Fig. 3).

3.2  2017–drought event

In contrast to the 2008–2009 drought event, the 2017–2018 
event developed as a flash drought (Kucheruck et al. 2024) 
across various sites in the Argentine Humid Pampas. This 
event was linked to a weak La Niña event and intraseasonal 
modes of atmospheric variability, leading to record lows 
in precipitation levels coupled with elevated temperatures, 
including heat waves, during early 2018 in the Humid Pam-
pas (GAR, 2021).

Fig. 6  CDI evolution during the 2017–2018 event. Panels show the 
CDI category evolution with a time interval of 1 month. The central 
panel represents the % of pixels under each drought category. Shaded 

blue represents the critical growth period for corn and soybean together 
(December-February and December-March respectively)
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The authors performed an evaluation of different SPI accu-
mulation periods against the Normalized Difference Vegeta-
tion Index (NDVI) and found that the highest correlation 
values were found for SPI-3 and NDVI, highlighting the 
lagged and cumulative effect of precipitation on vegetation. 
Furthermore, the authors noted that the correlation showed 
fluctuations among the growing season, peaking during the 
middle of the growing season. The latter feature could be 
related to the different crop critical growing periods, as it 
was also documented in this study for soybean and corn 
summer crops.

Other studies focused on the vegetation-soil moisture 
time response, like Ahmed et al. (2017), which analyzed 
the relationship between simulated soil moisture and NDVI 
over the Sahel region. The authors documented a strong 
NDVI-soil moisture relationship, with the highest correla-
tion values for simultaneous and 1 month temporal lag, with 
a strong influence of the vegetation cover on the NDVI-soil 
moisture time response. For cropland and grassland, the 
authors observed a shorter time lag response (i.e. simultane-
ous and 1 month), while a longer time lag was observed for 
forest and deciduous shrubland. While the study of Ahmed 
et al. (2017) focused on a monthly time scale, similar lagged 
times responses spanning from 0 to 20 days were docu-
mented in this study between fAPAR and soil moisture over 
the Humid Pampas. In addition, Mladenova et al. (2019, 
2020), quantified a similar lag correlation of satellite-based 
global soil moisture and NDVI, and demonstrated the util-
ity of satellite-based soil moisture for assessing agricultural 
drought with lag correlation varying by climate zones and 
land cover type.

Over South America, Rossi et al. (2023), analyzed the 
drought propagation signal for different events focusing on 
meteorological aspects (i.e. precipitation deficit) leading 
to terrestrial water storage deficits over 3 different biomes 
in Brazil. In particular, the authors documented different 
timing responses between the precipitation deficit signal 
through soil moisture and vegetation, ranging from 1 up to 
7 months across the biomes considered.

The findings of the studies mentioned above highlight the 
role of the different climates, vegetation cover and biomes 
on the temporal lagged relationships between the terres-
trial hydrological variables. This aspect came forth in this 
study, when the lagged correlations for the whole domain 
were analyzed, showing regions with no significant correla-
tion values and others with values above r = 0.60. Across 
the Humid Pampas there is in general a ± 10 days time lag 
around the maximum correlation value between SPI, soil 
moisture and fAPAR anomalies which is not significantly 
different. This suggests potential flexibility of the CDI con-
cerning near real time data availability, meaning that the uti-
lization of different time lags may not significantly impact 

In June 2018 signs of recovery can be observed, with 
a full cessation of drought conditions by July of the same 
year (Fig.  6g and h, respectively). It is important to note 
that while the percentage of area affected by drought catego-
ries was lower than in the 2008–2009 event, the 2017–2018 
event predominantly affected the Argentine Humid Pam-
pas, specifically during the latter part of the critical growth 
period of both analyzed crops. This intense, albeit relatively 
short, event highlights the importance of the timing of the 
drought, and the high impact that can be associated with 
events occurring during the critical growth periods of corn 
and soybean crops. This observation is consistent with the 
number of locations (9 of 14) that issued agricultural emer-
gency declarations.

4  Discussion and conclusions

Based on the results of this study, encompassing both south-
ern South America and 14 locations of the Argentine Humid 
Pampas, it can be confirmed that the correlations between 
SPI, soil moisture and fAPAR vary at different temporal 
lags. In general, within the Humid Pampas, the highest 
agreement was found at temporal lags ranging from 0 to 20 
days (0 to + 2d) between the precipitation deficit and soil 
moisture anomalies, lags of 0 to 20 days between soil mois-
ture and fAPAR anomalies, and a lag of 10 to 30 days (+ 1d 
to + 3d) between SPI and fAPAR anomalies. This finding 
further supports the need for a combined drought indicator 
that captures multiple observations of the various states and 
fluxes of the land-atmosphere boundary.

Notably, the correlation values across the 14 sites were 
slightly higher compared to those documented over Europe 
by Sepulcre-Canto et al. (2012) when comparing SPI-3, soil 
moisture and fAPAR anomalies. It is worth mentioning the 
higher correlation values between soil moisture and fAPAR 
observed over the Humid Pampas compared to Europe 
(r = 0.54 vs. |r|=0.35). While this could be related to the dif-
ference in the analyzed period and/or to the region, it could 
also be due to a better representation of the ensemble soil 
moisture product currently used in the CDI. Given that the 
CDI evaluation performed by Sepulcre-Canto et al. (2012), 
used only the LISFLOOD soil moisture simulations. Fur-
thermore, despite the different climatic regimes, the tempo-
ral lag of maximum correlation across the 14 sites aligns 
with those documented in Europe, highlighting similarities 
in temporal signals across variables over both agricultural 
regions.

The better agreement between SPI-3 and soil moisture 
and fAPAR anomalies compared to SPI-1, may be attributed 
to the longer accumulation period of SPI-3 as documented 
by Ji et al. (2003) over the Great Plains of the United States. 
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Station data (Funk et al. 2015) with a finer spatial resolution 
(0.05°×0.05°) could be an alternative to be tested.

The CDI is globally utilized for monitoring the risks 
associated with agricultural drought impact. Consequently, 
evaluating the construction and representation of drought 
severity in the CDI holds significant global and regional 
importance. Additionally, the effective utilization and pro-
spective regional enhancements of the CDI play a crucial 
role in advancing drought monitoring and representation for 
the Humid Pampas, Argentina, and the CRC-SAS region. 
Achieving this goal requires fostering robust and seamless 
collaboration among all involved institutions. Subsequent 
research endeavors will strive to enhance the temporal and 
spatial capabilities of CDI, fortifying its role as a drought 
early warning system.
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