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the remaining native prairie ecosystems. In 2018, it was esti-
mated that only half of these grassland ecosystems remain, 
with 87% of them located on poor and marginal quality 
soils (World Wildlife Fund 2018). The variation within the 
Great Plains creates a variety of community types typically 
dominated by C3 grasses in the north and east (more pre-
cipitation and cooler temperatures), and C4 grasses in the 
south and west (less precipitation and higher temperatures) 
(Petrie et al. 2016). The C3-pathway for photosynthesis is 
common in temperate regions in grasses such as wheatgrass 
(Agropyron), bentgrass (Agrostis), and foxtail (Alopecurus), 
while the C4-pathway is common in arid regions where the 
weather is typically hotter and drier with grasses such as 
bluestem (Bothriochloa), threeawn (Aristida), and grama 
(Bouteloua) (Jones and Vaughan 2010; Stubbendieck et 
al. 2017). Along with a large amount of spatial variability, 
grasslands are also characterized by high amounts of tem-
poral variability (Flanagan and Adkinson 2011). This means 

1  Introduction

Grasslands cover approximately 59  million km2 of the 
Earth’s surface (Hufkens et al. 2016) making up between 
10 and 30% of the global carbon stock (Scurlock and Hall 
1998); this makes grasslands the second largest carbon sink 
after forests (Anderson 1991). In North America, the Great 
Plains cover approximately 2.9 million km2 within an east-
to-west gradient of tall to short-grass prairie. However, the 
conversion of grassland to cropland has drastically reduced 
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Abstract
Vegetation phenology models still rely on temperature as the primary limiting factor to growth. They generally do not rec-
ognize the importance of photoperiod and water availability, which can cause them to under-perform. Moreover, few mod-
els have used machine learning algorithms to find relationships in the data. In this paper, four Vegetation Indexes (VIs), 
namely the green chromatic coordinate (GCC), the vegetation contrast index (VCI), the normalized difference vegetation 
index (NDVI) and the two-band enhanced vegetation index (EVI2), are predicted for the North American Great Plains. 
This is possible by using six PhenoCams, Daily Surface Weather and Climatological Summaries (DAYMET), processing 
them with the machine learning algorithm XGBoost (XGB) and comparing them with seven phenophase stages throughout 
a growth cycle. Examining the results, GCC was the best fitting model with an R2 of 0.946, while EVI2 was the poorest 
with an R2 of 0.895. Also, the results indicate that changing temperature and precipitation patterns are driving a significant 
change in phenology of the grasslands. We developed a model capable of explaining 90 to 93% of the variability in four 
VIs across six grassland PhenoCam sites over the growing season using the XGB regression. Our model demonstrates the 
importance of including photoperiod, temperature, and precipitation information when modeling vegetation phenology. 
Finally, we were able to construct a 38-year phenology record at each PhenoCam location.
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that climate change induced shifts in grassland phenology 
will likely only be detectable using long-term monitoring 
over several years to decades (Henebry 2013).

Modeled scenarios under forecast future climate condi-
tions suggest that North America will see an increase in 
both the length of the growing season and the productivity 
of grasslands, including an earlier onset of spring (Schwartz 
et al. 2006). This is because the modeled grasslands are 
expected to become more efficient in retaining moisture 
under higher CO2 levels, allowing for more efficient use of 
water and a reduction in the amount of water lost in transpi-
ration (Hufkens et al. 2016). This suggests that precipita-
tion must fall below a threshold before it has a noticeable 
effect on growing season length (Browning et al. 2017).
However, a controlled test of grassland phenology using 
plants grown within a warmer temperature, elevated CO2, 
increased nitrogen, and increased precipitation has shown 
an array of responses that were not all anticipated. For 
example, additions of CO2 delayed spring greenness while 
increased nitrogen slowed down plant growth acceleration. 
Precipitation had no effect, suggesting it was not a limiting 
factor for the controlled plants, while increased temperature 
was the only factor to have the expected outcome, causing 
plants to flower earlier by 2–5 days (Cleland et al. 2006). 
Field observations of arid grasslands using both PhenoCams 
(Richardson et al. 2018) as well as satellite imagery are also 
in agreement that warmer temperatures bring an earlier 
start of season to the grasslands. But in an arid environment 
precipitation has been found to influence the recorded veg-
etation indices (VIs), even causing a second peak of green-
ness in the growing season after a large precipitation event 
(Browning et al. 2017).

Identifying the limiting factor for growth of grassland 
phenology is a challenging task, with factors such as tem-
perature and precipitation fluctuating throughout the grow-
ing season to limit plant growth (Wang et al. 2003). Many 
phenology models still rely on temperature as the primary 
limiting factor to growth, and because of this they under-
perform by not recognizing the importance of photoperiod 
and water availability (Piao et al. 2019). Temperature-driven 
models may fail to help predict future phenology patterns 
from climate change since plants can have a reduced sensi-
tivity to temperature (Fu et al. 2015). Instead, new models 
should be developed to account for the interactions between 
the many environmental factors that drive plant growth.

Machine learning has gained traction in Earth sciences 
and ecology, with many machine learning models outper-
forming traditional statistical models (Dai et al. 2019). 
Machine learning algorithms apply non-linear techniques 
that can often identify complex underlying relationships in 
the data (Zhang et al. 2019). Regardless of these advantages, 
there are few phenology models that take advantage of the 

benefits provided by machine learning (Dai et al. 2019). 
One recently developed machine learning algorithm, known 
as XGBoost (XGB), is a gradient boosted decision tree 
capable of both regression and classification tasks (Chen 
and Guestrin 2016). Improvements made in XGB make it 
more robust at handling noise, as well as dealing with unbal-
anced and skewed datasets (Zhang et al. 2019). This makes 
it an excellent choice when working with empirical data that 
often fails to meet the requirements of parametric statisti-
cal analysis. However, using machine learning for phenol-
ogy requires long time series datasets with few data gaps, 
although, even then, analysis can be challenging when noise 
is present (Belda et al. 2020).

PhenoCams are digital web-enabled cameras that are 
capable of imaging ecosystems with high temporal reso-
lution (Richardson 2019). PhenoCams record changes in 
vegetation throughout the growing season by capturing 
multiple images per day using the visible and sometime 
the near-infrared portions of the electromagnetic spectrum. 
Stages in vegetation phenology are known as phenophases 
and include greenup in the spring, and senescence in the fall 
(Richardson and Braswell 2009). Individual images cap-
tured by PhenoCams are used to calculate VIs that record 
changes in vegetation growth, and they have been used 
to calculate other growth indices such as leaf area index 
(Keenan et al. 2014). The VIs calculated from PhenoCam 
imagery can also be used to record changes in the timing of 
phenophase transitions to detect how vegetation is respond-
ing to changes in local environment, such as changes 
brought on by climate change (Elmore et al. 2012; Killick 
et al. 2012; Ren et al. 2018). Four VIs that are prominent 
in phenology research include the green chromatic coordi-
nate (GCC) (Richardson and Braswell 2009), the vegetation 
contrast index (VCI) (Zhang et al. 2018), the normalized 
difference vegetation index (NDVI) (Rouse et al. 1973) and 
the two-band enhanced vegetation index (EVI2) (Jiang et 
al. 2008).

The high temporal availability of PhenoCam imag-
ery makes it a suitable data source for machine learning 
analysis. Also, the need for phenology models capable of 
detecting the underlying relationships between many envi-
ronmental factors makes machine learning an important 
method to consider for the development of new models. The 
North American Great Plains provide an interesting study 
area to examine the interactions of different meteorologi-
cal variables because of the spatial gradients that exist in 
temperature and precipitation. Because of this we sought 
to: (1) develop a regression model using XGB that can 
predict GCC, VCI, NDVI and EVI2 values using meteoro-
logical data at multiple grassland PhenoCam locations, (2) 
determine the primary meteorological variables within the 
model, and how these differ between VIs, and (3) predict the 
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four VIs and measure their phenophases to establish trends 
in phenophase transitions using 38 years of historic meteo-
rological data.

2  Methods and data

2.1  Study area

One of the 15 Level I ecoregions of North America, the 
Great Plains occupies 281 million ha with 224 million ha 
located within the contiguous U.S. (U.S. Environmental 
Protection Agency 2020). The Great Plains Ecoregion is 
divided into five Level II ecoregions: temperate prairies, 
west-central semiarid prairies, south-central semiarid prai-
ries, Texas-Louisiana coastal plain and Tamaulipas-Texas 
semiarid plain (Fig. 1). We focused on the temperate prairies 
and the south-central semiarid prairies. Temperate prairies 
in the east are wetter and contain more croplands than the 
drier west-central and south-central semiarid prairies, while 

the west-central semiarid prairies are on average cooler than 
south-central semiarid prairies (Omernik and Griffith 2014).

We selected six grassland locations within the Great 
Plains (Fig. 1) each of which has a PhenoCam with at least 
three years of data (Table 1). Three of the sites are located 
within the temperate prairie ecoregion; the Oakville Prai-
rie (Oakville), a part of the University of North Dakota, 
located in Grand Forks County, North Dakota (47.8993°N, 
97.3161°W); the USGSEROS station at the Earth Resources 
Observation and Science (EROS) Data Center in South 
Dakota (43.7343°N, 96.6234°W); and the Nine Mile Prairie 
station (Nine-Mile), a part of the University of Nebraska 
– Lincoln (40.8680°N, 96.8221°W), located in Lancaster 
County, Nebraska. The other three PhenoCam sites are 
within the south-central semiarid prairie and are a part of 
the National Ecological Observatory Network (NEON). 
These sites include the NEON.D06.KONZ.DP1.00033 sta-
tion (Konza) (39.1008°N, 96.5631°W) located at the Konza 
Prairie Biological Station in Kansas; the NEON.D10.ARIK.
DP1.20002 station (ARIK) (39.7582°N, 102.4471°W) 
located near the Arikaree River in Yuma County, Colorado; 
and the NEON.D11.OAES.DP1.00033 station (OAES) 
(35.4106°N, 99.0588°W) located at the Klemme Range 
Research Station in Washita County, Oklahoma.

The six sites form a 1,470-km latitudinal transect through 
the Great Plains Ecoregion ranging from 35.4°N to 47.9°N. 
Oakville is part of the Level III/IV Ecoregion Lake Agas-
siz Plain/Saline Area, defined in part as having elevations 
between 250 and 265 MAMSL, annual precipitation rang-
ing between 46 and 53  mm, and mean annual minimum/

Table 1  Years of data available for each of the PhenoCam site loca-
tions
Station name (Common name) Years with available data
Oakville (Oakville) 2016–2019
USGSEROS (EROS) 2015–2017, 2019
Nine Mile Prairie (Nine-Mile) 2016–2019
NEON.D06.KONZ.DP1.00033 (Konza) 2017–2019
NEON.D10.ARIK.DP1.20002 (Arik) 2017–2019
NEON.D11.OAES.DP1.00033 (OAES) 2017–2019

Fig. 1  The PhenoCam locations 
within the study area. Showing the six 
PhenoCam locations situated within 
the Great Plains of the contiguous 
U.S. Figure taken from Burke and 
Rundquist (2021)
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ability to remove soil background noise, and atmospheric 
effects (Jiang et al. 2008).

GCC =
Green

Blue +Green+ Red
� (1)

V CI =
Green

Blue + Red
� (2)

NDV I =
NIR− Red

NIR + Red
� (3)

EV I2 = 2.5
NIR− Red

NIR + 2.4*Red + 1
� (4)

To calculate each of the chosen VIs from the PhenoCam 
imagery, we first downloaded all available imagery from the 
six PhenoCam locations.1 We then applied the exposure cor-
rection to both the color and mixed color-infrared imagery 
to extract the near-infrared and three color bands (Petach et 
al. 2014). Using the image digital numbers (DNs) for the 
red, green, blue (RGB) and near-infrared (NIR) bands the 
three VIs were calculated using Eqs. (1), (2), (3) and (4) for 
each day of the year in which PhenoCam imagery was avail-
able (Table  1). Finally, the PhenoCam VIs were linearly 
scaled to Gaussian Process Regression modeled VIs cal-
culated with Harmonized Landsat-Sentinel surface reflec-
tance imagery (described in detail in Burke and Rundquist 
2021). This standardised the VI values between all Pheno-
Cam sites, allowing them to be used together within a single 
XGB model.

2.3  Meteorological data

We used Daily Surface Weather and Climatological Sum-
maries (DAYMET) data made available by the Oak Ridge 
National Laboratory (ORNL) within the Distributed Active 
Archive Center (DAAC) (Thornton et al. 2018). DAYMET 
provides 1 km x 1 km gridded data for North America start-
ing in 1980, with several different weather variables avail-
able (Table  2). We retrieved the data for each of the six 
PhenoCam locations (Fig.  1), for the PhenoCam imagery 
time periods (Table 1).

We also used the DAYMET data to derive a few accu-
mulative variables for precipitation, snow water equivalent 
(SWE) and temperature. Previous research has shown that 
precipitation often has a lag period before its has a measured 
effect on a VI’s signal (Potter and Brooks 1998; Wang et 
al. 2003). Based on this research we decided to accumulate 
precipitation over both 15 and 30 days to see if this would 

1  https://PhenoCam.nau.edu/webcam/.

maximum temperatures between − 22°/−11 °C in January 
and 13°/28°C in July. EROS and Nine-Mile Prairie are in 
the Level III Western Corn Belt Plains. EROS is found 
within the Level IV Ecoregion Loess Prairies and Nine-Mile 
Prairie in the Glacial Drift Hills. Loess Prairie is character-
ized as having a range in elevation of 366 to 518 MAMSL 
with a mean annual precipitation between 58 and 64 mm 
and mean annual minimum/maximum temperatures ranging 
from − 13°/−1 °C in January to 17°/31°C in July (Bryce et 
al. 1996). The Glacial Drift Hills sit between 305 and 488 
MAMSL with a mean annual precipitation between 69 and 
89 mm and mean annual minimum/maximum temperatures 
between − 10°/1°C in January and 19°/33°C in July (Chap-
man et al. 2001).

The remaining three PhenoCams are in the Level II 
south-central semiarid prairies. Konza is located in the 
Level III Flint Hills, ranging from 305 to 488 MAMSL. 
That ecoregion’s annual precipitation is 71 to 89  mm. 
with mean annual minimum/maximum temperatures of 
−6°/6°C in January and 20°/36°C in July (Chapman et al. 
2001). ARIK is part of the Level III/IV High Plains/Mod-
erate Relief Plains. This ecoregion is found between 1,097 
to  1,981 MAMSL. Its annual precipitation is between 30 
and 46 mm and it has a mean annual minimum/maximum 
temperature range of −10°/7°C in January and 16°/33°C in 
July (Chapman et al. 2006). Finally, OAES is in the Level 
III/IV Central Great Plains/Rolling Red Hills, ranging from 
427 to 792 MAMSL. This ecoregion’s annual precipita-
tion is between 66 and 76 mm and its minimum/maximum 
mean annual temperature range is −8°/7°C in January and 
19°/36°C in July (Woods et al. 2005).

2.2  PhenoCam data source and calculating the VIs

We choose to derive four VIs from the PhenoCam imag-
ery at the six field stations. GCC (Eq. 1) is a proportional 
measure of relative ‘greenness’ that was originally devel-
oped for use with PhenoCams because of its relative sta-
bility under changing illumination conditions (Richardson 
and Braswell 2009). GCC has be used in a diverse array 
of ecosystem types, and can be measured using any digital 
capable of capturing a color (red, green, and blue) image 
(Richardson 2019). VCI (Eq.  2) was created as a nonlin-
ear transformation of GCC that has a higher dynamic range 
relative to GCC by contrasting the green band to the sum of 
red and blue (Zhang et al. 2018). NDVI (Eq. 3) has a long 
history in Earth Observation (Rouse et al. 1973), and has 
been derived from PhenoCams that are sensitive to near-
infrared wavelengths (Burke and Rundquist 2021; Filippa et 
al. 2018; Petach et al. 2014; Richardson 2019). EVI2 (Eq. 4) 
was developed as an adjustment to NDVI, with an enhanced 
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aggregating, was used so that a random selection of half 
(subsample = 0.5) the training samples were used to grow 
each tree with gradient-based selection (Chen and Guestrin 
2016; Zhang et al. 2019).

Using the XBG model we fit each of the VIs against all 
the meteorological data variables including the accumulated 
precipitation, accumulated SWE and GDD. We combined 
the data sets across all six PhenoCam sites and created a 
model that could predict the four PhenoCam-based VIs at 
any one of the grassland sites given the daily meteorologi-
cal data. By examining the total gain, a relative measure of 
a variable’s contribution to the model, we refined each of the 
VIs models further by removing the variables with the low-
est total gain in a stepwise fashion until the R2 declined by 
more than 3% from the first model containing all variables, 
then selecting the model directly before the 3% decline. We 
used 3% as a threshold to minimize loss of model perfor-
mance, while allowing enough of a reduction to the model 
to remove the variables that added little prediction power. 
Using the refined models for each of the four VIs we used 
the meteorological data to predict the VI values for each day 
of the year starting in 1981 and ending in 2019, producing 
a dataset for each VI ranging 38 years for each of the six 
PhenoCam locations.

2.5  Determining phenophase transitions dates

Using the 38 years of data for the four modeled VIs at the 
six PhenoCam locations we identified phenophase transi-
tions dates using the same methods applied to the Collection 
6 Moderate Resolution Imaging Spectrometer (MODIS) 
Land Cover Dynamics Product (CMCD12Q2) (Gray et 
al. 2019). The CMCD12Q2 product identifies seven phe-
nophase stages throughout a growth cycle (Fig. 2), starting 
with greenup in the spring and ending with dormancy in 
the fall. This procedure was completed 24 times to account 

have a stronger relationship with the VI signals compared 
with the daily total precipitation. We did the same with the 
SWE, except changed the lag periods to 60 and 90 days to 
reflect the longer lag periods for snowfall. To calculate these 
values, we summed together the precipitation or SWE for 
the set number of days prior to each day of the year. To esti-
mate the accumulated heat for vegetation growth we used 
growing degree days (GDD) calculated for each day of the 
year (Eq. 5) (Burke et al. 2018). GDD have historically been 
used for predicting agricultural crop growth and develop-
ment, with Tbase set at 0 °C for winter wheat a C3 plant and 
10 °C for corn a C4 plant (McMaster and Wilhelm 1997). 
We choose to calculate GDD for three Tbase values set at 0, 
5 and 10 °C and examine the relationship these three data-
sets have with our grassland VIs. This resulted in a total of 
13 variables being included in our model.

GDD =
Tmax + Tmin

2
− Tbase, if

Tmax + Tmin

2
> Tbase � (5)

GDD = 0, otherwise

2.4  Statistical analysis of daily VIs

To produce a regression model for the four VIs we used 
XGB, a gradient boosted decision tree model (Chen and 
Guestrin 2016). We trained our XGB models using a ran-
domly selected 80% (n = 2,815) of the available data, leav-
ing 20% (n = 704) for model validation. To help prevent 
overfitting of the model, and to prune any branches with a 
negative gain, we set lambda to 1 and both alpha and gamma 
to 0. We also set the learning rate to 0.1, max depth to 10 and 
number of estimators to 50,000. We choose parameters that 
would help prevent overfitting of the model, and were rec-
ommended to produce a more conservative algorithm (Chen 
and Guestrin 2016). Subsampling, also know as bootstrap 

Table 2  DAYMET daily surface weather data variables used to model the PhenoCam VIs, including both DAYMET provided data and the vari-
ables derived from the DAYMET data, such as SWE and GDD
Data field Description Units Source
Dayl Duration of the daylight period for the day seconds DAYMET
Prcp Daily total precipitation mm DAYMET
Srad Incident shortwave radiation flux density w/m2 DAYMET
Swe Snow water equivalent kg/m2 DAYMET
tmax Daily maximum 2-meter air temperature degrees Celsius DAYMET
Tmin Daily minimum 2-meter air temperature degrees Celsius DAYMET
acc prcp 15 Accumulated precipitation over 15 days mm Derived
acc prcp 30 Accumulated precipitation over 30 days mm Derived
acc swe 60 Accumulated SWE over 60 days kg/m2 Derived
acc swe 90 Accumulated SWE over 90 days kg/m2 Derived
gdd 0 GDD with Tbase = 0 degrees Celsius degrees Celsius Derived
gdd 5 GDD with Tbase = 5 degrees Celsius degrees Celsius Derived
gdd 10 GDD with Tbase = 10 degrees Celsius degrees Celsius Derived
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for it to be considered a valid cycle. The three other VIs 
have a varying range of values that do not necessarily align 
with EVI2. That is, instead of using a constant value of 0.1, 
we modified this step by requiring greenup and greendown 
periods to have an amplitude that is at least 70% that of 
the current year’s amplitude. Once the valid growth periods 
were identified we extracted the seven phenophase periods 
using the same methods as the CMCD12Q2 product. The 
peak is reached at the maximum value for the VI. The gree-
nup, mid-greenup, and maturity occur at a 15, 50, and 90% 
increase in amplitude, while senescence, mid-greendown, 
and dormancy occur after the peak as amplitude decreases 
past 90, 50, and then 15%. Using these values, we also mea-
sured the length of greenup, the number of days between 
greenup and maturity, the length of maturity, the number 
of days between maturity and senescence, and the length 
of greendown, the number of days between senescence and 
dormancy, and the length of season, the number of days 
between greenup and dormancy.

for the four VIs at 6 different sites. A natural cubic spline 
(Drury 2020) was fit to the full 38-year time series. To 
find the optimal number of knots to fit the spline we used 
Akaike’s Information Criterion (AIC) to balance under-
overfitting of the model (Hurvich et al. 1998). To do this we 
randomly set aside one third of the dataset and fit the spline 
starting at 38 knots (1 knot per year of data) and ending at 
570 knots (15 knots per year of data). Using the AIC we 
measured the models fit against the randomly removed data 
and selected the number of knots that produced the lowest 
AIC value. The spline was then re-fit to the entire dataset 
using the optimal number of knots.

Valid vegetation cycles were identified from the 24 spline 
models using methods similar to the CMCD12Q2 product 
(Gray et al. 2019). Local minima and maxima were identi-
fied for each year with a half year overlap at the beginning 
and end of the year. The maxima were examined for valid-
ity as a peak in vegetation growth while the minima were 
examined to be either the start or end of a vegetation cycle. 
However, the methods used for the CMCD12Q2 product 
were produced for EVI2 specifically. An amplitude change 
of 0.1 was required during any greenup or greendown period 

Fig. 2  Phenophase transitions dates for the four VIs at the Oakville 
station determined using the same methods applied to the CMCD12Q2 
product. The colored circles denote the beginning of their correspond-

ing phenophase. The graph shows three years of data (2017–2019) 
taken from the modeled 38-year dataset

 

1 3

5224



Modelling vegetation phenology at six field stations within the U.S. Great Plains: constructing a 38-year…

while EVI2 was the poorest with an R2 of 0.895, and an 
RMSE of 0.02. Examining the total gain for each of the 
variables in the four models provides a relative measure 
of importance. Across all four models the photoperiod as 
day length, and temperature as GDD with a base of 0  °C 
were the two most important variables. While the minimum 
temperature and 30-days of accumulated precipitation were 
the third and fourth most important variables (Fig. 4). These 
four variables had the highest total gain across all four VIs, 
however they did not all occur in the same order. For exam-
ple, day length had the highest total gain for GCC and VCI 

3  Results

3.1  XGB regression models

Using the GCC, VCI, NDVI, and EVI2 datasets we pro-
duced four XGB regression models capable of predicting 
the VIs value based on all variables within the meteorologi-
cal DAYMET data (Fig. 3). For each of the VIs 2,815 data 
points were used in model training, while 704 data points 
were set aside for model validation (Fig. 3). Examining the 
validation results GCC was the best fitting model with an 
R2 of 0.946 and a root mean square error (RMSE) of 0.01, 

Fig. 3  The four XGB modeled VIs against the validation datasets, showing the models ability to predict the VIs values given all 13 meteorological 
variables
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variables at their mean value. This analysis shows many of 
the nonlinearities between the meteorological variables and 
the VIs. For example, across all four VIs an increase in the 
lower values ( < ~ 1,000) of GDD 0  °C tends to cause an 
increase in the VI value. However, as GDD 0 °C increases 
( > ~ 1,000), eventually the VI value either reaches a plateau 
or the VI starts decreasing as GDD 0 °C increases.

3.3  Trends in phenophase transitions

Using the XGB models with the 38 years of meteorological 
data we predicted the four VIs values for each day of the 
year. Then using these predictions splines were fit for the 
four VIs across the six PhenoCam locations. For example, 
at the Oakville station a spline model was fit to the predicted 
NDVI values (Fig. 8). Comparing the XGB predicted values 
with the spline models, we found that the splines were able 
to align well with an R2 and a RMSE ranging from 0.83 to 
0.017 for GCC to 0.92 and 0.039 for NDVI (Fig. 9). Notice-
ably, the spline did reduce extreme values within the pre-
dicted VI values, for example in GCC where XGB predicted 
values below 0.2 were closer to 0.3 in the spline models. 
We examined the quantile range for both the XGB mod-
els and spline models and found little difference between 
the 1st, 2nd, and 3rd quantile for the two models, while the 
minimum and maximum values for the spline models were 
always closer to the median than the XGB models (Table 3).

For each of the spline models we predicted seven day 
of year (DOY) values as phenophases occurring within the 
vegetation growth cycles. We also calculated the length of 

while GDD with a base of 0 °C was the highest for NDVI 
and EVI2.

3.2  Reducing the XGB regression models

With each of the four XGB regression models we removed 
variables one at a time for each VI independently, start-
ing with the variable with the lowest total gain. We then 
refit the XGB models and assessed them with the valida-
tion dataset. We continued to remove variables until the R2 
value of the validation dataset decreased by greater than 3% 
from the XGB models that contained all 13 meteorological 
variables, then selected the previous model. For the GCC 
and VCI XGB models this resulted in a final model using 
only four variables: day length, GDD with a base of 0 °C, 
30-days of accumulated precipitation, and GDD with a base 
of 10  °C (Fig.  5). For the NDVI and EVI2 XGB models 
the final model required five variables: GDD with a base of 
0 °C, day length, daily minimum temperature, 30-day accu-
mulated precipitation, and GDD with a base of 5 °C (Fig. 5). 
These four XGB models were able to account for between 
89.6 and 93.1% of the variation in the VIs datasets given 6 
of the 13 meteorological variables (Fig. 6).

Using the four reduced VIs XGB regression models we 
conducted a sensitivity analysis to determine how a change 
in any of the variables effects the resulting VI value (Fig. 7). 
To do this we calculated the minimum, maximum and mean 
values for each of our variables, and then predicted the VI 
value at 100 evenly spaced sample points between each 
variable’s minimum and maximum while holding all other 

Fig. 4  The total gain for each of the 13 meteorological variables used in the four XBG models
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photoperiod, temperature, and precipitation information 
when modeling vegetation phenology. Piao et al. (2019) 
reviewed the importance of including these different meteo-
rological driving factors for modeling vegetation phenology 
and remarked that many current phenology models under-
perform because of their dependence on temperature with-
out considering the interactions of other weather variables. 
A study by Wang et al. (2003) examined the Konza prairie, 
one of our six PhenoCam sites, and found that temperature 
was highly correlated with NDVI at the beginning and end 
of the growing season. Of the three GDD Tbase values 
explored, 0  °C remained the most import variable within 
our model, having the highest total gain and remaining in all 
four reduced models. A Tbase of 0 °C typically represents 
vegetation that uses the C3-pathway for photosynthesis 
such as grasslands in the temperate prairie region, while the 
C4-pathway is represented by a Tbase of 10 °C and would 
be more common in the hotter and drier south-central semi-
arid prairie (Jones and Vaughan 2010; McMaster and Wil-
helm 1997). Because of this we anticipated that either the 
0 °C and the 10 °C GDD variables would both be included 
in the reduced model or the 5 °C variable would better rep-
resent both regions and would have the highest total gain 
within the XGB regression. Instead, we found a mix of the 
three GDD Tbase values used depending on the VI (Fig. 5). 
Both reduced GCC and VCI models contained Tbase values 

greenup, the length of maturity, the length of greendown, and 
the total length of season, as the number of days between the 
greenup, maturity, senecence, and dormancy DOY values, 
respectively. This allowed us to examine trends in the seven 
phenophases to determine if over the 38-year data period 
they are occurring earlier of later in the growth cycle, and to 
determine if the lengths of time between them is increasing 
or decreasing. We calculated 66 linear regressions (Appen-
dix 1–11), one for each phenophase (Appendix 1–7) and 
length (Appendix 8–11) between them at the six Pheno-
Cam locations. Of these linear regressions we found 14 to 
have a significant trend within a 90% confidence interval 
(Table 4). The slope of these linear models provides us the 
change per year in each of the phenophases. For example, 
at the Oakville PhenoCam the dormancy phenophase pro-
duced a slope of 0.27, suggesting that dormancy is occur-
ring 0.27 days later every year, which across our 38 years 
of data results in dormancy occurring 10 days later in 2019 
compared to 1981.

4  Discussion

Using the XGB regression we developed a model capable of 
explaining 90 to 93% of the variability in four VIs (Fig. 6) 
across six grassland PhenoCam sites over the growing sea-
son. Our models demonstrate the importance of including 

Fig. 5  The total gain for the remaining variables used in the reduced XGB models for each of the four VIs
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et al. 2009; Zhang et al. 2019). With our approach, we were 
able to reduce our model from 13 variables down to four or 
five, depending on the VI, with a negligible change in model 
performance reflected in the average model R2 decreasing 
by 0.011 and RMSE increasing by 0.002. This reduction in 
model variables allowed us to examine the importance of 
the variables as well as the calculated lag times for precipita-
tion and SWE, and the relationship between different Tbase 
values for GDD. Wang et al. (2003) found a two-week lag 
in NDVI’s response to precipitation events, however they 

0 and 10  °C, while the NDVI and EVI2 contained Tbase 
values 0 °C, and 5 °C.

The stepwise backwards elimination in XGB regres-
sion model variables we used to refine our final model was 
a simple approach to limiting regression variables, while 
allowing the model to identify the most important variables 
to include. XGB models developed with 50 to hundreds of 
independent variables can use more advanced feature selec-
tion models eliminating multiple features at a time with 
optimization algorithms that speed up processing time (Pan 

Fig. 6  The reduced XGB modeled VIs against the validation datasets. For GCC and VCI four meteorological variables were used, while for NDVI 
and EVI2 five of the variables were used
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Fig. 8  The XGB predicted NDVI values for the Oakville PhenoCam, using the meteorological data starting in 1981 to 2019, covering 38 years. 
The solid line depicts the spline fit to the model predictions showing the yearly vegetation cycles

 

Fig. 7  Sensitivity analysis showing how the variables in the four reduced XGB models effect the VIs values as their value is increases from it 
minimum to maximum value while all other variables are held at their mean value
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Percentile XGB model (GCC, VCI, NDVI, EVI2) Spline model (GCC, VCI, NDVI, EVI2)
Maximum 0.554, 0.954, 0.886, 0.432 0.472, 0.890, 0.785, 0.397
3rd quantile 0.396, 0.655, 0.561, 0.270 0.394, 0.655, 0.559, 0.269
Median (2nd 
quantile)

0.361, 0.576, 0.420, 0.203 0.361, 0.571, 0.417, 0.201

1st quantile 0.339, 0.525, 0.344, 0.168 0.341, 0.530, 0.347, 0.170
Minimum 0.114, -0.028, 0.170, -0.005 0.265, 0.310, 0.228, 0.125

Table 3  The quantile range of the 
XGB regression models and the 
spline models for the four VIs. 
The 1st, 2nd, and 3rd quantiles 
of the two model types have 
very little difference, while the 
minimum and maximum values 
of the spline are always closer to 
the median value then the XGB 
model

 

Fig. 9  Scatter plot showing the relationship between the XGB modeled VIs and the splines fit to the vegetation cycles. This includes all six of the 
spline models for each PhenoCam location across the four VIs

 

1 3

5230



Modelling vegetation phenology at six field stations within the U.S. Great Plains: constructing a 38-year…

stations. While this is a limitation of our models, it also 
acts as a control on our results since the trends in pheno-
phase transition identified by the models are not affected 
by a change in species composition and are instead driven 
entirely by changes in climate. Changes in species com-
position can have a large effect on a phenology signal and 
presents a challenge in identifying climate change driven 
modification of phenophase transition periods (Prevéy and 
Seastedt 2014; Wilsey et al. 2018). Because our models are 
not based on imagery of the vegetation across the 38 years, 
and instead depend on meteorological data, we are able to 
model the timeseries under the assumption that the species 
composition did not change.

The spline models used for detecting the phenophase 
transitions were on average able to account for 87% of the 
variation in the models with RMSE ranging from 0.017 
for GCC to 0.041 for VCI. One feature of the spline mod-
els we did note, was their tendency to be less influenced 
by extreme VI values (Table 3). Using the four splines for 
each VI at the six PhenoCam locations we measured seven 
phenophases and four phenophase periods. This resulted in 
66 linear regression models (Appendix 1–11) to determine 
if any trends appeared in phenophase transitions over the 
38-year timeseries. Examining the significant trends within 
a 90% confidence interval (Table  4) we found 14 pheno-
phases that have shifted across the PhenoCam sites except 
for the Nine-Mile station, which had no significant trends. 
For the two northern PhenoCams in the temperate prairies 
the length of greendown has increased by 9.2 days (0.24 
days/year) at the Oakville station, and 19.2 days (0.51 days/
year) at the EROS station over the 38 years. The 10-day 
difference between the two stations is likely attributed to 
the fact that the EROS station has seen an earlier onset 
of peak greenness by 13.1 days (-0.35 days/year), and an 
earlier onset of senescence by 11.7 days (-0.31 days/year), 

also note that the response varied based on environmental 
conditions. For example, during a drier period the response 
to precipitation would often happen quicker. Our reduced 
models all selected precipitation with an accumulation of 30 
days to best predict the phenology signals, suggesting that 
precipitation events occurring up to 30 days prior can con-
trol vegetation growth. This may be particularly true for the 
three PhenoCam sites in the south-central semiarid prairies 
since they are more susceptible to drought.

The four VIs we used across our analysis, GCC, VCI, 
NDVI, and EVI2, are all measures of vegetation phenol-
ogy across the growing season. Of the three VIs, NDVI has 
the longest history in remote sensing (Rouse et al. 1973), 
while GCC has been well recognized within the PhenoCam 
literature because of its stability with uncalibrated imaging 
sensors (Richardson and Braswell 2009). VCI provides a 
nonlinear transformation of GCC, providing a higher range 
of values by contrasting green with the sum of red and 
blue (Zhang et al. 2018). EVI2 has also increased in use 
recently (Bolton et al. 2020; Peng et al. 2021), particularly 
with remotely sensed data from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) system that lacks the blue band 
(Zhang et al. 2018).

Using the four VIs we were able to construct a 38-year 
phenology record at each PhenoCam location using the 
meteorological data and the reduced XGB models. Being 
able to use a combination of near-surface remote sensing 
and meteorological data to derive these VIs provides a 
valuable dataset for validation of satellite-based phenology 
products. It should be noted that these models reflect the 
vegetation from the period in which they were trained, 2015 
to 2019. Any change in vegetation composition that may 
have occurred between 1981 and 2015 cannot be accounted 
for since this period of the models is based entirely on mete-
orological data and not on imagery from the PhenoCam 

Table 4  The linear regressions for the phenophases that had a significant trend within a 90% confidence interval across the 38-year data period
Site Phenophase Slope Intersect R2 p Standard error
Oakville Dormancy 0.2716 -245.50 0.029 0.0341* 0.127

Length of greendown 0.2431 -374.94 0.022 0.0626 0.130
EROS Peak -0.3452 886.31 0.020 0.0789 0.195

Senescence -0.3069 823.81 0.049 0.0057** 0.109
Length of Maturity -0.1948 419.02 0.019 0.0889 0.114
Length of greendown 0.5063 -923.46 0.077 0.0005** 0.142

Konza Peak -0.3034 770.91 0.043 0.0095** 0.116
Greenup -0.2495 596.77 0.032 0.0250* 0.110
Maturity -0.2735 698.67 0.044 0.0085** 0.103

ARIK Mid-greendown 0.3600 -466.60 0.031 0.0277* 0.162
Senescence 0.1963 -210.26 0.024 0.0535 0.101
Length of season 0.6131 -1021.37 0.033 0.0236* 0.268
Length of greenup 0.4260 -787.17 0.028 0.0376* 0.203

OAES Length of maturity 0.2866 -544.54 0.021 0.0694 0.157
A 95% confidence interval is denoted by a *, while a 99% confidence interval is denoted with **
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of dormancy, with both contributing to a lengthening of the 
growing season. While we did have variability in grow-
ing season length across our six field stations, as expected 
with increased latitudinal variability in Spring temperatures 
for North American grasslands that can have an influence 
on both spring and fall phenology (Liu and Zhang 2020). 
Across our study area the results indicate that changing tem-
perature and precipitation patterns are driving a significant 
change in phenology of the grasslands.

5  Conclusion

We used the machine learning based XGB regression model 
to predict changes in GCC, VCI, NDVI, and EVI2 across 
the growing season at six PhenoCam sites. With this model 
we were able to accurately predict 90 to 93% of variabil-
ity in the VI values. This allowed us to reconstruct the VIs 
signals to derive a 38-year timeseries. With these modeled 
timeseries we were able to examine the trending changes in 
the phenophases at each of the grassland field sites. In the 
temperate prairies, the length of greendown has increased by 
9.2 days at Oakville and 19.2 days at EROS, while we did 
not find any significant shift in Nine-Mile’s phenophases. 
In the South-central semiarid prairies, Konza shows a trend 
in greenup, which occurs 9.5 days earlier in 2019 than in 
1981; ARIK has a significant trend in the overall length of 
the growing season, increasing by 23.3 days, and we see a 
significant positive trend on the length of plant maturity at 
OAES. The significant trends we identified agreed with the 
many AVHRR and other satellite-based analysis that have 
been done for North American grasslands. We believe the 
methods used to develop our framework provide a valuable 
framework for future work modeling vegetation phenology. 
Using near-surface remote sensing and meteorological data 
provides a valuable validation dataset for satellite-based 
phenology. Our model can be applied to additional Pheno-
Cam sites, including ecosystem types other than grasslands, 
to examine the interactions between photoperiod, tempera-
ture, and precipitation in these regions. Also, additional 
environmental factors could be considered such as soil 
moisture or nutrient availability. Future work that would 
help improve our understanding of grassland phenology 
should focus on identifying the spatial and temporal vari-
ability that exists in the phenology of the North American 
Great Plains. In addition, our framework should be tested 
with data gathered by other Earth observation sensors and 
in other geographic regions.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s00704-
024-04933-7.

which has also shortened the length of maturity by 7.4 days 
(-0.19 days/year). This suggests that the growing season at 
the EROS station is trending towards a quicker occurrence 
of peak greenness followed by a shorter period of green-
ness between maturity and senescence, with an extension 
in the greendown period. In a study using imagery from 
the Advanced Very High Resolution Radiometer (AVHRR) 
from 1982 to 2002, Reed (2006) found grasslands to have a 
later dormancy period by 6.52 days (0.33 days/year), while 
greenup also started later by 8.01 days (0.40 days/year). A 
similar study used AVHRR from 1982 to 2006, Zhu et al. 
(2012) found grasslands in North America to have a later 
onset of greenness by 7.6 days (0.32 days/year), and a later 
dormancy by 2.1 days (0.09 days/year) causing a shorten-
ing of the growing season by 5.6 days (-0.23 days/year). 
The offset of dormancy occurring later into the season 
agrees with our study with dormancy at the Oakville station 
occurring 10 days later (0.27 days/year). This falls within 
the range found by Liu et al. (2016) with dormancy in the 
Northern Hemisphere occurring between 0.19 and 0.45 days 
later each year. For five of the six PhenoCam sites greenup 
did not have a significant trend, with no sites finding gree-
nup occurring later. The one site with a greenup trend was 
the Konza station in which greenup occurs 9.5 days (-0.25 
days/year) earlier in 2019 then in 1981. This value is close 
to the 2.8 days per decade (-0.28 days/year) in which spring 
phenology is predicted to have advanced for both plants and 
animals in the northern hemisphere (Hoegh-Guldberg et al. 
2018). At the Konza station maturity and peak greenness is 
also occurring earlier in the year by 10.4 days (-0.27 days/
year) and 11.5 days (-0.30 days/year), respectively. For this 
station, the earlier onset of greenness seems to be to be fol-
lowed by an earlier onset of maturity and peak greenness 
for the vegetation. Of the six stations ARIK was the only 
station to find a significant trend in the overall length of the 
growing season with it increasing by 23.3 days (0.61 days/
year). This station also had its length of greenup increase 
by 16.2 days (0.43 days/year) while its senescence and 
mid-greendown dates are occurring 7.5 days (0.20 days/
year) and 13.7 days (0.36 days/year) later, respectively. The 
ARIK increase in length of season agrees with Zhou et al. 
(2001) who used AVHRR from 1981 to 1999 finding length 
of season in North America to increase on average by 12 
days (0.65 days/year) and finding dormancy to occur 4 days 
(0.22 days/year) later. Overall across the five PhenoCam 
locations the significant trends we found align with studies 
of vegetation phenology over North American grasslands. 
Jeong et al. (2011) used AVHRR to assess phenology from 
1982 to 2008 and found both temporal and spatial variations 
in different phenology trends. They identified a reduction 
in the trend of an earlier onset greenness starting in 2000, 
while at the same time found an increased rate in later onset 
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