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Abstract
Hydrological data is crucial for accurate forecasting of precipitation which can be used for water resources planning and 
management. The purpose of this study is to develop a seasonal rainfall forecast model, using a hybrid wavelet-artificial 
neural network (WANN) model based on regression analysis to predict  seasonal  rainfall in Almora, Lansdown, Kashipur 
and Mukteswar region in Uttarakhand (India).The statistical results shows that the mean maximum rainfall was found to be 
746.82 mm, 1586.58 mm, 1060.53 mm and 964.43 mm for Almora, Lansdown, Kashipur and Mukteswar, respectively. The 
models WANN-03 (Network 4–8-1), WANN-10 (Network 4–7-1), WANN-10 (Network 4–7-1) and WANN-15 (Network 
4–8-1) were found to be the most efficient models for Mukteswar, Lansdown, Kashipur and Almora, based on the high 
coefficient of determination (R2) and coefficient of efficiency (CE) values and low root mean square error (RMSE) values 
that were obtained using each model. For each season, four WANN modelshave been developed (total of sixteen models) 
by varying the number of hidden neurons. The results shows that only one WANN model was not sufficient to predict the 
rainfall of all stations. Every station has a specific networked model which could model the data more precisely preciously. 
The findings illustrated that the hybrid model of WANN having Network (4–7-1) was found most superior model (R2 = 0.857, 
RMSE = 32.192 and CE = 0.846) for the Lansdown stations among all the stations.

1  Introduction

Climate change is a matter of concern and changing patterns 
in rainfall are one of the most important parameters affect-
ing climate (Thomas et al. 2007). It is a severe problem 
for today’s scientific community and it deserves attention. 
In the Asian region, the climate change had directly influ-
enced the streamflow volume and temporal distribution, 
which resulted in an increase ofthe stress level of water 
resources (White et al. 2014; Lu et al. 2024). The distribu-
tion of rainfall is indeed influenced by the relief, or topog-
raphy, of a country (Oettli and Camberlin 2005; Kushwaha 
et al. 2021; Li et al. 2020). The north-eastern state of India 
receives rainfall more than 500 mm of annual rainfall (Kri-
palani et al. 1996; Wu et al. 2022) while in desert areas 
like Rajasthan is receives rainfall less than 10 cm of annual 
rainfall (Singh et al. 1974). Thus, rainfall pattern forecasting 
is necessary for making informed decisions across various 
sectors. It enhances the ability of governments, communi-
ties, and industries to plan and respond effectively to the 
dynamic and sometimes unpredictable nature of weather 
patterns, thereby reducing risks and promoting resilien 
(Zhang et  al. 2021, 2023; Lin et  al. 2023). Analyzing 
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rainfall patterns at the state level is highly recommended 
for effective resource management, and it addresses several 
challenges associated with this task (Akhter et al. 2017; Liu 
et al. 2023; Zhou et al. 2023a, b). Therefore, understand-
ing of rainfall distribution patterns is a fundamental step 
in assessing and managing the risks associated with both 
floods and droughts (Tarhule 2005; Trenberth 2011; Zho 
et al. 2022).

Seasonal rainfall knowledge is especially crucial in the 
context of climate change, where shifts in precipitation 
patterns can exacerbate the frequency and intensity of both 
floods and droughts. In essence, understanding the pattern 
of rainfall distribution is fundamental for making informed 
decisions in various fields, ranging from water resource 
management and infrastructure design to climate change 
adaptation and agricultural planning (Ziervogel et al. 2010; 
Bhave et al. 2018; Markuna et al. 2023). Rainfall frequency 
analysis and stochastic modeling are powerful tools that 
enable researchers and professionals to quantify and pre-
dict the complex nature of rainfall patterns (Du and Wang 
2014; Gao et al. 2018; Zhao et al. 2022). The rainfall distri-
bution also impacts evapotranspiration processes(Li 2014; 
Kumar et al. 2016; Kushwaha et al. 2021; Markuna et al. 
2023) and groundwater storage which may hamper ground-
water quality and increase its remediation cost (Kumar 
et al. 2013; Asoka et al. 2017; Vishwakarma et al. 2018; 
Saroughi et al. 2023). Like excess rainfall can cause floods 
and less rainfall can cause drought. For this reason, accu-
rate rainfall prediction can be helpful in managing these 
things as well as prevent hydraulic structures to control 
the floods/drought.

In hydrological modeling, the ANN techniques were 
applied for the first time by French et al. (1992). Since 
then, several modeling approaches have been success-
fully addressed to improve rainfall forecasting models 
(Ghamariadyan and Imteaz 2021c, b, a; Markuna et al. 
2023), rainfall-runoff (Makwana and Tiwari 2014; Asadi 
et al. 2019; Dumka and Kumar 2021), stream-flow (Chen 
et al. 2014; Makwana and Tiwari 2017; Shukla et al. 2021; 
Sammen et al. 2021; Vishwakarma et al. 2023b), sediment 
discharge (Nourani 2014; Li et al. 2022; Chauhan et al. 
2022) water quality (Barzegar et al. 2018; Kumar et al. 
2023), ground water (Ch and Mathur 2012; Samantaray 
et al. 2022; Saroughi et al. 2023), hydraulic conductivity 
(Sihag 2018; Singh et al. 2019, 2022). In the past, many 
researchers have studied on rainfall modeling (Zhang and 
Dong 2001; Tan et al. 2020; Ridwan et al. 2021; Khan 
et al. 2021). Wu et al. (2010) developed a model that fore-
casts rainfall on a monthly basis as well as a daily basis. 
The study demonstrated the applicability of Moving average 
(MA), Principal Component Analysis (PCA) and Singular 
Spectral Analysis (SSA) and some forecasting models such 
as Linear Regression (LR), K-nearest-Neighbors (K-NN), 

Artificial Neural Network (ANN) and Modular Artificial 
Neural Network (MANN) for modelling of monthly rain-
fall. The results revealed that the SSA technique (singular 
spectral analysis) was better than moving average (MA) or 
principal component analysis (PCA) techniques and Modu-
lar artificial neural network (MANN) showed a good result 
on daily rainfall forecasting if MANN was associated with 
SSA technique. Ridwan et al. (2021) applied four Machine 
learning models namely Bayesian Linear Regression (BLR), 
Boosted Decision Tree Regression (BDTR), Decision For-
est Regression (DFR) and Neural Network Regression 
(NNR) for forecasting rainfall in Tasik Kenyir, Terengganu. 
The BDTR model performed superior to others under the 
auto correlation function as well as projected error. Khan 
et al. (2021) performed a comparative study of single deci-
sion tree (SDT), tree boost (TB), decision tree forest (DTF), 
multilayer perceptron (MLP), and gene expression program-
ming (GEP) for rainfall-runoff modelling in the Soan River 
basin, Pakistan. The study revealed that maximal overlap 
discrete wavelet transformation (MODWT) based DTF 
model has high efficacy for Rainfall modellingin the study 
River basin. Smith et al. (1998) used discrete wavelet trans-
form to detect the characteristic of stream flow and also 
for detecting its features. Wavelet transform was applied to 
the daily river discharge (Ahmadi et al. 2022; Pande et al. 
2023). The daily river discharge was recorded for 91 rivers 
in the US. The result obtained from the study suggested 
that by using the wavelet transform method river flow can 
be classified into different hydro-climatic categories. Nak-
ken (1999) applied the wavelet theory for identifying the 
temporal variation in rainfall and runoff and also developing 
a relationship between them. The Morlet wavelet was used 
for developing a relationship between rainfall and runoff 
with respect to time. A dominant frequency was seen since 
1950s. Further, Krishna et al. (2011) used the wavelet neural 
network for developing a time series model for daily river 
flow of Malaprabha River, Karnataka. The time series was 
decomposed into a number of sub-series by using discrete 
wavelet transform. Chen et al. (2014) developed a model 
for rainfall-runoff simulation by introducing copula entropy 
(CE) coupled with ANN in the south-western part of China. 
In this study, for selecting the inputs of ANN model, copula 
entropy technique was used and three models (Multilayer 
Feed Forward, Radial biased function, Linear Regression 
Neural Network) were also used to forecast the stream flow. 
Study shows that a significant improvement in the forecast-
ing performance of the Jinsha River at Pingshan gauge sta-
tion when the inputs selected for the copula entropy (CE) 
method were compared to the inputs chosen for the tradi-
tional linear correlation analysis. The MLF ANN model 
with the inputs selected by the CE method also had the 
best results. Kang and Lin (2007) used wavelet theory on 
water quality and hydrological signals for an agricultural 
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watershed. Three signals based on the precipitation, the 
water level of wells and streamflow for three periods such as 
15 years, hydrologic year and 3 years were taken into con-
sideration. The results suggested that the tool i.e. wavelet 
transform was found to be useful for analyzing the temporal 
pattern of the hydrologic as well as for finding out the water 
quality signals for different scales (temporal scale).

Santos and Freire (2012) analyzed rainfall data from 
1901 to 2010 in the northeast region of Brazil consisting of 
nine states using wavelet transform technique and wavelet 
spectra approach used to study the variability in monthly 
rainfall. The results suggested that, a high concentration 
of rainfall was observed using wavelet spectra technique. 
Chattopadhyay and Chattopadhyay (2010) developed a 
uni-variate model to forecast the rainfall data from 1871 to 
1999 using Auto-Regressive Integrated Moving Average 
(ARIMA) and Auto-Regressive Neural Network (ARNN) in 
India. The study was done for forecasting the summer mon-
soon and the period of summer monsoon was taken from 
June to August. Li et al. (2013) examined the atmospheric 
moisture budget and the regulation of summer precipitation 
variation over the region of south-east United States during 
1948–2007. The inter annual variation in the region was 
explained using Empirical orthogonal function. Using the 
wavelet analysis, an increase was identified for 2–4 years 
in 30 years. The atmospheric moisture budget showed an 
increasing trend in precipitation because of the moisture 
transport. Roy et al. (2021) contructed and evaluated an 
integrated model EO-ELM [Equilibrium Optimizer (EO) 
and extreme learning machine (ELM)] and a deep neural 
network (DNN) for rainfall-runoff modelling at two sta-
tion namely Glanteifi and Fal at Tregony in the UK. The 
obtained results showed efficient applicability of EO-ELM 
and DNN in rainfall runoff modelling. Simillar attemped 
was made by Adnan et al. (2021) and compared the perfor-
mance of ANFIS-PSO, ANFIS-FCM, MARS and M5Tree, 
together with Multi Model Simple Averaging (MM-SA)for 
rainfall-runoff modelling on hourly basis. Results shows 
that ML methods generally performs superior to the 
EBA4SUB and provides better accuracy than the M5Tree 
and MARS in some cases.

To the authors knowledge, in literature, no study applied 
hybrid model of Wavelet-ANN (WANN) for seasonal rain-
fall modelling in the southern part of Uttarakhand (i.e., 
namely, Almora, Kashipur, Lansdown and Mukteswar) 
considered in the present research. Furthermore, the devel-
oped methodology, which considers the modelling rainfall 
employing hybrid algorithm trained on surrounding sta-
tions, is in line with practical needs. Therefore, in the pre-
sent study, a hybrid model using Wavelet-ANN techniques 
has been developed for predicting the seasonal rainfall in 
the southern part of Uttarakhand.

2 � Material and Methods

2.1 �  Study Area

Uttarakhand is hilly state of India consisting of 13 dis-
tricts, having a geographical area of 53,483 km2 and it 
consists of two sub divisionsi.e., Kumaun and Garhwal 
region. The latitudes and longitudes of Uttarakhand state 
are 30.066o N and 79.019° E respectively with an elevation 
ranging from 210 to 7817 m. Four stations of southern dis-
trict of Uttarakhand has been selected for model develop-
ment, namely Almora, Mukteswar, Lansdown, Kashipur, 
and the study area for this work is shown in Fig. 1.

Monthly Rainfall data for the period of 1901 to 2016 
was obtained from the Indian metrological department 
(IMD). Seasonal months were taken according to Indian 
Metrological department (IMD) and details of data col-
lection for study area were shown in Table 1 and Table 2, 
respectively. Some basic formulae of statistical parameters 
have been used in this study and they are listed in Table 3.

Where x is the mean of sample size; n is Total number 
of sample size,SD is standard deviation and xi is the values 
in the observation.

2.2 �  Artificial Neural Network (ANN)

In general, neural network deals with transforming the 
original signals into meaningful signals. The concept of 
ANN was introduced by Meculloch and Pits in 1943 and 
it is based on biological nervous system (McCulloch and 
Pitts 1943). In modeling and forecasting of non-linear 
hydrologic series, Artificial Neural Network has been 
widely used (Shukla et al. 2021; Elbeltagi et al. 2022a, 
b; Saroughi et al. 2023). The ANN works on black-box 
approach, that’s why its application does not need any 
prior information about the techniques (Tzeng and Ma 
2005). It is deal in data driven approach and it gives pow-
erful solution of any multifaceted systems. The main char-
acteristic of ANN is that a quick understanding capacity 
between the input and output signals (Zhang et al. 2017).

In the present study, ‘Feed Forward Back Propagation’ 
(FFBP) network has been considered to model the sea-
sonal rainfall data. A FFBP network consisted of three 
layers viz. Input layer, Hidden layer and Output layer and 
Levenberg–Marquardt algorithm was used in this study. 
The training function (TRAINLIM) and learning function 
(LEMRNGDM) were used for calibration the input and 
output data. Furthermore, there are three types for transfer 
functions viz. Log sigmoid, Tan sigmoid and purelin func-
tion, out of these functions Tansig function was considered 
as an activation function.
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2.3 �  Wavelet Transform

The Wavelet transform analysis is an advanced technique 
in signal processing which has gained attention because of 
theoretical development by Grossmann and Morlet (1984). 
It is use as an alternative to Fourier transformation and it 

is also superior to classical spectral analysis as it allows 
using different scale for analysing the temporal variations 
and the main advantage is that the use of stationary series 
is not required (Smith et al. 1998).Thus, it is appropriate 
to analyse irregular distributed events and time series that 
contain non stationary power at many different frequen-
cies. The formula of discrete wavelet transform is given 
in Eq. (1).

where � is the Mother wavelet, m is the variable scale, b
0
 is 

Translation Length, j is position unit and a
0
 is the base dila-

tion. Furthermore, the continuous form of wavelet transform 
is described in Eq. (2).

(1)�
m
j
= a

−m∕
2

0
�

(

y − jam
0
b
0

am
0

)

Fig.1   Study area map

Table 1   Seasonal months according to IMD

Seasons Months

Winter January – February
Pre-Monsoon March – May
Monsoon June – September
Post-Monsoon October – December

Table 2   Detail of selected area 
of Uttarakhand, India

Stations Altitude (m) (above 
MSL)

Meridian (Degree) Parallel (Degree) Data-Period

Almora 1676 29.59 N 79.65 E 1901–2016
Kashipur 183 29.21 N 78.95 E 1901–2016
Lansdown 1532 29.83 N 78.69 E 1901–2016
Mukteswar 2311 29.47 N 78.69 E 1901–2014
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where a is Scaling Factor; b is the time domain; s(t) is the 
signals at time b; g(t) is the Mother wavelet at ‘a’ and “b’ 
having value of 0 and 1 respectively.

Although, the use of wavelet is not common in the field of 
hydrology. It maintains the time and frequencies localization 
which used in signal analyzing by transforming one-dimen-
sional time series to a diffused two dimensional time–fre-
quency image at the same time, which helps the researcher 
to get information regarding amplitude of any signal that is 
periodic within the series and the time varies with respect 
to time.

The time series of rainfall data for each station has been 
decomposed using wavelet analysis to get approximate and 
detailed signal. Thus, using wavelet analysis following rela-
tion has been obtained:

2.4 � Wavelet Artificial Neural Network (WANN) 
Model

The primary objective of this analysis is to determine the 
frequency of the signals and the variation in the frequen-
cies that was used for analysis of the data. It provides 

(2)WT(b, a) =
1
√

a ∫ g
�

t − b

a

�

s(t)

(3)
Rainfall time series = f (Approximate Signal,Detailed signal)

information’s related to time, signal frequency and loca-
tion. It helps to transfer a signal into a set of sub-signal. 
For the Forecasting of financial time series, WANN model 
was firstly introduced by Aussem (1998). Wavelet trans-
form analysis is a more appropriate  tool than the Fou-
rier transform in studying non-stationary signals (Partal 
and Kişi 2007). A number of hydrological processes have 
been developed for wavelet-based hybrid models, which 
have effectively been applied to studies of water resources 
with excellent results (Sahay and Srivastava 2014; Seo 
et al. 2015; Kumar et al. 2015, 2020, 2021; Djerbouai and 
Souag-Gamane 2016; Araghi et al. 2017; Kisi and Ali-
zamir 2018; Shukla et al. 2021; Drisya et al. 2021; Dumka 
and Kumar 2021; Bajirao et al. 2021)..

In the present study, Haar wavelet (at level 2) has been 
used to decompose the seasonal rainfall data. The seasonal 
rainfall data were decomposed into many sub-signal series 
to get temporal information about the signal. This sub sig-
nals are classified into detailed (d1 and d2) and approxima-
tion (A1 and A2) coefficients as described in Fig. 2.Thus,

where, Wi is the weights adjusted by ANN; Ia(t) and Id(t) 
are approximated and detailed signal for rainfall at time 
t  ; I(t + 1) is the rainfall time series one time step ahead 
of t . For determining the neurons in hidden layer, 2N + 1 
criteria where N is the number of input neurons has been 
used (Mishra and Desai 2006).

In order to construct the network architecture, dataset 
categorized into two portions i.e., 70 percent of total rain-
fall data were used for training and remaining 30 percent 
data was used to develop a WANN-model. To compute 
the level of decomposition Eq. (5) has been used (Nourani 
et al. 2009).

where, L is the number of decomposition level and N is the 
total length of dataset.

The developed models for testing the performance of 
rainfall prediction is shown in Table 4. The input for these 
models were the approximated and detailed signals at time 

(4)Ia(t)Wa + Id1(t)W1
+ Id2(t)W2

+ Id3(t)W3
= I(t + 1)

(5)L = int (LogN)

Table 3   Statistical parameters used in this study

Mean
Mean =

1

n

n
∑

i=1

xi

Maximum and Minimum It is maximum and minimum 
value calculated in the 
dataset

Standard Deviation (SD)
SD =

�

1

n

n
∑

i=1

(xi − x)
2

Coefficient of Variation (CV) CV(%) =
Standard Deviation

x
× 100

Coefficient of Skewness (SKp) SKp =
Mean−Mode

Standard Deviation

Fig. 2   Schematic diagram of 
WANN model
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t (as shown in Eq. 4), and the output was the signal at one 
time ahead signal.

2.5 �  Evaluating Criteria for Model Performance

Wavelet Artificial Neural Network models were evaluated 
using performance indexes, and the model network with 
the best performance was selected for use in the simula-
tion of rainfall-runoff based on the WANN model with the 
best performance index. For evaluating the performance of 
designed model, Root Mean Square Error (RMSE), coeffi-
cient of determination (R2) and coefficient of efficiency (CE) 
have been selected whose equation is stated from Eqs. 6–8.

where Oiis the observed rainfall and Piis the predicted rain-
fall for the ith time-series; n is the total length of time-series; 

(6)RMSE =
(

1

n

(

Oi − Pi

)

)0.5

(0 < RMSE < ∞)

(7)CE = 1 −

⎛

⎜

⎜

⎜

⎝

∑N

i=1

�

Oi − Pi

�2

∑N

i=1

�

Pi − P
�2

⎞

⎟

⎟

⎟

⎠

(−∞ < COE < 1)

(8)

R2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑N

i=1

�

Oi − O
��

Pi − P
�

�
�

�

∑N

i=1

�

Oi − O
�2

��

∑N

i=1

�

Pi − P
�2

�

�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

�

0 < R2
< 1

�

P and O are indicating the average value of observed and 
predicted rainfall respectively.

R2 is an index of the degree of linear relationship between 
observed and predicted data. CE is a measure of how well 
the plot between the observed values and the predicted val-
ues fits the 1:1 line when plotted against the observed val-
ues. The model performance must be evaluated based on at 
least one absolute error measure (e.g. RMSE) to ensure that 
the model is as accurate as possible. Those models having 
least RMSE and CE and R2 valuse closed to 1, the model 
will be considerd as best and superior model (Saroughi et al. 
2023; Vishwakarma et al. 2023a, b; Mirzania et al. 2023; 
Kumar et al. 2023).

3 � Results

3.1 � Statistical Analysis of Seasonal Rainfall

The long-term rainfall statistics of Almora, Lansdown 
and Kashipur and Mukteshwar is shown in Tables 5 to 8. 
It can be depicted that atAlmora, lowest and highest sea-
sonal rainfall was found to be zero and 1187.20 mm respec-
tively (Table 5). At Lansdown station, the highest value of 
rainfall i.e., 2826.70 mm and lowest rainfall i.e., zero was 
measured (Table 6). At Kashipur station, the mean rainfall 
varied from 48.45 mm to 1060.53 mm and maximum rainfall 

Table 4   Developed WANN Models for rainfall predictions

Season Model Network

Monsoon WANN-01 4–6-1
WANN-02 4–7-1
WANN-03 4–8-1
WANN-04 4–9-1

Winter WANN-05 4–6-1
WANN-06 4–7-1
WANN-07 4–8-1
WANN-08 4–9-1

Pre-Monsoon WANN-09 4–6-1
WANN-10 4–7-1
WANN-11 4–8-1
WANN-12 4–9-1

Post-Monsoon WANN-13 4–6-1
WANN-14 4–7-1
WANN-15 4–8-1
WANN-16 4–9-1

Table 5   Statistical analysis of seasonal rainfall (mm) data for Almora

Statistical 
parameter

Winter Pre- monsoon Monsoon Post-monsoon

Mean (mm) 91.05 112.42 746.82 60.40
Maximum (mm) 320.60 270.40 1187.20 374.50
Minimum (mm) 5.80 0.00 284.80 0.00
SD (mm) 57.05 59.27 185.58 65.56
CV (%) 62.66 52.72 24.85 108.54
CS 1.32 0.62 0.34 2.54

Table 6   Statistical analysis of seasonal rainfall (mm) data for Lans-
down

Statistical param-
eter

Winter Pre-monsoon Monsoon Post-monsoon

Mean (mm) 118.48 115.48 1586.58 75.60
Maximum 464.20 440.30 2826.70 540.80
Minimum 0.00 0.00 0.00 0.00
SD (mm) 95.94 81.59 519.00 103.82
CV (%) 80.98 70.65 32.71 137.33
CS 1.08 1.12 -0.06 2.67
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was measured for the monsoon season i.e., 2716.40 mm 
among all the seasons whereas lowest rainfall was found 
zero in all the seasons except monsoon season (Table 7). At 
Mukteswar station, the mean rainfall varied from 85.04 mm 
to 964.43 mm and minimum value of rainfall was found zero 
in post-monsoon season. The maximum, SD, CV and SC of 
seasonal rainfall data ranged from 336.90 mm to 1839 mm, 
65.34 mm to 256.22 mm, 26.57% to 111.34% and 0.65 to 
2.29 respectively (Table 8).

Pimentel-Gomes (2023) classified the CV as fol-
lows:  Low: Lower than 10%; Average: 10–20%; High: 
20–30%; Very high: Higher than 30%. The result shown in 
Tables 5, 6, 7 and 8, and the visual interpretation in Fig. 3, 
describethe level of variability and found very high in all 
station except Almora and Mukteswar in mansoon season.

3.2 �  Forecasting Seasonal Rainfall Using 
WANN‑Model

3.2.1 � Model selection

The developed model has been selected based on training 
results with the help of low value of Root Mean Square Error 
(RMSE), high value of coefficient of determination (R2) and 
coefficient of efficiency (CE). The training, testing and over-
all value of R2 of seasonal rainfall were conducted for the 
selected stations namely Kashipur, Lansdown, Almora and 

Mukteswar. Furthermore, four networks of WANN model 
for each seasons were designed by varying the numbers 
of neurons in the Hidden layer and based of model perfor-
mance, one WANN model has been finalized out of total 
designed models.

3.2.2 � WANN‑model for Lansdown station

The prediction accuracy of the different WANN models dur-
ing the training, testing and overall data sets for Lansdown 
stationare illustrated in Table 9. The result shows over-
all R2, RMSE (mm/month) and CE values ranging from 
0.665 to 0.857 (mean = 0.744), 32.192 to 303.682 mm/
month (mean = 106.437 mm/month), and 0.636 to 0.846 
(mean = 0.722) for the Lansdown station. For the monsoon 
season, WANN-02 (4–7-1 Network) model performed supe-
rior than the other designed network. The overall measured 
value of R2, RMSE and CE were found 0.815, 232.736 mm/
month and 0.805 respectively. Out of four designed network, 
WANN-08 (Network 4–9-1) found best for the winter sea-
son under the criteria of overall highest value of coefficient 
of determination and CE (R2 = 0.740, CE = 0.732), lowest 
value of RMSE (49.073 mm/month) (Table 9). Similarly, 
for the pre-monsoon season, the WANN-10 (4–7-1 Network) 
model was found superior as the its achieved highest value 
of R2 and CE i.e., 0.857 and 0.846 respectively, and lowest 
value of RMSE i.e., 32.192 mm/month out of four designed 
network of pre-monsoon season. In the same way, the post-
monsoon season, WANN-16 (Network, 4–9-1) model per-
formed superior than the other designed network. The over-
all measured value of R2, RMSE and CE were found 0.806, 
47.739 mm/month and 0.796 respectively(Table 9).

Furthermore, the scattered plot of observed rainfall versus 
predicted rainfall is shown in Fig. 4 for all seasons. Model 

Table 7   Statistical analysis of seasonal rainfall (mm) data for 
Kashipur

Statistical param-
eter

Winter Pre-monsoon Monsoon Post-monsoon

Mean (mm) 62.51 48.45 1060.53 59.50
Maximum (mm) 248.40 208.30 2716.40 451.90
Minimum (mm) 0.00 0.00 212.00 0.00
SD (mm) 53.86 40.47 456.87 83.95
CV (%) 86.15 83.52 43.08 141.10
CS 1.07 1.16 1.05 2.43

Table 8   Statistical analysis of seasonal rainfall (mm) data for Muk-
teswar

Statistical param-
eter

Winter Pre-monsoon Monsoon Post-monsoon

Mean (mm) 112.25 147.93 964.43 85.04
Maximum (mm) 336.90 376.00 1839.00 478.90
Minimum (mm) 2.80 18.80 467.10 0.00
SD (mm) 65.34 71.80 256.22 94.68
CV (%) 58.21 48.53 26.57 111.34
CS 0.88 0.82 0.65 2.29
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WANN-10 (4–7-1 Network), based on the WANN algorithm 
and seasonal comparison, achieved the best overall perfor-
mance in predicting the rainfall for Lansdown station data 
set. WANN-10 (4–7-1 Network) achieved the best R2, RMSE 

and CE values with scores 0.857, 32.192 mm/month and 
0.846 respectively, hence giving it the highest accurqacy as 
the observed values are very closed to line 1:1 pre-mansoon 
season.

Table 9   Selected models of 
all the seasons for Lansdown 
station

Season Model Network Training Testing Overall

R2 R2 R2 RMSE CE

Monsoon WANN-01 4–6-1 0.750 0.291 0.674 301.484 0.672
WANN-02 4–7-1 0.988 0.361 0.815 232.736 0.805
WANN-03 4–8-1 0.799 0.678 0.750 273.747 0.730
WANN-04 4–9-1 0.745 0.661 0.669 303.682 0.667

Winter WANN-05 4–6-1 0.803 0.282 0.718 50.864 0.712
WANN-06 4–7-1 0.908 0.584 0.665 57.188 0.636
WANN-07 4–8-1 0.852 0.757 0.713 56.445 0.645
WANN-08 4–9-1 0.870 0.557 0.740 49.073 0.732

Pre-Monsoon WANN-09 4–6-1 0.790 0.591 0.752 41.468 0.743
WANN-10 4–7-1 0.988 0.572 0.857 32.192 0.846
WANN-11 4–8-1 0.837 0.669 0.765 43.569 0.718
WANN-12 4–9-1 0.806 0.421 0.721 46.016 0.686

Post-Monsoon WANN-13 4–6-1 0.916 0.391 0.776 50.275 0.771
WANN-14 4–7-1 0.962 0.558 0.774 57.074 0.705
WANN-15 4–8-1 0.723 0.736 0.701 59.432 0.680
WANN-16 4–9-1 0.893 0.692 0.806 47.739 0.796

Fig. 4   Scatter plot between 
observed and predicted rainfall 
for Lansdown station
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3.2.3 � WANN‑model for Almora station

The prediction accuracy of the different WANN models 
during the training, testing and overall data sets for Almo-
rastation are illustrated in Table 10. The result shows over-
all R2, RMSE (mm/month) and CE values ranging from 
0.684 to 0.822 (mean = 0.735), 24.804 to 96.906  mm/
month (mean = 47.512 mm/month), and 0.680 to 0.810 
(mean = 0.726) for the Almora station. For the monsoon 
season, WANN-02 (4–7-1 Network) model performed supe-
rior than the other designed network. The overall measured 
value of R2, RMSE and CE were found 0.781, 88.011 mm/
month and 0.776 respectively. Out of four designed network, 
WANN-08 (Network 4–9-1) found best for the winter sea-
son under the criteria of overall highest value of coefficient 
of determination and CE (R2 = 0.822, CE = 0.810), lowest 
value of RMSE (24.804 mm/month) (Table 10). Similarly, 
for the pre-monsoon season, the WANN-9 (4–6-1 Network) 
model was found superior as the its achieved highest value 
of R2 and CE i.e., 0.704 and 0.701 respectively, and lowest 
value of RMSE i.e., 32.865 mm/month out of four designed 
network of pre-monsoon season. In the same way, the post-
monsoon season, WANN-15 (Network, 4–8-1) model per-
formed superior than the other designed network. The over-
all measured value of R2, RMSE and CE were found 0.732, 
34.771 mm/month and 0.725 respectively(Table 10).

Furthermore, the scattered plot of observed rainfall versus 
predicted rainfall is shown in Fig. 5 for all seasons. Model 
WANN-8 (4–9-1 Network), based on the WANN algorithm 
and seasonal comparison, achieved the best overall perfor-
mance in predicting the rainfall for Almora station data set. 
WANN-8 (4–9-1 Network) achieved the best R2, RMSE and 

CE values with scores 0.822, 24.804 mm/month and 0.810 
respectively, hence giving it the highest accurqacy as the 
observed values are very closed to line 1:1 for winter season.

3.2.4 � WANN‑model for Mukteswar station

The prediction accuracy of the different WANN models 
during the training, testing and overall data sets for Muk-
teswar station are illustrated in Table 11. The result shows 
overall R2, RMSE (mm/month) and CE values ranging from 
0.661 to 0.867 (mean = 0.745), 32.575 to 134.340 mm/
month (mean = 61.380 mm/month), and 0.566 to 0.864 
(mean = 0.732) for the Mukteswar station. For the monsoon 
season, WANN-03 (4–8-1 Network) model performed supe-
rior than the other designed network. The overall measured 
value of R2, RMSE and CE were found 0.867, 94.317 mm/
month and 0.864 respectively. Out of four designed network, 
WANN-05 (Network 4–6-1) found best for the winter sea-
son under the criteria of overall highest value of coefficient 
of determination and CE (R2 = 0.748, CE = 0.748), lowest 
value of RMSE (32.575 mm/month) (Table 11). Similarly, 
for the pre-monsoon season, the WANN-10 (4–7-1 Network) 
model was found superior as the its achieved highest value 
of R2 and CE i.e., 0.780 and 0.738 respectively, and lowest 
value of RMSE i.e., 37.232 mm/month out of four designed 
network of pre-monsoon season. In the same way, the post-
monsoon season, WANN-16 (Network, 4–9-1) model per-
formed superior than the other designed network. The over-
all measured value of R2, RMSE and CE were found 0.817, 
41.631 mm/month and 0.811 respectively (Table 11).

Furthermore, the scattered plot of observed rainfall versus 
predicted rainfall is shown in Fig. 6 for all seasons. Model 

Table 10   Models of all the 
seasons for Almora station

Season Model Network Training Testing Overall

R2 R2 R2 RMSE CE

Monsoon WANN-01 4–6-1 0.783 0.590 0.731 96.906 0.728
WANN-02 4–7-1 0.897 0.373 0.781 88.011 0.776
WANN-03 4–8-1 0.822 0.611 0.762 90.838 0.761
WANN-04 4–9-1 0.773 0.458 0.736 95.373 0.736

Winter WANN-05 4–6-1 0.837 0.326 0.729 29.605 0.729
WANN-06 4–7-1 0.745 0.433 0.684 31.966 0.684
WANN-07 4–8-1 0.771 0.740 0.774 26.973 0.775
WANN-08 4–9-1 0.874 0.456 0.822 24.804 0.810

Pre-Monsoon WANN-09 4–6-1 0.757 0.581 0.704 32.865 0.701
WANN-10 4–7-1 0.748 0.702 0.706 33.094 0.697
WANN-11 4–8-1 0.974 0.263 0.722 33.072 0.697
WANN-12 4–9-1 0.769 0.723 0.706 33.447 0.690

Post-Monsoon WANN-13 4–6-1 0.962 0.125 0.719 35.748 0.710
WANN-14 4–7-1 0.790 0.643 0.739 35.208 0.718
WANN-15 4–8-1 0.999 0.508 0.732 34.771 0.725
WANN-16 4–9-1 0.924 0.145 0.711 37.512 0.680
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WANN-3 (4–8-1 Network), based on the WANN algorithm 
and seasonal comparison, achieved the best overall perfor-
mance in predicting the rainfall for Mukteswar station data 
set. WANN-3 (4–8-1 Network) achieved the best R2, RMSE 

and CE values with scores 0.867, 94.317 mm/month and 
0.864 respectively, hence giving it the highest accurqacy 
as the observed values are very closed to line 1:1 for winter 
season.

Fig. 5   Scatter plot between 
observed and predicted rainfall 
for Almora station

(a) Winter season (b) Pre-Monsoon season

(c) Monsoon season (d) Post-Monsoon season

0 100 200 300 400

0

100

200

300

400

Rainfall
Line 1:1 (perfect line)
Fitted Y of Rainfall

Pr
ed

ic
te
d
R
ai
nf
al
l(
m
m
)

Observed Rainfall (mm)

Winter season WANN-08 (Network 4-9-1)

y = (16.1974) + (0.767161) * x
Rainfall

Pearson's r 0.90651
Adj. R-Square 0.81985
Intercept 16.19742 ± 4.0110
Slope 0.76716 ± 0.03705

0 100 200 300 400

0

100

200

300

400

Rainfall
Line 1:1 (perfect line)
Fitted Y of Rainfall

Pr
ed

ic
te
d
R
ai
nf
al
l(
m
m
)

Observed Rainfall (mm)

Pre-monsoon WANN-9 (Network 4-6-1)

y = (30.1988) + (0.743017) * x
Rainfall

Pearson's r 0.83874
Adj. R-Square 0.70036
Intercept 30.19881 ± 6.3210
Slope 0.74302 ± 0.04949

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

Rainfall
Line 1:1 (perfect line)
Fitted Y of Rainfall

Pr
ed

ic
te
d
R
ai
nf
al
l(
m
m
)

Observed Rainfall (mm)

Monsoon season WANN-2 (Network 4-7-1)

y = (172.558) + (0.75094) * x
Rainfall

Pearson's r 0.88397
Adj. R-Squar 0.77904
Intercept 172.55824 ± 31.571
Slope 0.75094 ± 0.04119

0 100 200 300 400

0

100

200

300

400

Rainfall
Line 1:1 (perfect line)
Fitted Y of Rainfall

Pr
ed

ic
te
d
R
ai
nf
al
l(
m
m
)

Observed Rainfall (mm)
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Table 11   Selected models of 
all the seasons for Mukteswar 
station

Season Model Network Training Testing Overall

R2 R2 R2 RMSE CE

Monsoon WANN-01 4–6-1 0.889 0.346 0.728 134.340 0.725
WANN-02 4–7-1 0.821 0.567 0.738 131.384 0.737
WANN-03 4–8-1 0.953 0.701 0.867 94.317 0.864
WANN-04 4–9-1 0.781 0.539 0.750 131.156 0.738

Winter WANN-05 4–6-1 0.801 0.769 0.748 32.575 0.748
WANN-06 4–7-1 0.824 0.516 0.731 33.958 0.726
WANN-07 4–8-1 0.835 0.433 0.687 36.965 0.675
WANN-08 4–9-1 0.839 0.594 0.748 32.781 0.745

Pre-Monsoon WANN-09 4–6-1 0.771 0.428 0.716 39.398 0.707
WANN-10 4–7-1 0.854 0.630 0.780 37.232 0.738
WANN-11 4–8-1 0.856 0.658 0.726 38.208 0.724
WANN-12 4–9-1 0.803 0.381 0.728 38.038 0.726

Post-Monsoon WANN-13 4–6-1 0.823 0.621 0.766 46.708 0.762
WANN-14 4–7-1 0.834 0.517 0.661 63.080 0.566
WANN-15 4–8-1 0.790 0.300 0.729 50.307 0.724
WANN-16 4–9-1 0.893 0.642 0.817 41.631 0.811
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3.2.5 � WANN‑model for Kashipur station

The prediction accuracy of the different WANN models dur-
ing the training, testing and overall data sets for Kashipur 

station are illustrated in Table 12. The result shows over-
all R2, RMSE (mm/month) and CE values ranging from 
0.700 to 0.998 (mean = 0.808), 1.240 to 269.357  mm/
month (mean = 81.338 mm/month), and 0.660 to 0.999 

Fig. 6   Scatter plot between 
observed and predicted rainfall 
for Mukteswar station

(a) Winter season (b) Pre-Monsoon season

(c) Monsoon season (d) Post-Monsoon season
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Table 12   Selected models of all 
the seasons for Kashipur station

Season Model Network Training Testing Overall

R2 R2 R2 RMSE CE

Monsoon WANN-01 4–6-1 0.982 0.142 0.771 239.490 0.731
WANN-02 4–7-1 0.707 0.588 0.719 249.966 0.707
WANN-03 4–8-1 0.767 0.278 0.710 249.282 0.709
WANN-04 4–9-1 0.960 0.442 0.733 269.357 0.660

Winter WANN-05 4–6-1 0.747 0.158 0.700 29.358 0.695
WANN-06 4–7-1 0.935 0.293 0.712 28.802 0.706
WANN-07 4–8-1 0.819 0.677 0.737 27.500 0.732
WANN-08 4–9-1 0.833 0.622 0.786 24.785 0.782

Pre-Monsoon WANN-09 4–6-1 1.000 0.983 0.994 3.343 0.993
WANN-10 4–7-1 0.999 0.996 0.998 1.240 0.999
WANN-11 4–8-1 1.000 0.989 0.994 2.735 0.995
WANN-12 4–9-1 1.000 0.932 0.966 8.104 0.959

Post-Monsoon WANN-13 4–6-1 0.800 0.797 0.752 43.846 0.735
WANN-14 4–7-1 0.758 0.674 0.764 43.435 0.740
WANN-15 4–8-1 0.996 0.724 0.865 34.118 0.839
WANN-16 4–9-1 0.837 0.669 0.732 46.050 0.707
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(mean = 0.793) for the Kashipur station. For the monsoon 
season, WANN-01 (4–6-1 Network) model performed supe-
rior than the other designed network. The overall measured 
value of R2, RMSE and CE were found 0.771, 239.490 mm/
month and 0.731 respectively. Out of four designed network, 
WANN-08 (Network 4–9-1) found best for the winter season 
under the criteria of overall highest value of coefficient of 
determination and CE (R2 = 0.786, CE = 0.782), lowest value 
of RMSE (24.785 mm/month) (Table 12). Similarly, for the 
pre-monsoon season, the WANN-10 (4–7-1 Network) model 
was found superior as the its achieved highest value of R2 
and CE i.e., 0.998 and 0.999 respectively, and lowest value 
of RMSE i.e., 1.240 mm/month out of four designed network 
of pre-monsoon season. In the same way, the post-monsoon 
season, WANN-15 (Network, 4–8-1) model performed supe-
rior than the other designed network. The overall measured 
value of R2, RMSE and CE were found 0.865, 34.118 mm/
month and 0.839 respectively (Table 12).

Furthermore, the scattered plot of observed rainfall versus 
predicted rainfall is shown in Fig. 7 for all seasons. Model 
WANN-10 (4–7-1 Network), based on the WANN algo-
rithm and seasonal comparison, achieved the best overall 
performance in predicting the rainfall for Kashipur station 
data set. WANN-10 (4–7-1 Network) achieved the best R2, 
RMSE and CE values with scores 0.998, 1.240 mm/month 

and 0.999 respectively, hence giving it the highest accurqacy 
as the observed values are very closed to line 1:1 for winter 
season. One interesting thing also noticed for the Kashipur 
station that performance of all models in training was so 
higher than all the stations.

4 � Discussion

Because of the geographical location of Uttarakhand, the 
Almora, Kashipur, Lansdown, and Mukteswar climate index 
has a stronger impact on rainfall variability in this region. In 
spite of the fact that climate drivers interact with rainfall in 
complex ways, sometimes it is impossible to predict rainfall 
with a high level of accuracy in response to an individual 
climate driver alone because of the complex relationships 
between them. A total of 16 different models (WANN-01 to 
WANN-16) were selected to compare the effect of climate 
indices on Uttarakhand rainfall on a monthly basis in this 
study. In the present study, the desecrate wavelet transform 
coupled with ANN was employed to significantly enhance 
the accuracy of the seasonal rainfall prediction. Consider-
ing all four regions considered, it is evident that the per-
formances of the WANN-03 (Network 4–8-1), WANN-10 
model (Network 4–7-1), WANN-10 (Network 4–7-1) and 

Fig. 7   Scatter plot between 
observed and predicted rainfall 
for Kashipur station
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WANN-15 (Network 4–8-1) models when considering 
the R2, RMSE, and CE values for the Mukteswar, Lansdown, 
Kashipur and Almora regions respectively, are considerably 
better than the performances of the other WANN models. 
The results from this study have demonstrated that the 
introduction of easily estimated input variables into WNN 
models is a very useful tool for improving precipitation 
predictions, especially when there are no long-term data-
sets available that can provide a good estimation of future 
precipitation amounts. These wavelet models coupled with 
ANN performed better when prediction of rainfall (Ray et al. 
2020; Ghamariadyan and Imteaz 2021c; Tiwari et al. 2023) 
and while other studies simulate stream flow using spe-
cific algorithms which is based on ANN such as LM, SDG 
and BR-ANN (Rautela et al. 2022). In addition, our results 
showed lower RMSE values than those reported by Jiang and 
Wu (2013) in a study of ten stations in Guilin (China), using 
evolutionary models to estimate the RMSE values. Consid-
ering the efficiency of the models, the mean CE values indi-
cate that they all have good levels of efficiency, and they 
are significantly higher than the values reported by Kalteh 
(2017) in Iran, which used ANNs to predict monthly pre-
cipitation using 30-year series to conduct the study. Before 
being utilized as an input to the ANN, the discrete signals 
(representing seasonal rainfall) were first decomposed into 
smaller signals, and then used as input. During analysis, 
some models perform very well when the number of neurons 
in the hidden layer is less, or some models perform badly 
even though the number of neurons in the hidden layer is 
highe r(Zhang and Morris 1998; Ke and Liu 2008; Sheela 
and Deepa 2013; Shukla et al. 2021; Rachmatullah et al. 
2021). Therefore, it is recommended that the relationship 
between the hidden layer neuron and the best-performing 
model be context-specific and may also depend on the larger 
dataset. The local farmers and policymakers in the studied 
regions may find this study valuable in mitigating issues 
associated with water. The future scope of this study is as 
follows: In this research, the number of rain gauge stations 
is limited due to data availability. Consequently, it is recom-
mended that future studies expand by including a greater 
number of stations. Additionally, the prediction of rainfall 
could be extended to various time scales, encompassing 
seasons such as daily and monthly intervals. Furthermore, 
it is advised to integrate diverse models employing remote 
sensing and deep learning approaches.

5 � Conclusion

In the present study, four stations of Uttarakhand state 
namely, Almora, Kashipur Lansdown, and Mukteswar were 
taken into consideration for analyzing the statistical param-
eters and also to develop a hybrid WANN model. These 

stations were selected on the basis of data availability. Six 
statistical parameters such as mean, maximum, minimum, 
coefficient of variation, coefficient of skewness and standard 
deviation were employed for analyzing the seasonal rainfall 
data. A hybrid model of Wavelet coupled with ANN was 
developed to model seasonal rainfall. For evaluating the per-
formance of the designed model Root Mean Square Error 
(RMSE), Coefficient of determination (R2) and Coefficient 
of Efficiency (CE) were used. The highest mean rainfall 
was observed in the winter season for the Lansdown station.
Lansdowne station received the highest rainfall compared to 
all the stations. In the analysis based on pre-monsoon and 
post-monsoon reading, Mukteswar holds the highest value 
of mean rainfall. Similarly, for monsoon, Lansdownwasthe 
highest value. The maximum rainfall for pre-monsoon, post 
monsoon, and winter in thesouthwest monsoon was seen in 
the Lansdown region. For Mukteswar, Lansdown, Kashipur 
and Almora, the model WANN-03 (Network 4–8-1), WANN-
10 model (Network 4–7-1), WANN-10 (Network 4–7-1) and 
WANN-15 (Network 4–8-1), respectively were found to be 
most efficient model as the R2 value was high and the RMSE 
obtained was low. The overall value for R2 was found high in 
these models. The selection of these models for the particular 
region was based on comparisons between the models and 
their seasons. Among all the stations investigated in the study, 
the hybrid model of WANN-10 with a Network (4–7-1) was 
found to be the most superior model for the Lansdown sta-
tions out of all those investigated.
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