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Abstract
Identifying best performing climate models is indispensable for better understanding of the future climate and its impact 
as well as for planning effective climate change adaptation and mitigation measures. This research aims to identify the 
best performing Global Climate Models (GCMs) products from the Coupled Model Inter-comparison Project phase 6 
(CMIP6) in simulating rainfall and temperature in the Bale Eco-Region (BER), Southern Ethiopia. In this study, evalu-
ations were performed for ten CMIP6 GCMs against observed and reanalysis rainfall and temperature products in terms 
of how well the GCMs reproduce rainfall, maximum temperature (Tmax) and minimum temperature (Tmin) from daily 
to annual temporal scales during 1995–2014 period. Performance evaluations were performed using the Comprehensive 
Rating Index (CRI), which is based on four statistical metrics. The best performing CMIP6 model(s) were bias-corrected 
by Distribution Mapping (DM) for future climate analysis at different agro-ecological zones (AEZs) and at the eco-region 
level. The study used projections of climate variables in the near future (2021–2040), mid-century (2041–2060) and late 
century (2081–2100) periods. Three shared socioeconomic pathways (SSP2-4.5, SSP3-7.0, and SSP5-8.5) were considered 
as future climate scenarios. The result indicated that BCC-CSM2-MR, CNRM-CM6-1 and MRI-ESM2-0 are relatively 
better for simulating the rainfall climatology of the BER from the daily to annual temporal scales. EC-Earth3, Ec-Earth3-
Veg and MPI-ESM1-2-LR are also comparatively better for simulating Tmax while CNRM-CM6-1, EC-Earth3-Veg and 
EC-Earth3 outperformed for simulating Tmin in the studied temporal scales. After careful evaluations, climate change 
analysis was performed using the ensemble mean of BCC-CSM2-MR, CNRM-CM6-1 and MRI-ESM2-0 for rainfall, EC-
Earth3 for Tmax and the ensemble mean of CNRM-CM6-1 and EC-Earth3-Veg for Tmin. Accordingly, the annual rainfall 
is expected to decrease in the near future in the three scenarios in the alpine (2–5%), temperate (11–14%) and sub-tropical 
(7–9%) AEZs as well as the BER spatial scales (2–5%), but rainfall is expected to increase in the late century period. In 
contrast, rainfall is expected to increase in the tropical AEZ in both the near future (3–11%) and late century (25–45%) 
periods. In the mid-century period, rainfall is expected to increase in the tropical AEZ in all the three scenarios, but it 
exhibits different directions of changes in the remaining AEZs and BER scale at different scenarios. The finding also 
revealed an expected increase in both Tmax and Tmin in the different AEZs as well as the BER scale, but the projected 
temperature increase is high in temperate AEZ. The projected increase of rainfall in the near future in tropical AEZ may 
reduce the frequently occurring droughts mainly in the lowland parts of the BER. Conversely, the reductions of rainfall in 
the remaining AEZs may introduce challenges for agriculture, water resources as well as endemic animals. The findings of 
this study justifies the need for climate models evaluation for each climate variables in order to choose the most appropri-
ate models for localized climate change impact and adaptation studies. In addition, this study also suggested projections 
of future climate for different AEZs for better decision-making process for the specific AEZs.
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1 Introduction

The earth’s climate is changing due to increased concentra-
tion of greenhouse gases in the atmosphere and local dis-
turbance of ecosystems (IPCC 2021). The observed climate 
changes has indispensable impacts in several sectors. For 
instance, hydrology, sediment dynamics, crop production, 
and numerous ecosystem services have all been affected by 
the impacts of climate change (Gebrechorkos et al. 2023; 
Getachew et al. 2021; Hirpa et al. 2019; Nazeer et al. 2022; 
Tan et al. 2021). The latest report (six assessments) of the 
Intergovernmental Panel for Climate Change (IPCC 2021) 
indicated that the future climate is inevitable, and it would 
have an immense impact on several sectors, particularly in 
developing countries, which have limited capacity for adapt-
ing to the changing climate. Gebrechorkos et al. (2023) also 
stated that temperature and evaporation are projected to 
increase in the greater parts of East Africa throughout the 
21st century, increasing hydrological extremes (floods and 
drought). Thus, projecting the patterns and magnitudes of 
future climate under different climate scenarios for specific 
locations is imperative for planning effective context-spe-
cific adaptation strategies.

Understanding the plausible future climate changes are 
made through the use of Regional climate models (RCMs) 
(Worku et al. 2019) or Global climate models (GCMs) out-
puts (Almazroui et al. 2020; Carvalho et al. 2021; Lovino et 
al. 2021). Since the performance of climate models varies 
from region to region (Almazroui et al. 2021), evaluating 
the performances of climate models in simulating climate 
variables for a specific area/region are indispensable for bet-
ter understanding of future climate, its impact as well as for 
planning effective adaptation strategies (Adib et al. 2022). 
Nevertheless, performance evaluations of previous studies 
in many areas of the world are undertaken mostly for rainfall 
(Agel and Barlow 2020; Akinsanola et al. 2021; Cui et al. 
2021; Rivera and Arnould 2020; Tewari et al. 2022; Zamani 
et al. 2020). In addition, majority of the previous climate 
change impact studies were also undertaken based on the 
Coupled Model Inter-comparison Project (CMIP) third or 
fifth phases (CMIP3 or CMIP5) of GCM products (Hirpa et 
al. 2019). The six-phase of the CMIP (CMIP6) GCMs prod-
ucts are available for wider applications, and study findings 
indicated that CMIP6 GCMs have shown improved perfor-
mance compared to CMIP5 GCMs (Bağçaci et al. 2021; Fan 
et al. 2020; Wang et al. 2021; Zamani et al. 2020). Further-
more, previous studies undertaken in elsewhere are mostly 
evaluated with a reference that are other than the observed 
data (Abbasian et al. 2018; Ajibola et al. 2020; Belazreg 
et al. 2022). However, the relative performance of CMIP6 

models varies based on the reference dataset (Akinsanola et 
al. 2021).

In spite of the advantages of using the latest versions of 
climate models for understanding future climate as well 
as climate change impacts, studies on CMIP6 GCMs are 
very limited in Ethiopia. Some of the studies undertaken on 
performance evaluation CMIP6 GCMs are Alaminie et al. 
(2021) in the Upper Blue Nile Basin and Sime and Dibaba 
(2023) in Awash Basin. Comparatively, a higher number of 
studies on the latest CMIP6 GCMs products are available in 
elsewhere. Most of these studies are concentrated on perfor-
mance evaluation of CMIP6 GCMs for simulating rainfall 
(Guo et al. 2021; Iqbal et al. 2020), comparison of CMIP5 
and CMIP6 GCMs (Fan et al. 2020; Gusain et al. 2020; 
Wang et al. 2021), and evaluations of CMIP6 GCMs for 
simulating climate extremes (Akinsanola et al. 2021; John 
et al. 2022). In Ethiopia, preceding climate model evalua-
tion studies were emphasized to understand the capability of 
the models for simulating rainfall (Worku et al. 2019; Sime 
and Dibaba 2023). However, recent studies that evaluated 
the performances of RCMs in Guder sub-basin (Demessie 
et al. 2023) and GCMs in Upper Blue Nile Basin (Alami-
nie et al. 2021) indicated that the best-performing model for 
rainfall did not perform well for temperature and hence it 
urges the need for evaluating climate models for both rain-
fall and temperature. Moreover, most of the earlier studies 
in Ethiopia and elsewhere in the world did not also evaluate 
from daily to annual temporal scales (Bağçaci et al. 2021; 
Belazreg et al. 2022). On the other hand, previous climate 
change studies in Ethiopia are focused on the rainfall and 
temperature patterns at the watershed/sub-basin/study area 
scale only (Alaminie et al. 2021; Worku et al. 2019). How-
ever, the patterns of future climate change may be different 
within AEZs of a study region. Therefore, systematic evalu-
ation of CMIP6 GCMs for simulating observed rainfall and 
maximum and minimum temperatures using a full range of 
temporal scales (daily to annual) and projections of future 
climate change using the best performing CMIP6 GCMs at 
different AZEs are necessary for assessing impacts of cli-
mate change as well as planning suitable adaptation strate-
gies for each AEZs.

The Bale Eco-Region (the study area) is one of the bio-
diversity hotspot areas of Ethiopia in particular and the 
Horn of Africa in general. The BER is labeled as a water 
tower because of the existence of several springs in the area, 
which are flowing into the international Genale Dawa and 
Wabi Shebele Rivers. However, the ongoing climate change 
together with deforestation and agricultural land expansion 
is threatening the BER. Although studies are required on 
identifying best performing climate models from CMIP6 
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GCM products, and projections of rainfall and temperature 
using those models, efforts of this kind are very limited in 
the study region. Therefore, this study is aimed to evaluate 
the performance of CMIP6 GCMs in simulating rainfall and 
temperature from the daily to annual temporal scales, and 
projection of these climate variables in different AEZs as 
well as the BER scale using the best performing GCM prod-
ucts at three climate change scenarios.

2 Materials and methods

2.1 Descriptions of the study area

The BER cover approximately 38,036.18 Km2, and lies in 
the Genale Dawa (83.8%) and Wabi Shebele (16.2%) River 
Basins (Fig. 1). The study area contains numerous springs, 
which are flowing into the transnational Genale Dawa and 
Wabi Shebele Rivers. Geographically, the BER is located 
between 5°28′–7°44′N and 38°32′–41°26′E (Fig. 1) and its 
elevation varies from 241 to 4373 m a.s.l (Fig. 1). Accord-
ing to the traditional AEZ classification of Ethiopia, which 
is based on elevation and climate, the BER contains five 
AEZs-alpine, temperate, sub-tropical, tropical and desert 
AEZs (Fig. 1). Agriculture, which contains crop cultiva-
tion and livestock production, are the main livelihood of the 
study region over the sub-tropical, temperate and some parts 
of the alpine AEZs. In the tropical AEZ, however, animal 

raring is most common while desert is the region where we 
cannot find any kinds of human settlement.

The climate of the study area is highly influenced by 
the low-level easterly winds from the Indian Ocean as 
well as the movements of the Inter tropical convergence 
zone (ITCZ). The BER is characterized by two distinct 
seasons, which is from March-October (Wet season) and 
November-February (dry season) (Hailemariam Sisay et al. 
2015; Muhammed and Elias 2021). The wet season in BER 
spans from March-June and July-October, representing 
small and heavy rains, respectively (Muhammed and Elias 
2021). Both the small and heavy rains are imperative for 
the livelihood of the population in the study area. Based on 
the studied meteorological stations (Table 1), the long-term 
mean (1995–2014) annual rainfall of the BER varies from 
447 to 1409 mm. The long-term mean (1995–2014) annual 
maximum and minimum temperature is 17.1–31.7 °C and 
4.3–19 °C, respectively.

2.2 CMIP6 GCMs dataset and observations

This study evaluated historical (1995–2014) simulations of 
ten CMIP6 GCMs (Table 1) for rainfall, maximum temper-
ature (Tmax) and minimum temperature (Tmin) variables. 
The daily data of these GCMs were obtained from the Earth 
System Grid Federation (ESGF) database at https://esgf-
node.llnl.gov/projects/cmip6/. The detailed descriptions of 
the chosen GCMs are found in Table 1. The selection of 

Fig. 1 Location of the Bale Eco-
Region from Ethiopia and the 
meteorological stations used in 
this study
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Research and Applications, version 2 (MERRA v2) for fill-
ing missing values of Tmax and Tmin stations that are found 
in temperate and tropical AEZs, and ERA5 for stations found 
in sub-tropical AEZs. Besides, MSWEP v2.8 for additional 
rainfall stations such as Station 11 and 12, which are repre-
senting tropical and alpine AEZs, respectively, were used 
(Table 2). Similarly, MERRA v2 and ERA5 for temperature 
were also used for station 11 and station 12. Therefore, the 
study used 12 observed and reanalysis rainfall and temper-
ature products for evaluating CMIP6 GCMs in BER. The 
detailed descriptions of MSWEP V2.8, MERRA v2 and 
ERA5 are found in Gashaw et al. (2023).

2.3 Evaluations methods

Performance evaluations of CMIP6 models in this study 
were undertaken after extracting the CMIP6 GCMs data for 
the 12 meteorological stations of the study area (Table 2). 
Then after, the stations (point) data were changed into areal 
average rainfall, Tmax and Tmin values using Thiessen 
Polygon method in ArcGIS 10.7. The performance of the 
GCMs were evaluated from daily to annual temporal scales 
based on the areal average rainfall, Tmax and Tmin data of 
the studied CMIP6 GCMs against the observed data dur-
ing 1995–2014 periods. The approach followed in this study 
was also implemented in other climate studies (Demessie et 
al. 2023; Tadese et al. 2019; Worku et al. 2018). For evalu-
ating the GCMs, correlation coefficient (R), mean absolute 
error (MAE), root mean square error (RMSE) and percent 
bias (PBIAS) (Yazdandoost et al. 2021) were used and they 
are computed in R software. Comparable to this study, pre-
vious studies undertaken in Ethiopia (Demessie et al. 2023; 
Dibaba et al. 2019; Worku et al. 2018) and elsewhere in 
the world (Guo et al. 2021) have also used R, RMSE and 
PBIAS for evaluating performances of climate models. 
Rivera and Arnould (2020) in Southwestern South America 
also employed mean bias error, RMSE and PBAIS. The full 
descriptions of the applied performance measure statistics 
are found in the following references (Belazreg et al. 2022; 

the GCMs are based on the availability of daily data, their 
best performance in different parts of Ethiopia (Alaminie et 
al. 2021), East Africa (Gebrechorkos et al. 2023) and else-
where in the world (Iqbal et al. 2021; Ngoma et al. 2021). 
The models were also selected based on their wider applica-
tions in their earlier versions (CMIP5) in different parts of 
Ethiopia (Worku et al. 2019). For example, the inclusion of 
BCC-CSM2-MR and MRI-ESM2-0 was based on their best 
performance for simulating rainfall and temperature, respec-
tively in the Upper Blue Nile Basin of Ethiopia (Alaminie 
et al. 2021). MRI-ESM2-0, EC-Earth3 and EC-Earth3-Veg 
were selected since they demonstrated best performance in 
mainland southeast Asia (Iqbal et al. 2021). This study used 
r1i1p1f2 and r1i1p1f3 vibrant label for CNRM-CM6-1 and 
HadGEM3-GC31-LL GCMs, respectively and, r1i1p1f1 
vibrant label was employed for the remaining models 
(Almazroui et al. 2020, 2021) (Table 1).

The study area contains eleven rainfall and ten tempera-
ture meteorological stations, but only eight rainfall and six 
temperature stations contain less than 20% missing data 
for the study period. These observed climate data were 
obtained from the Ethiopian Meteorology Institute (EMI). 
The missing values in the climate data, which contain less 
than 20%, were filled using the Multivariate Imputation by 
Chained Equations (MICE) package in R software (Buuren 
et al. 2022). The quality of the data were checked using the 
RClimDex package in R software (Zhang and Yang 2004), 
and errors such as negative rainfall, and Tmin exceeding 
Tmax were replaced by the nearby station. Outlier values 
were treated following the procedures outlined in the World 
Meteorological Organization (WMO 2009). The study filled 
the missing values of stations that contain missing values 
higher than 20% using the best fitting reanalysis rainfall and 
temperature products for each AEZs, which is based on the 
suggestion of previous finding in the BER (Gashaw et al. 
2023). Accordingly, the missing values of rainfall stations 
are filled with the Multi-Source Weighted-Ensemble Pre-
cipitation, version 2.8 (MSWEP v2.8). On the other hand, 
the study used the Modern-Era Retrospective Analysis for 

Table 1 The list of CMIP6 GCMs employed in this study and their characteristics
Model Institution Country Vibrant label Resolution
ACCESS-ESM1-5 Australian Community Climate and Earth System Simulator Australia r1i1p1f1 1.9° × 1.3°
BCC-CSM2-MR Beijing Climate Center China r1i1p1f1 1.1° × 1.1°
CNRM-CM6-1 National Center of Meteorological Research France r1i1p1f2 1.4° × 1.4°
EC-Earth3 Consortium of European Research Institution and Researchers Europe r1i1p1f1 0.70° × 0.70°
Ec-Earth3-Veg Consortium of European Research Institution and Researchers Europe r1i1p1f1 0.70° × 0.70°
GFDL-ESM4 Geophysical Fluid Dynamics Laboratory USA r1i1p1f1 1.25° × 1.00°
HadGEM3-GC31-LL UK Met Office Hadley Center UK r1i1p1f3 2.2° × 2.2°
MPI-ESM1-2-LR Max Planck Institute for Meteorology Germany r1i1p1f1 1.9° × 1.9°
MRI-ESM2-0 Meteorological Research Institute Japan r1i1p1f1 1.13° × 1.13°
INM-CM4-8 Institute for Numerical Mathematics Russia r1i1p1f1 1.5° × 2.0°
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techniques available in CMhyd in Jemma sub-basin, Upper 
Blue Nile Basin of Ethiopia and suggested the applications 
of DM for bias correction of rainfall and temperature prod-
ucts. Other study in the Awash Basin of Ethiopia has also 
found that DM is suitable for bias correction of climate 
models for temperature (Tadese et al. 2019). Due to its bet-
ter performance, DM has also been employed for other stud-
ies undertaken elsewhere in the world (de Carvalho et al. 
2021; Yeboah et al. 2022; Zhang et al. 2018a, b). This study 
bias corrected best performing CMIP6 GCMs after extract-
ing the data for each stations, and hence bias correction 
was performed by providing the daily observed historical 
(1995–2014), raw GCMs historical (1995–2014) and future 
raw GCMs (2015–2100) data of each stations in text file.

In this study, analysis of future climate for near future 
(2021–2040), mid-century (2041–2060) and late-century 
(2081–2100) periods (Belazreg et al. 2022; Jiang et al. 
2020; Lovino et al. 2021) were made at SSP2-4.5, SSP3-
7.0 and SSP5-8.5 climate change scenarios across the AEZs 
and at the BER level. The SSP2-4.5, SSP3-7.0 and SSP5-
8.5 scenarios are representing the medium-forcing, medium 
to high forcing and high-end-forcing pathways, respec-
tively. The main reason why this study did the future cli-
mate change analysis in these scenarios is that three of them 
are possible climate change trajectories. On the other hand, 
the one that is not considered in this study (i.e., SSP1-2.6, 
representing the low climate forcing pathway) is unlikely 
happen considering the current global actions undertaking 
to mitigate climate change based on the Paris agreement. 
Due to this fact, future climate change analysis as well as 
bias corrections of global dataset were performed mainly 
for SSP2-4.5 and SSP5-8.5 climate change scenarios (Xu et 
al. 2021; Gebrechorkos et al. 2023). For instance, Xu et al. 
(2021) bias corrections of global dataset based on 18 CMIP6 
GCMs were produced the data for SSP2-4.5 and SSP5-8.5 

Jose and Dwarakish 2021; Yazdandoost et al. 2021). In this 
study, the long-term mean (1995–2014) annual and monthly 
rainfall, Tmax and Tmin as well as annual values of these 
climate variables over the study period were also presented 
for visual comparison of the CMIP6 GCMs against observed 
data.

The overall ranking of the ten GCMs considering all 
statistical metrics (i.e., R, MAE, RMSE and PBIAS) were 
undertaken following the Comprehensive Rating Index 
(CRI) method, which has been also implemented in the pre-
vious studies (Dong and Dong 2021; Guo et al. 2021; Jiang 
et al. 2020; Rivera and Arnould 2020; Zhang et al. 2018a, 
b). The computations of CRI is following Eq. 1.

CRI = 1− 1

nm

n∑

i=1

Ranki  (1)

Where n is the number of statistical performance measures 
used in this study for evaluating the models (5), m is the 
number CMIP6 GCMs that are evaluated in the study (10), 
and Ranki is the rank of the CMIP6 GCMs for each perfor-
mance measures, which ranges from 1 to 10 for best and 
low performing models, respectively. The closer the values 
of CRI to 1 indicates the better performance of the model 
(Jiang et al. 2020; Zhang et al. 2018a, b).

2.4 Projections of future climate

Distribution Mapping (DM), which is available in the Cli-
mate Model data for hydrologic modeling (CMhyd) tool 
(Rathjens et al. 2016), was used for bias correction of best 
performing GCMs projections at different climate change 
scenarios. The selection of DM for bias correction of GCMs 
for rainfall and temperature was based on the suggestion of 
Worku et al. (2019), who compare several bias-correction 

Table 2 The meteorological stations used in this study and their corresponding AEZs
Stations Longitude Latitude Elevation (m) AEZs % of missing

Rainfall Tmax Tmin
Adaba 39.40 7.02 2420 Temperate 10.7 10.8 10.8
Bidere 39.64 5.91 1653 Sub-tropical 35.2* 37.2* 44.1*

Dello Mena 39.83 6.42 1312 Tropical 13.7 18.3 23.3
Dinsho 39.77 7.10 3073 Temperate 7.8 16.1 13.5
Goro 40.47 7.26 1811 Sub-tropical 26.3* 37.6* 39*

Robe 40.05 7.13 2480 Temperate 2.5 4.4 1.6
Sinana 40.22 7.07 2400 Temperate 10.9 30.1* 25.4*

Ginir 40.71 7.13 1941 Sub-tropical 4.2 4.1 5.6
Seru 40.20 7.68 2471 Temperate 11.1 44.4* 45.2*

Worka 39.22 6.48 2450 Temperate 45.5* NA* NA*
Station 11 40.77 6.06 908 Tropical NA* NA* NA*
Station 12 39.76 6.92 3937 Alpine NA* NA* NA*
Note: NA = observed data is not available for the specified element and * = these are filled with the best fitting reanalysis rainfall and tempera-
ture products for each AEZ
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best performing models, BCC-CSM2-MR, CNRM-CM6-1, 
MRI-ESM2-0 and EC-Earth3 underestimated in some of the 
months and overestimated in the remaining months. MPI-
ESM1-2-LR, which is one of the poor performing model, 
shown underestimation bias in all of the months (Fig. 3A).

The findings of this study indicated that even the best 
performing models contain a large percentage of biases as 
clearly seen in the long-term mean (1995–2014) annual and 
monthly rainfall figures (Figs. 2 and 3A). This is mainly 
attributed to the coarser resolutions of the climate models as 
well as the biases of these climate models are not removed 
through some statistical or dynamical bias correction tools. 
Aligned with the findings of this study, many other previous 
studies also reported similar results (Worku et al. 2019; Xu 
et al. 2021). For example, Xu et al. (2021) bias corrections 
of global dataset based on 18 CMIP6 GCMs using ERA5 
indicated that the raw GCMs contain large percentage of 
biases. Additionally, Worku et al. (2019) graphical com-
parisons of bias corrected RCMs and un-corrected RCMs 
in the Jemma sub-basin (Ethiopia) releveled that the uncor-
rected RCMs contain large percentage of biases. The large 
bias exhibited even in the best performing climate mod-
els indicated the necessity for bias correction of GCMs or 
RCMs before using them for further applications such as for 
future climate change analysis or applying them for climate 
change impacts and adaptation studies.

The performances of the ten CMIP6 GCMs in simulating 
the daily and monthly rainfall climatology of the BER are 
shown in Table 3. According to the CRI, CNRM-CM6-1 is 
the best performing model for simulating daily rainfall that 
is followed by MPI-ESM1-2-LR. MRI-ESM2-0 and EC-
Earth3 are equally the third ranked best performing models. 
BCC-CSM2-MR depicted the fifth rank for simulating daily 
rainfall in the BER. In contrast, GFDL-ESM4 and INM-
CM4-8 are the poorest performing climate models. At the 
monthly temporal scale, BCC-CSM2-MR, CNRM-CM6-1 
and MRI-ESM2-0 are the first, second and third ranked best 
performing climate models, respectively (Table 3). MPI-
ESM1-2-LR and EC-Earth3 are the fourth and fifth ranked 
best performing climate models. The poorest performing 
climate models for simulating monthly rainfall is INM-
CM4-8. Following INM-CM4-8, the other low performing 
models for representing monthly rainfall are GFDL-ESM4 
and HadGEM3-GC31-LL (Table 3).

Table 4 displayed the performances of climate mod-
els for simulating wet season and annual rainfall over the 
BER. The finding indicated that BCC-CSM2-MR is the 
best performing model during the wet season followed by 
MRI-ESM2-0 and CNRM-CM6-1 (Table 4). ACCESS-
ESM1-5 and EC-Earth3 are the fourth and fifth ranked best 
performing models during the wet season. With reference to 
the capability of the studied climate models for simulating 

scenarios. In this study, we included SSP3-7.0 to see the 
projected climate changes within the middle of SP2-4.5 
and SSP5-8.5 scenarios. Analysis of future climate change 
for each AEZs were performed by taking the average val-
ues of the stations found in each AEZs. On the other hand, 
the Thiessen Polygon weights of the 12 stations, which is 
representing the areal average values of the studied climate 
variables, were used for analyzing future climate change at 
the BER level.

3 Results and discussion

3.1 Performance of CMIP6 GCMs for simulating 
rainfall

The spatial distributions of the long-term mean (1995–2014) 
annual rainfall of the studied CMIP6 GCMs over the BER 
are presented in Fig. 2, and the results showed a clear differ-
ence between the models. Of the studied GCMs, ACCESS-
ESM1-5, BCC-CSM2-MR, CNRM-CM6-1, MRI-ESM2-0 
and GFDL-ESM4 are more or less represented the long-term 
mean (1995–2014) annual rainfall over the BER. On the 
other hand, the spatial rainfall presentations of the remain-
ing CMIP6 GCMs are relatively poor. The finding indicated 
that the models contain varying extent of estimation bias in 
different regions of the BER. Among the best performing 
models, BCC-CSM2-MR overestimated in low elevation 
areas and underestimated in high elevation areas. In con-
trast, CNRM-CM6-1 underestimated and overestimated in 
low and high elevation areas, respectively. There is also an 
overestimation of MRI-ESM2-0 and ACCESS-ESM1-5 in 
high elevation areas and overestimation of GFDL-ESM4 
in low elevation areas. Among the poorly performing mod-
els, MPI-ESM1-2-LR and HadGEM3-GC31-LL exhibit 
a higher underestimation bias in the majority of the study 
area, but INM-CM4-8 overestimated in the low elevation 
areas (Fig. 2). Ec-Earth3-Veg and EC-Earth3 also revealed 
higher overestimation bias in many high elevation areas.

Analogously, the climate models that are relatively good 
for representing the long-term mean (1995–2014) monthly 
rainfall are BCC-CSM2-MR, CNRM-CM6-1, MRI-
ESM2-0, MPI-ESM1-2-LR and EC-Earth3 (Fig. 3A). In 
contrast, the representations of the remaining five models 
are relative weak. Among the poorly performing models, 
HadGEM3-GC31-L and INM-CM4-8 did not maintain the 
patterns of the observed rainfall for most months. In addi-
tion, although GFDL-ESM4 is one of the best performing 
models for simulating the long-term mean annual rainfall in 
the BER, its performance is relatively weak for representing 
the mean monthly rainfall. The result also revealed that the 
studied GCMs contain varying directions of biases. Of the 
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INM-CM4-8 are the other poorly performing models at the 
wet season and annual temporal scales (Table 4).

The result of this study revealed that MPI-ESM1-2-LR 
is the second and fourth ranked best performing model for 
simulating the daily and monthly rainfall over the BER, 
respectively (Table 3). However, MPI-ESM1-2-LR is the 
poorest performing climate model for simulating wet sea-
son and annual rainfall (Table 4). In addition, although 

the annual rainfall, ACCESS-ESM1-5 is the first best per-
forming model although it has placed in the fourth rank at 
the wet season temporal scale. BCC-CSM2-MR, CNRM-
CM6-1 and MRI-ESM2-0 are among the second to fourth 
ranked best performing models. In contrast, MPI-ESM1-
2-LR is the poorest performing model both at wet season 
and at annual temporal scales. HadGEM3-GC31-LL and 

Fig. 2 The long-term mean 
(1995–2014) annual rainfall 
representations of the studied 
CMIP6 GCMs and observed data 
over the BER
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from seventh to eighth rank in the considered temporal 
scales. The performance difference of the studied climate 
models at different temporal scales suggested the necessity 
for evaluating climate models at the full ranges of tempo-
ral scales (daily to annual) to use them for better decision-
making processes.

In general, the three models that demonstrated relatively 
better performance for simulating rainfall over the BER in 
the studied temporal scales are BCC-CSM2-MR, CNRM-
CM6-1 and MRI-ESM2-0. Aligned with the findings of this 

EC-Earth3 is the third ranked best model for simulating 
daily rainfall, its performance for presenting monthly, wet 
season and annual rainfall are placed in the fifth, fifth and 
sixth ranks, respectively (Tables 3 and 4). In the same man-
ner, ACCESS-ESM1-5 has shown best performance for 
simulating annual rainfall, but its performance at the daily, 
monthly and wet season are placed in the sixth, sixth and 
fourth ranks, respectively. On the other hand, some models 
such as Ec-Earth3-Veg did not showed best or poorest per-
formance in all of the studied temporal scales as it displayed 

Fig. 3 The long-term mean (1995–2014) monthly rainfall (A), Tmax (B) and Tmin of CMIP6 GCMs with observed data in the BER
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from the daily to annual temporal scales. In contrary, BCC-
CSM2-MR, CNRM-CM6-1 and MRI-ESM2-0, which are 
lower spatial resolution than EC-Earth3 and Ec-Earth3-Veg 
performed better for simulating rainfall over the BER at the 
different temporal scales. The findings clearly showed that 
spatial resolution is not the only factor that would make the 
climate models to perform well. Therefore, the better per-
formance of BCC-CSM2-MR, CNRM-CM6-1 and MRI-
ESM2-0 for simulating rainfall in the BER compared to 
those climate models that contain better resolution could be 
attributed to the parameterization of the models.

With reference to the estimation bias of the climate 
models, HadGEM3-GC31-LL and MPI-ESM1-2-LR have 
shown underestimation bias at the daily, monthly, wet sea-
son and annual temporal scales. However, the remaining 

study, BCC-CSM2-MR was also the best performing model 
for simulating monthly rainfall in the Upper Blue Nile 
Basin of Ethiopia (Alaminie et al. 2021). Guo et al. (2021) 
reported that EC-Earth3 and Ec-Earth3-Veg are better than 
MRI-ESM2-0 for simulating annual rainfall in arid Central 
Asia. EC-Earth is also amongst the best performing mod-
els for rainfall in sub Himalaya region of Pakistan (Iqbal 
et al. 2020). GFDL-ESM4 has also superior performance 
than BCC-CSM2-MR for simulating monthly rainfall over 
Algeria (Belazreg et al. 2022).

The findings of this study also indicated that although 
EC-Earth3 and Ec-Earth3-Veg contain a better spatial res-
olution compared to the remaining eight models, they are 
not among the best three models that have shown consis-
tently better performance for simulating rainfall in the BER 

Table 3 Performance of CMIP6 GCMs for simulating rainfall in the BER at the daily and monthly temporal scales
ACCESS-ESM1-5 BCC-CSM2-MR CNRM-CM6-1 EC-Earth3 Ec-

Earth3-
Veg

GFDL-
ESM4

Had-
GEM3-GC31-
LL

MPI-
ESM1-
2-LR

MRI-
ESM2-0

INM-
CM4-8

Daily
R 0.12 0.13 0.21 0.17 0.16 0.05 0.01 0.19 0.15 0.00
MAE 2.96 2.71 2.78 3.03 3.04 3.37 2.75 2.33 2.86 3.21
RMSE 4.95 5.38 4.61 4.59 4.65 6.14 4.29 3.87 4.92 4.7
PBIAS −1.9 −2.9 −9.1 −24.3 −25.6 −21.3 34 47.9 −2.2 −34
CRI 0.45 0.50 0.68 0.53 0.40 0.18 0.45 0.65 0.53 0.18
Rank 6th 5th 1st 3rd 8th 9th 6th 2nd 3rd 9th
Monthly
R 0.29 0.51 0.54 0.40 0.35 0.21 −0.01 0.51 0.44 0.04
MAE 62.15 40.03 44.91 58.5 62.17 66.02 63.04 46.27 45.31 71.4
RMSE 86.13 55.48 63.06 76.36 81.93 87.27 80.06 61.57 66.73 85.69
PBIAS −1.9 −2.9 −9.1 −24.3 −25.6 −21.3 34 47.9 −2.2 −34
CRI 0.43 0.83 0.75 0.48 0.33 0.20 0.20 0.55 0.68 0.13
Rank 6th 1st 2nd 5th 7th 8th 8th 4th 3rd 10th
Note that Rank is given based on CRI, and 1st and 10th rank indicates the best and poorest performing models, respectively

Table 4 Performance of CMIP6 GCMs for simulating wet season and annual rainfall in the BER
ACCESS-ESM1-5 BCC-CSM2-MR CNRM-CM6-1 EC-Earth3 Ec-

Earth3-
Veg

GFDL-
ESM4

Had-
GEM3-GC31-
LL

MPI-
ESM1-
2-LR

MRI-
ESM2-0

INM-
CM4-8

Wet season
R 0.09 0.26 0.37 0.12 −0.22 0.18 0.01 −0.45 0.05 −0.08
MAE 157.41 117.51 161.54 208.08 239.4 227.24 295.97 341.48 120.62 251.3
RMSE 194.57 141.23 185.77 244.09 284.74 286.27 326.24 381.06 183.69 286.84
PBIAS −8.8 −4.4 −12.1 −26.2 −26.3 −27.2 38.7 44.9 −3.9 −31.5
CRI 0.63 0.85 0.70 0.53 0.30 0.43 0.15 0.00 0.73 0.20
Rank 4th 1st 3rd 5th 7th 6th 9th 10th 2nd 8th
Annual
R 0.10 0.07 0.30 0.02 −0.23 0.14 −0.18 −0.53 0.05 −0.08
MAE 171.27 142.78 189.91 242.39 281.86 233.65 308.06 425.79 183.72 309.05
RMSE 204.91 171.1 224.51 282.33 329.34 294.23 343.44 461.81 243.4 350.88
PBIAS −1.9 −2.9 −9.1 −24.3 −25.6 −21.3 34 47.9 −2.2 −34
CRI 0.80 0.78 0.70 0.43 0.25 0.55 0.20 0.00 0.65 0.18
Rank 1st 2nd 3rd 6th 7th 5th 8th 10th 4th 9th
Note that Rank is given based on CRI, and 1st and 10th rank indicates the best and poorest performing models, respectively
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The performance of the studied CMIP6 GCMs for esti-
mating the daily and monthly Tmax over the BER is shown 
in Table 5. The result displayed that at the daily temporal 
scale, Ec-Earth3-Veg and Ec-Earth3 are the first and second 
ranked best performing models, respectively. MPI-ESM1-
2-LR is the third best performing model followed by INM-
CM4-8. MRI-ESM2-0 ranked fifth for estimating daily 
Tmax in the study area. On the monthly temporal scale, Ec-
Earth3-Veg, Ec-Earth3 and MPI-ESM1-2-LR are equally 
the best performing models (Table 5). MRI-ESM2-0 and 
INM-CM4-8 are the fourth and fifth ranked best performing 
models. Of the studied GCMs, HadGEM3-GC31-LL is the 
least performing model both for the daily and monthly tem-
poral scales. Next to HadGEM3-GC31-LL, BCC-CSM2-
MR at the daily temporal scale, and BCC-CSM2-MR and 
ACCESS-ESM1-5 at the monthly temporal scale were the 
other poorly performing models. Although BCC-CSM2-
MR and CNRM-CM6-1 are among the best performing 
models for simulating daily and monthly rainfall, they have 
shown poor performance for estimating Tmax.

Similarly to this finding, Abbasian et al. (2018) in Iran 
and Demessie et al. (2023) in Guder sub-basin, Ethiopia 
have also indicated that the best performing climate model 
for rainfall did not perform best for simulating temperature. 
Alaminie et al. (2021) study in the Upper Blue Nile Basin 
also reported that BCC-CSM2-MR and MRI-ESM2-0 are 
best performing GCMs for rainfall and temperature respec-
tively, indicating the same model did not do good job for 
both variables. Belazreg et al. (2022) study in Algeria also 
demonstrated that IPSL-EM6A-LR is the best performing 
CMIP6 model for simulating monthly rainfall, but GFDL-
ESM4 has shown the superior performance for simulat-
ing Tmax. The findings of our study and the above studies 
clearly indicated the need for evaluating climate models for 
each climate variables for supporting the decision making 
process through better research outputs.

Table 6 displayed the performance of the ten CMIP6 
GCMs for estimating the wet season, dry season and annual 
Tmax in the BER. The finding indicated that MPI-ESM1-
2-LR and INM-CM4-8 are equally best performing models 
for estimating Tmax during the wet season. Ec-Earth3-Veg 
and Ec-Earth3 ranked the third and fourth best performing 
models, respectively during the wet season. In contrast, 
HadGEM3-GC31-LL followed by ACCESS-ESM1-5 are 
the poorest climate models for estimating the wet season 
Tmax. With reference to the ability of the studied GCMs 
to estimate Tmax during the dry season, GFDL-ESM4 has 
shown the best performance. However, it has ranked as a 
seventh climate model during the wet season. Comparable 
to the wet season, Ec-Earth3-Veg and Ec-Earth3 are the best 
performing climate models for estimating Tmax during the 
dry season. On the contrary, HadGEM3-GC31-LL followed 

eight models displayed overestimation bias from the daily to 
annual temporal scales (Tables 3 and 4). MPI-ESM1-2-LR 
has shown the highest bias in the four considered temporal 
scales, which ranges from 44.9 to 47.9% (Tables 3 and 4). 
On the other hand, ACCESS-ESM1-5, MRI-ESM2-0 and 
BCC-CSM2-MR have relatively demonstrated the lowest 
PBAIS from the daily to annual temporal scales (Tables 3 
and 4).

3.2 Performance of CMIP6 GCMs for simulating 
maximum temperature

Figure 4 displays the long-term mean (1995–2014) annual 
Tmax distributions of the studied GCMs and observed data 
over the BER. The result revealed that EC-Earth3-Veg, 
EC-Earth3 and MPI-ESM1-2-LR are relatively better for 
simulating the long-term mean (1995–2014) annual Tmax 
distributions over the BER. The other relatively better per-
forming models for representing the spatial distributions 
of the long-term mean annual Tmax are MRI-ESM2-0 and 
BCC-CSM2-MR although BCC-CSM2-MR has shown 
overestimation problem in many parts of the study area. On 
the other hand, HadGEM3-GC31-LL, ACCESS-ESM1-5 
and GFDL-ESM4 are among the poorly performing model 
for simulating the mean annual Tmax. The finding also 
indicated that Ec-Earth3-Veg and EC-Earth3 overestimated 
Tmax in some of the high-elevated areas, but MPI-ESM1-
2-LR overestimated and underestimated Tmax in some of 
the high and low elevation areas, respectively. The poorly 
performing model (HadGEM3-GC31-LL) exhibited over-
estimation bias in most of the BER. CNRM-CM6-1 has 
also shown underestimation bias in many parts of the low 
elevation areas. Moreover, some models such as ACCESS-
ESM1-5 did not maintained the spatial patterns of the 
observed Tmax in the study area, but it general exhibited 
overestimation bias in a considerable areas of the BER.

The graphical comparison of the studied GCMs for simu-
lating the long-term mean (1995–2014) monthly Tmax over 
the BER are illustrated in Fig. 4B. The result indicated that 
the models that are relatively better for simulating the mean 
monthly Tmax are Ec-Earth3-Veg, EC-Earth3 and MPI-
ESM1-2-LR (Fig. 4B). MRI-ESM2-0 and INM-CM4-8 
are the other best performing models for simulating mean 
monthly Tmax. In contrast, HadGEM3-GC31-LL, ACCESS-
ESM1, BCC-CSM2-MR, GFDL-ESM4 and CNRM-CM6-1 
are the poorly performing models for simulating the long-
term mean monthly Tmax over the BER. CNRM-CM6-1 
and GFDL-ESM4 underestimated the observed Tmax in the 
entire 12 months, but HadGEM3-GC31-LL and ACCESS-
ESM1 (except for September) have overestimation bias 
(Fig. 4B).
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Some models, such as INM-CM4-8 has shown the best per-
formance for simulating Tmax merely during the wet sea-
son. GFDL-ESM4 has also displayed the best performance 
for estimating Tmax only during the dry season. In general, 
Ec-Earth3-Veg, Ec-Earth3 and MPI-ESM1-2-LR are the 
three best models, which have consistently shown better 

by BCC-CSM2-MR are the least performing climate mod-
els for estimating dry season Tmax. At the annual temporal 
scale, Ec-Earth3-Veg was among the best performing model. 
In addition, EC-Earth3 and MPI-ESM1-2-LR were equally 
the second ranked best performing models for simulating 
annual Tmax. HadGEM3-GC31-LL displayed the poor-
est performance from the daily to annual temporal scales. 

Fig. 4 The spatial distributions of 
the long-term mean (1995–2014) 
annual Tmax of the considered 
CMIP6 GCMs and observed data 
over the BER
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Tmax in these temporal scales (Tables 5 and 6). During the 
wet season, CNRM-CM6-1 and GFDL-ESM4 underes-
timated Tmax, while the other eight models overestimate 
the observed Tmax. On the other hand, during the dry sea-
son, five models such as CNRM-CM6-1, EC-Earth3, Ec-
Earth3-Veg, GFDL-ESM4, and MRI-ESM2-0 illustrated 
underestimation bias, and the remaining five models exhibit 
overestimation bias (Table 6). The result indicated that the 

performance for simulating Tmax from the daily to annual 
temporal scales.

Regarding the estimation bias of the considered CMIP6 
GCMs, CNRM-CM6-1, EC-Earth3 and GFDL-ESM4 
have shown underestimation bias at the daily, monthly and 
annual temporal scales. Ec-Earth3-Veg displayed a PBIAS 
of zero in the daily, monthly and annual times. In contrast, 
the remaining six models have overestimated the observed 

Table 5 Performance of CMIP6 GCMs for simulating daily and monthly Tmax in the study area
ACCESS-ESM1-5 BCC-CSM2-MR CNRM-CM6-1 EC-Earth3 Ec-

Earth3-
Veg

GFDL-
ESM4

Had-
GEM3-GC31-
LL

MPI-
ESM1-
2-LR

MRI-
ESM2-0

INM-
CM4-8

Daily
R 0.46 0.23 0.37 0.47 0.49 0.33 0.04 0.39 0.25 0.34
MAE 3.55 2.96 2.25 1.78 1.77 2.45 3.62 1.9 2.17 1.92
RMSE 4.28 5 2.78 2.29 2.27 3.14 4.35 2.43 2.71 2.45
PBIAS −12 −5.8 6.8 0.5 0.0 7.3 −12.6 −0.4 −0.2 −3
CRI 0.28 0.18 0.40 0.75 0.90 0.28 0.02 0.68 0.50 0.53
Rank 7th 9th 6th 2nd 1st 7th 10th 3rd 5th 4th
Monthly
R 0.63 0.50 0.60 0.65 0.63 0.53 0.04 0.62 0.37 0.48
MAE 3.23 2.06 1.91 1.27 1.28 2.04 3.38 1.16 1.57 1.48
RMSE 3.85 2.84 2.22 1.7 1.71 2.5 4.06 1.47 1.9 1.92
PBIAS −12 −5.9 6.8 0.5 0.0 7.3 −12.5 −0.4 −0.2 −3
CRI 0.28 0.28 0.40 0.78 0.78 0.30 0.00 0.78 0.50 0.45
Rank 8th 8th 6th 1st 1st 7th 10th 1st 4th 5th
Note that Rank is given based on CRI, and 1st and 10th rank indicates the best and poorest performing models, respectively

Table 6 Performance of CMIP6 GCMs for simulating seasonal (wet and dry seasons) and annual Tmax in the BER
ACCESS-ESM1-5 BCC-CSM2-MR CNRM-CM6-1 EC-Earth3 Ec-

Earth3-
Veg

GFDL-
ESM4

Had-
GEM3-GC31-
LL

MPI-
ESM1-
2-LR

MRI-
ESM2-0

INM-
CM4-8

Wet season
R 0.36 0.26 0.06 0.14 0.32 0.32 0.19 0.23 −0.06 0.11
MAE 2.96 1.25 1.56 0.55 0.55 2.46 2.67 0.53 0.7 0.44
RMSE 3.01 1.36 1.67 0.68 0.65 2.53 2.76 0.62 0.97 0.56
PBIAS −11.5 −4.9 6.1 −1 −1.6 9.6 −10.4 −0.3 −2 −0.2
CRI 0.23 0.45 0.25 0.58 0.70 0.35 0.18 0.73 0.38 0.73
Rank 9th 5th 8th 4th 3rd 7th 10th 1st 6th 1st
Dry season
R 0.43 0.01 0.20 0.27 −0.19 0.07 −0.42 −0.21 0.25 0.40
MAE 3.45 2.4 2.18 0.93 1.06 0.85 4.43 0.52 1.24 2.25
RMSE 3.55 2.5 2.3 1.15 1.36 1.14 4.51 0.71 1.5 2.31
PBIAS -13 −7.8 8.2 3.3 3.1 2.8 −16.7 −0.7 3.4 −8.5
CRI 0.30 0.28 0.40 0.68 0.53 0.70 0.00 0.70 0.53 0.40
Rank 8th 9th 6th 3rd 4th 1st 10th 1st 4th 6th
Annual
R 0.58 0.38 0.22 0.22 0.07 0.38 0.10 0.10 0.05 0.17
MAE 3.12 1.53 1.77 0.48 0.41 1.89 3.25 0.47 0.6 0.78
RMSE 3.15 1.61 1.84 0.57 0.51 1.96 3.3 0.55 0.79 0.91
PBIAS −12 −5.9 6.8 0.5 0.0 7.3 −12.5 −0.4 −0.2 −3
CRI 0.30 0.50 0.38 0.65 0.70 0.35 0.08 0.65 0.50 0.48
Rank 9th 4th 7th 2nd 1st 8th 10th 2nd 4th 6th
Note that Rank is given based on CRI, and 1st and 10th rank indicates the best and poorest performing models, respectively
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months, but these models indicated overestimation bias in 
the majority of the months (Fig. 4C).

The performance of CMIP6 GCMs for simulating Tmin 
in the BER at daily and monthly time scales are presented 
in Table 7. The finding indicated that CNRM-CM6-1, Ec-
Earth3-Veg and EC-Earth3 are the first, second and third 
ranked best performing models both in the daily and monthly 
temporal scales. MRI-ESM2-0 and GFDL-ESM4 are placed 
in the fourth and fifth rank of best performing models in 
these time slots. On the other hand, although MPI-ESM1-
2-LR is one of the best performing models for simulating 
Tmax over the BER, it displayed the poorest performance 
for simulating Tmin for the daily and monthly temporal 
scales. BCC-CSM2-MR and INM-CM4-8 are also among 
the poorly performing climate models for estimating Tmin 
over the study area.

Although the performance of MRI-ESM2-0 for simu-
lating both maximum and minimum temperature is not 
among the best performing climate models in the BER, a 
study undertaken in the Upper Blue Nile Basin of Ethiopia 
(Alaminie et al. 2021) indicated that this model has shown 
superior performance for simulating average temperature. 
Demessie et al. (2023) evaluations of five RCMs, which are 
downscaled using EC-Earth also indicated that HIRHAM5 
and RACMO22T models are relatively better models that 
simulate maximum and minimum temperature, respectively 
over Guder Sub-basin, Upper Blue Nile Basin. The findings 
of this study and previous studies, therefore, urges the needs 
for evaluating climate models for Tmax and Tmin sepa-
rately since a single model may not represent both of them 
in a better way.

Table 8 displayed performances of the studied CMIP6 
GCMs for simulating Tmin at the wet and dry seasons as 
well as annual temporal scales. The finding revealed that 
CNRM-CM6-1, EC-Earth3 and HadGEM3-GC31-LL in 
the wet season are the first, second and third ranked best 
performing models, respectively for estimating Tmin. Ec-
Earth3-Veg and MRI-ESM2-0 are the fourth and fifth ranked 
best performing models for estimating wet season Tmin. 
During dry season, Ec-Earth3-Veg and CNRM-CM6-1 are 
the first and second best performing models, respectively 
while EC-Earth3 and GFDL-ESM4 are equally the third 
ranked best performing models. On the annual temporal 
scale, Ec-Earth3-Veg followed by CNRM-CM6-1 and EC-
Earth3 are the best performing models. HadGEM3-GC31-
LL and MRI-ESM2-0 are the fourth and fifth ranked best 
performing models for estimating annual Tmin. However, 
although MPI-ESM1-2-LR is one of the best performing 
models for estimating Tmax, it has shown the poorest per-
formance for estimating Tmin at wet season, dry season and 
annual temporal scales. Following MPI-ESM1-2-LR, INM-
CM4-8 in both wet and dry seasons and ACCESS-ESM1-5 

direction of biases in some of the climate models are changed 
within different temporal scales. The result also showed that 
HadGEM3-GC31-LL and ACCESS-ESM1-5 exhibited the 
highest estimation bias from the daily to annual temporal 
scales. In contrast, Ec-Earth3-Veg and MRI-ESM2-0 at the 
daily, monthly and annual temporal scales exhibited the 
lowest estimation bias (Tables 5 and 6). Additionally, INM-
CM4-8 and MPI-ESM1-2-LR during the wet season and 
MPI-ESM1-2-LR and GFDL-ESM4 during the dry season 
displayed the lowest bias (Table 6).

3.3 Performance of CMIP6 GCMs for simulating 
minimum temperature

The performances of the studied ten GCMs for simulating 
the long-term mean (1995–2014) annual Tmin in the BER 
are given in Fig. 5. The result illustrated that Ec-Earth3-
Veg, CNRM-CM6-1 and EC-Earth3 are relative better for 
simulating the mean annual Tmin. Of these models, CNRM-
CM6- 1 displayed overestimation problem in the some high 
elevation areas and underestimation bias in many parts of 
the low elevation areas (Fig. 5). In contrast, Ec-Earth3-
Veg and EC-Earth3 did not capture minimum Tmin values, 
which are situated in the high elevation areas, exhibiting 
overestimation problem in these areas. However, both Ec-
Earth3-Veg and EC-Earth3 were capable of simulating the 
highest Tmin values that are positioned in the low elevation 
areas. Similarly, climate models such as MPI-ESM1-2-LR, 
ACCESS-ESM1-5, and INM-CM4-8, which are classified 
as underperforming models, exhibited a tendency to overes-
timate the long-term mean annual Tmin over the BER. The 
other models namely BCC-CSM2-MR, GFDL-ESM4, Had-
GEM3-GC31-LL, and MRI-ESM2-0, have demonstrated a 
similar issue of overestimation bias in both high and low-
elevated areas (Fig. 5).

The long-term mean (1995–2014) monthly Tmin values 
of the studied GCMs over the BER is indicated in Fig. 4C. 
The result indicated that CNRM-CM6-1 has exhibited rela-
tively better performance for simulating the mean monthly 
Tmin over the BER. Among the models considered, Ec-
Earth3-Veg and EC-Earth3 stand out as comparatively 
better models. In addition, HadGEM3-GC31-LL and MRI-
ESM2-0 showed relatively better performance compared to 
the remaining five GCMs. In contrast, MPI-ESM1-2-LR, 
INM-CM4-8 and ACCESS-ESM1-5 were the least perform-
ing GCMs. With reference to the estimation bias of the cli-
mate models, except CNRM-CM6-1, which overestimated 
mainly in June, MPI-ESM1-2-LR, INM-CM4-8, ACCESS-
ESM1-5 and MRI-ESM2-0 overestimated in the entire 12 
months. On the other hand, some GCMs such as Ec-Earth3-
Veg, EC-Earth3, GFDL-ESM4 and HadGEM3-GC31-LL 
have shown varying directions of biases within different 
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of magnitude of the estimation bias, MPI-ESM1-2-LR fol-
lowed by INM-CM4-8 exhibit the highest estimation bias 
from the daily to annual temporal scales, which ranges from 
36.2 to 51.6% and 30.1–42.5%, respectively (Tables 7 and 
8). In contrast, CNRM-CM6-1 followed by Ec-Earth3-Veg 
exhibited the lowest estimation bias at the daily, monthly, 
dry season and annual temporal scales. In the wet season, 

in annual temporal scales are the other poorly performing 
models (Table 8). In general, CNRM-CM6-1, EC-Earth3 
and Ec-Earth3-Veg have regularly shown better perfor-
mance for simulating Tmin in the studied temporal scales.

Regarding the estimation bias of the climate models in the 
BER, CNRM-CM6-1 underestimated Tmin from the daily 
to annual temporal scales, and the remaining nine models 
overestimated the observed Tmin (Tables 7 and 8). In terms 

Fig. 5 The long-term mean 
(1995–2014) annual Tmin repre-
sentations of the studied CMIP6 
GCMs and observed data over 
the study area
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GFDL-ESM4 and MRI-ESM2-0. In addition, the three best 
performing models for simulating Tmax over the study area 
are EC-Earth3, Ec-Earth3-Veg and MPI-ESM1-2-LR. Of 
these models, EC-Earth3 and Ec-Earth3-Veg comprise bet-
ter spatial resolution, but MPI-ESM1-2-LR have a coarser 
spatial resolution. On the other hand, the poorly perform-
ing model for Tmax (HadGEM3-GC31-LL) have a coarser 
resolution, but HadGEM3-GC31-LL has shown a relative 

however, CNRM-CM6-1 followed by HadGEM3-GC31-LL 
have shown the lowest estimation bias.

The findings of this study indicated that CNRM-CM6-1, 
EC-Earth3 and Ec-Earth3-Veg are the three best performing 
models for simulating Tmin over the BER. Although EC-
Earth3 and Ec-Earth3-Veg contain better spatial resolution 
compared to the remaining eight studied models, the spatial 
resolution of CNRM-CM6-1 is lower than BCC-CSM2-MR, 

Table 7 Performance of CMIP6 GCMs for simulating Tmin in the BER at daily and monthly time scales
ACCESS-ESM1-5 BCC-CSM2-MR CNRM-CM6-1 EC-Earth3 Ec-

Earth3-
Veg

GFDL-
ESM4

Had-
GEM3-GC31-
LL

MPI-
ESM1-
2-LR

MRI-
ESM2-0

INM-
CM4-8

Daily
R 0.46 0.18 0.53 0.32 0.35 0.22 0.10 0.24 0.41 0.33
MAE 3.95 3.45 1.49 2.08 2.07 2.48 3 5.34 2.32 4.43
RMSE 4.31 4.94 1.96 2.61 2.59 3.03 3.57 5.7 2.72 4.75
PBIAS −29.9 −24.8 3.9 −12.2 −11.8 −13.2 −11.9 −40.7 −16 −33.7
CRI 0.38 0.20 0.90 0.60 0.75 0.43 0.38 0.08 0.58 0.23
Rank 6th 9th 1st 3rd 2nd 5th 6th 10th 4th 8th
Monthly
R 0.73 0.38 0.81 0.48 0.52 0.36 0.14 0.41 0.67 0.46
MAE 3.91 3.41 0.86 1.77 1.74 2.09 2.73 5.34 2.12 4.43
RMSE 4.04 3.76 1.14 2.16 2.11 2.47 3.16 5.49 2.32 4.61
PBIAS −29.9 −24.9 3.9 −12.2 −11.9 −13.3 −12 −40.8 −16 −33.8
CRI 0.35 0.28 0.90 0.63 0.75 0.43 0.38 0.08 0.55 0.18
Rank 7th 8th 1st 3rd 2nd 5th 6th 10th 4th 9th
Note that Rank is given based on CRI, and 1st and 10th rank indicates the best and poorest performing models, respectively

Table 8 Performance of CMIP6 GCMs for simulating Tmin at seasonal (wet and dry seasons) and annual temporal scales in the BER
ACCESS-ESM1-5 BCC-CSM2-MR CNRM-CM6-1 EC-Earth3 Ec-

Earth3-
Veg

GFDL-
ESM4

Had-
GEM3-GC31-
LL

MPI-
ESM1-
2-LR

MRI-
ESM2-0

INM-
CM4-8

Wet season
R −0.09 −0.26 0.18 0.14 0.23 −0.25 −0.16 −0.01 0.23 0.07
MAE 4.04 3.01 0.39 1.46 1.49 1.48 1.21 4.99 2.02 4.15
RMSE 4.07 3.05 0.49 1.52 1.53 1.57 1.43 5.02 2.05 4.16
PBIAS −29.3 −21.8 1.4 −10.6 −10.8 −10.7 −8.4 −36.2 −14.6 30.1
CRI 0.23 0.23 0.85 0.68 0.63 0.45 0.65 0.10 0.53 0.20
Rank 7th 7th 1st 2nd 4th 6th 3rd 10th 5th 9th
Dry season
R 0.09 0.49 0.10 0.00 0.31 0.18 0.20 0.06 −0.13 0.19
MAE 3.67 3.83 1.17 1.89 1.69 2.27 2.61 6.05 2.27 4.98
RMSE 3.72 3.98 1.31 2.06 1.81 2.42 3.02 6.1 2.41 5.01
PBIAS −31.3 −32.2 9.7 −16.1 −14.4 −19.4 −20.5 −51.6 −19.4 −42.5
CRI 0.30 0.38 0.78 0.55 0.80 0.55 0.48 0.05 0.45 0.23
Rank 8th 7th 2nd 3rd 1st 3rd 5th 10th 6th 9th
Annual
R 0.04 0.36 0.05 0.24 0.40 0.00 0.00 0.06 0.07 0.19
MAE 3.91 3.26 0.54 1.6 1.56 1.75 1.57 5.34 2.1 4.43
RMSE 3.94 3.31 0.69 1.66 1.59 1.82 1.7 5.37 2.15 4.44
PBIAS −29.9 −24.9 3.9 −12.2 −11.9 −13.3 −12 −40.8 −16 −33.8
CRI 0.20 0.43 0.75 0.65 0.83 0.40 0.53 0.10 0.43 0.23
Rank 9th 5th 2nd 3rd 1st 7th 4th 10th 5th 8th
Note that Rank is given based on CRI, and 1st and 10th rank indicates the best and poorest performing models, respectively
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ensemble mean of the three models throughout the entire 
studied temporal scales (Table S3). Therefore, this study 
have used the ensemble mean of the best performing three 
models for rainfall and two models for Tmin, but for Tmax, 
EC-Earth3 has been used for future climate change analysis.

In this study, the ensemble mean of the three best per-
forming models are used for future rainfall analysis over 
the BER. Likewise, Abbasian et al. (2018) has also used the 
ensemble mean of the best performing climate models for 
simulating rainfall over Iran. Worku et al. (2019) has also 
employed the ensemble mean of best performing models for 
simulating future climate change analysis as well as climate 
extremes in the Jemma sub-basin of the Upper Blue Nile 
Basin. Ajibola et al. (2020) has also reported that the ensem-
ble mean has outperformed than the individual models for 
simulating annual rainfall over West Africa. In this study, 
however, the performance of the ensemble mean of the 
two models are better than the ensemble mean of the three 
models for simulating Tmin in the studied temporal scales. 
Therefore, this study highlights the necessity for evaluating 
the ensemble mean of the different best performing model’s 
combinations to obtain better simulation.

3.5 Projections of future rainfall and temperature

The projected areal average rainfall of the BER amounts 
for the three future climate horizons at three scenarios com-
pared to the reference period are indicated in Table 9. The 
result revealed that a reduction of rainfall in the near future 
at the three SSPs, where the highest reduction (-5%) is 
expected in SSP2-4.5 and the lowest is at SSP 5-8.5 (-2%). 
During the mid-century, rainfall over the BER is projected 
to diminish only in SSP2-4.5 scenario, but it increased in 
SSP3-7.0 and SSP 5-8.5 climate change scenarios by 1% 
and 8%, respectively. On the other hand, rainfall over the 
BER is likely to increase in the late-future period by 14%, 
19% and 34% at SSP2-4.5, SSP3-7.0 and SSP 5-8.5 scenar-
ios. In general, according to the modeling result, the BER 
will experience a reduction of rainfall in the near future at 
the studied three scenarios, but the study region will gain 
more rainfall in the late-century period compared to the ref-
erence period (Table 9).

With reference to AEZs, annual rainfall in the near future 
is expected to reduce at alpine, temperate and sub-tropical 
AEZs at SSP2-4.5, SSP3-7.0 and SSP 5-8.5 scenarios, but 
with different magnitudes (Table 9). The highest reduc-
tion of rainfall in the future at the three scenarios is likely 
observed at the temperate AEZ, which ranges from − 11 to 
-14% reduction (Table 9). Conversely, the tropical AEZ is 
projected to get more rainfall (3–11%) at the three SSPs in 
the near future. During the mid-century period, reductions 
of rainfall in alpine, temperate and sub-tropical AEZs and 

better performance for Tmin in some of the studied tempo-
ral scales. Thus, further studies are required weather spatial 
resolution is affecting the performance of climate models 
for simulating Tmax and Tmin.

3.4 Selection of best performing models for future 
climate change analysis

As mentioned earlier, BCC-CSM2-MR, CNRM-CM6-1 and 
MRI-ESM2-0 have shown consistently better performance 
for simulating rainfall from the daily to annual temporal 
scales. EC-Earth3, Ec-Earth3-Veg and MPI-ESM1-2-LR 
for simulating Tmax, and CNRM-CM6-1, EC-Earth3 and 
Ec-Earth3-Veg for estimating Tmin at the daily, monthly, 
wet season, dry season and annual temporal scale have also 
exhibited consistently better performance over the BER. 
Thus, this study evaluated the performance of the individual 
best performing models as well as the ensemble mean of 
the three best performing models (Tables S1–S3), which 
were chosen for rainfall, Tmax and Tmin. In addition to the 
ensemble mean of the three models distinguished for Tmin, 
this study has also evaluated the ensemble mean of the two 
models (CNRM-CM6-1 and Ec-Earth3-Veg). The main rea-
son for selecting the ensemble mean of the two (CNRM-
CM6-1 and Ec-Earth3-Veg) models besides to the ensemble 
mean of the three models for Tmin is CNRM-CM6-1 fol-
lowed by Ec-Earth3-Veg have superior performance in 
the considered temporal scales, and hence evaluating the 
ensemble of the three models as well as the two best models 
for Tmin is indispensable.

The result revealed that the ensemble mean of the three 
best performing rainfall models (i.e., BCC-CSM2-MR, 
CNRM-CM6-1 and MRI-ESM2-0) have shown superior 
performance than any of the individual models through the 
daily to annual temporal scales (Table S1). The ensemble 
mean of the three Tmax models (EC-Earth3, Ec-Earth3-
Veg and MPI-ESM1-2-LR) have also exhibited improved 
performance for the daily, monthly, wet season and annual 
temporal scales compared with the performance of the indi-
vidual models. In the dry season, however, MPI-ESM1-
2-LR have shown better performance for simulating Tmax 
than the ensemble mean of the three best performing mod-
els (Table S2). In this case, the ensemble mean of the three 
Tmax models can be used for future climate change analy-
sis. However, the ensemble mean of these models during 
dry season contain a negative correlation. Ec-Earth3-Veg 
and MPI-ESM1-2-LR also exhibited a negative correlation 
during dry season. As a result, this study have used EC-
Earth3 for simulating future Tmax in the BER. With regard 
to Tmin, the ensemble mean of the two models (CNRM-
CM6-1 and Ec-Earth3-Veg) has shown better performance 
than the performance of the individual models as well as the 
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2071–2100 periods at SSP1-2.6, SSP2-4.5, SSP3-7.0 and 
SSP 5-8.5 scenarios compared to the 1981–2010 climate 
periods (Alaminie et al. 2021). Conversely, Tadese et al. 
(2019) study in the Awash Basin indicated a likely increase 
in rainfall during half of the months in 2050 and 2070 s in 
RCP4.5 emission scenario, but RCP8.5 simulation indicated 
an expected decrease in rainfall. The difference in projected 
rainfall conditions between this study and previous studies 
suggests the need for site-specific climate change projection 
for planning better climate change adaptation strategies. 
The expected higher reduction of rainfall at the BER level 
in the near future is attained at the SSP2-4.5 climate change 
scenario followed by the SSP3-7.0 and SSP5-8.5 scenarios.

The findings also indicated varying directions of future 
rainfall in different AEZs of the BER. The expected increase 
of future rainfall in tropical AEZ at the near future, mid-cen-
tury and late-century periods at the three scenarios is helpful 
to reduce the recurrent droughts observed in many areas of 
the tropical AEZ. Conversely, there will be a reduction of 
annual rainfall in alpine, temperate and sub-tropical AEZs. 
The reduction of annual rainfall in the near future in tem-
perate and sub-tropical AEZs may put some stress on crop 
cultivation while lessoning of rainfall in alpine AEZ may 
put strain on tourist attracting endemic wild animals that are 
found in the BER. The study indicated a projected increase 
of annual rainfall in the late-century period at the alpine, 
temperate, sub-tropical and tropical AEZs in the three stud-
ied scenarios. This will be an opportunity for crop cultivars 
as well as those endemic animas.

Table 10 displays the projected mean annual Tmax and 
Tmin over the BER and the different AEZs of the study area 
during the near future, mid-century and late-future periods. 
At the areal average of the BER, the projected Tmax are 

an increase in tropical AEZ at the SSP2-4.5 climate change 
scenario is expected. At SSP 3–7.0, rainfall has likely con-
tinue to reduce in temperate AEZ, but it is expected to 
increase in the remaining studied AEZs. In the late-century, 
however, rainfall is projected to increase at SSP2-4.5, SSP3-
7.0 and SSP 5-8.5 scenarios at the four AEZs. The upper-
most increase of rainfall during the late-century period is 
projected in the tropical AEZ, which ranged from 25 to 
45%. In the late-future period, the projected increase of 
annual rainfall in the four AEZs as well as the areal average 
of the BER is higher in SSP 5-8.5 compared to SSP2-4.5 and 
SSP3-7.0 scenarios (Table 9). The projected annual rainfall 
from 1995 to 2100 periods at alpine, temperate, sub-tropical 
and tropical AEZs as well as the areal average BER level 
at SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios also confirm 
the above-mentioned explanations (Fig. 6).

The findings of this study revealed a likely reduction of 
annual rainfall (2–5%) at the areal average of the BER in 
the near future (2021–2040) at SSP2-4.5, SSP-3.7.0 and 
SSP 5-8.5 climate change scenarios. In the late-century 
(2081–2100) period, however, the areal average BER rain-
fall is projected to increase (14–34%) at the three climate 
scenarios, exhibiting diverse directions of changes in dif-
ferent climate periods. In contrast to our finding, a study in 
the Jemma sub-basin of the Upper Blue Nile Basin (Worku 
et al. 2019) using an ensemble mean of six CMIP5 RCMs 
indicated that both the near term (2021–2050) and long-
term (2071–2100) annual rainfall was projected to reduce at 
RCP2.6, RCP4.5 and RCP8.5 emission scenarios compared 
to the baseline period (1981–2005). On the other hand, a 
recent study conducted in the Upper Blue Nine Basin using 
CMIP6 GCM (BCC-CSM2-MR) reported that annual 
rainfall has projected to increase in both 2031–2060 and 

Table 9 The mean annual rainfall (mm) in the near future (2021–2040), mid-century (2041–2060) and late-century (2081–2100) periods under 
different climate change scenarios at alpine, temperate, sub-tropical and tropical AEZs and BER scale compared to observed rainfall (1995–2014)
Scenario AEZs Mean annual rainfall (mm)

Observed 2021–2041 2041–2060 2081–2100
SSP2-4.5 Alpine 1409 1345 (-5%) 1395 (-1%) 1481 (5%)

Temperate 1072 923 (-14%) 935 (-13%) 1149 (7%)
Sub-tropical 924 861(-7%) 883 (-4%) 1081 (17%)
Tropical 757 779 (3%) 824 (9%) 947 (25%)
BER 907 857 (-5%) 889 (-2%) 1035 (14%)

SSP3-7.0 Alpine 1409 1385 (-2%) 1415 (0.4%) 1527 (8%)
Temperate 1072 927 (-14%) 1036 (-3%) 1241 (16%)
Sub-tropical 924 862 (-7%) 948 (3%) 1086 (17%)
Tropical 757 805 (6%) 810 (7%) 962 (27%)
BER 907 873 (-4%) 920 (1%) 1078 (19%)

SSP5-8.5 Alpine 1409 1384 (-2%) 1466 (4%) 1578 (12%)
Temperate 1072 958 (-11%) 1164 (9%) 1422 (33%)
Sub-tropical 924 841 (-9%) 1036 (12%) 1210 (31%)
Tropical 757 838 (11%) 833 (10%) 1101 (45%)
BER 907 893 (-2%) 982 (8%) 1214 (34%)
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Table 10 The mean annual Tmax and Tmin (°C) in the near future (2021–2040), mid-century (2041–2060) and late-century (2081–2100) periods 
at SSP2-4.5, SSP3-7.0 and SSP5-8.5 climate scenarios under the studied spatial scales compared to the observed Tmax and Tmin (1995–2014)
Sce-
nario

AEZs Mean annual Tmax (°C) Mean annual Tmin (°C)
Observed 2021–2041 2041–2060 2081–2100 Observed 2021–2041 2041–2060 2081–2100

SSP2-
4.5

Alpine 18.57 19.30 (+ 0.73) 19.89(+ 1.32) 20.91 (+ 2.34) 7.29 8.57 (+ 1.28) 9.32 (+ 2.03) 10.82 (+ 3.53)
Temperate 21.58 22.41(+ 0.83) 23.21(+ 1.63) 24.53(+ 2.95) 8.21 10.30 (+ 2.10) 11.54 (+ 3.33) 13.83 (+ 5.62)
Sub-tropical 25.49 26.25(+ 0.76) 26.87(+ 1.38) 28.33(+ 2.84) 13.18 15.03 (+ 1.85) 16.13 (+ 2.95) 18.31 (+ 5.13)
Tropical 30.48 31.18(+ 0.71) 31.77(+ 1.29) 32.93(+ 2.46) 17.42 18.77 (+ 1.36) 19.60 (+ 2.18) 21.29 (+ 3.87)
BER 25.76 26.51(+ 0.75) 27.17(+ 1.41) 28.41(+ 2.66) 12.98 14.65 (+ 1.67) 15.67 (+ 2.69) 17.62 (+ 4.64)

SSP3-
7.0

Alpine 18.57 19.53 (+ 0.96) 20.18 (+ 1.61) 21.96 (+ 3.39) 7.29 8.60 (+ 1.31) 10.00 (+ 2.71) 13.02 (+ 5.73)
Temperate 21.58 22.70 (+ 1.13) 23.54 (+ 1.97) 25.83 (+ 4.25) 8.21 10.32 (+ 2.12) 12.31 (+ 4.10) 17.31 (+ 9.11)
Sub-tropical 25.49 26.61 (+ 1.12) 27.35 (+ 1.86) 29.47 (+ 3.98) 13.18 14.99 (+ 1.81) 16.85 (+ 3.67) 21.37 (+ 8.20)
Tropical 30.48 31.46 (+ 0.98) 32.11 (+ 1.63) 33.94 (+ 3.47) 17.42 18.81 (+ 1.40) 20.22 (+ 2.80) 23.65 (+ 6.23)
BER 25.76 26.80 (+ 1.05) 27.52 (+ 1.76) 29.57 (+ 3.81) 12.98 14.67 (+ 1.69) 16.32 (+ 3.34) 20.44 (+ 7.46)

SSP5-
8.5

Alpine 18.57 19.47 (+ 0.90) 20.58 (+ 2.01) 22.90 (+ 4.33) 7.29 8.74 (+ 1.45) 10.15 (+ 2.86) 14.15 (+ 6.86)
Temperate 21.58 22.63 (+ 1.05) 24.23 (+ 2.65) 27.39 (+ 5.81) 8.21 10.36 (+ 2.16) 12.73 (+ 4.53) 19.15 (+ 10.94)
Sub-tropical 25.49 26.45 (+ 0.96) 27.92 (+ 2.43) 30.72 (+ 5.23) 13.18 15.20 (+ 2.02) 17.28 (+ 4.11) 23.12 (+ 9.95)
Tropical 30.48 31.32 (+ 0.85) 32.53 (+ 2.06) 34.89 (+ 4.41) 17.42 18.92 (+ 1.50) 20.46 (+ 3.05) 24.91 (+ 7.49)
BER 25.76 26.72 (+ 0.96) 28.09 (+ 2.33) 30.77 (+ 5.01) 12.98 14.77 (+ 1.79) 16.69 (+ 3.71) 22.01 (+ 9.04)

Fig. 6 The projected annual rain-
fall (2015–2100) under SSP2-4.5, 
SSP3-7.0 and SSP5-8.5 climate 
change scenarios along with the 
observed rainfall (1995–2014) at 
the studied AEZs as well as the 
BER level
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The projected increase in Tmax and Tmin in this study is 
associated with many other studies in Ethiopia (Alaminie et 
al. 2021; Worku et al. 2019) and elsewhere in the world (Fan 
et al. 2022; IPCC 2021). For example, Worku et al. (2019) 
in the Jemma sub-basin of the Upper Blue Nile Basin illus-
trated an expected increase in both Tmax and Tmin in the 
near term (2021–2050) and long-term (2071–2100) periods 
at RCP2.6, RCP4.5 and RCP8.5 climate change scenarios. 
Similarly, Alaminie et al. (2021) has also reported the pro-
jected increase of Tmax and Tmin in the Upper Blue Nile 
Basin of Ethiopia during the 2031–2060 and 2071–2100 
periods at the four SSPs. A study in the Awash Basin also 
indicated that the expected increase of Tmax in 2050s and 
2070’s periods is from 0.48 to 2.6 °C and 3.4–4.1 °C under 
RCP4.5 and RCP8.5, respectively (Tadese et al. 2019). 
Almazroui et al. (2021) has also indicated that the mean 
annual temperature over Africa is projected to increase in 
the near term period (2030–2059), and the highest increase 
is expected in Sahara region. The latest IPCC report also 
clearly indicated the projected increase in temperature over 
the global scale, but with different magnitudes of changes 
(IPCC 2021). Fan et al. (2022) has also reported the expected 
increase of temperature in the Pan-Third Pole region.

4 Conclusions

This study evaluated the performance of ten CMIP6 GCMs 
for simulating rainfall, Tmax and Tmin over the BER 
from the daily to annual temporal scales, and projection 
of these climate variables at the different AEZs and BER 
spatial scales using the best performing climate model (s) 
for the near future (2021–2040), mid-century (2041–2060) 
and late-century (2081–2100) periods. The result generally 
revealed that BCC-CSM2-MR, CNRM-CM6-1 and MRI-
ESM2-0 have shown consistently better performance for 
simulating rainfall from the daily to annual temporal scales 
over the BER. EC-Earth3, Ec-Earth3-Veg and MPI-ESM1-
2-LR for Tmax, and CNRM-CM6-1, EC-Earth3 and Ec-
Earth3-Veg for Tmin have also shown superior performance 
in the studied temporal scales. The finding revealed that 
the best performing model for rainfall (e.g., BCC-CSM2-
MR and MRI-ESM2-0) did not perform correspondingly 
for simulating Tmax and Tmin. In addition, although MPI-
ESM1-2-LR for Tmax and CNRM-CM6-1 for Tmin are 
one of the best performing models, MPI-ESM1-2-LR and 
CNRM-CM6-1 did not perform well for Tmin and Tmax, 
respectively. Therefore, the findings from the BER sug-
gests the necessity for evaluating climate models for each 
climate variables (even for Tmax and Tmin separately) for 
the better use of the research outputs in the decision-making 
processes.

from 0.75 to 1.05 °C, 1.41 to 2.33 °C and 2.66 to 5.01 °C 
in the near future, mid-century and late-century periods, 
respectively. On the other hand, the projected areal average 
BER Tmin in the three scenarios in the near future, mid-cen-
tury and late century periods are 1.67–1.79 °C, 2.69–3.71 °C 
and 4.64–9.04 °C, respectively (Table 10). The findings also 
revealed that the increase in Tmin is higher than the increase 
in Tmax in the studied SSPs over the BER. For example, in 
the areal average of the BER, Tmax is projected to increase 
by 2.66, 3.81 and 5.01 °C at SSP2-4.5, SSP3-7.0 and SSP5-
8.5, respectively. However, Tmin in the BER is projected 
to increase by 4.64 °C at SSP2-4.5, 7.46 °C in SSP3-7.0, 
and 9.04 °C in SSP5-8.5 (Table 10). In addition, the result 
also indicated that the higher increase in Tmin in the near 
future, mid-century and late-century periods are found at 
SSP 5-8.5, which is followed by SSP3-7.0. Similarly, the 
projected higher increase in Tmax in the mid-century and 
late-century periods is at SSP 5-8.5 scenario, which is fol-
lowed by the SSP3-7.0 climate change scenario. However, 
in the near future, the highest increase in Tmax is projected 
in SSP3-7.0 scenario, which is followed by SSP 5-8.5. In 
general, the smallest temperature (Tmax and Tmin) changes 
in all the studied three future climate periods is projected at 
SSP2-4.5 while the highest temperature change is expected 
at SSP 5-8.5 (except the change in Tmax in the near future).

In terms of AEZs, the result revealed that future Tmax 
and Tmin is projected to increase in the near future, mid-
century and late-century periods with different magnitudes 
in the four AEZs (Table 10). The result indicated that the 
projected highest Tmax and Tmin increase in the three-
studied future climate periods at the three climate change 
scenarios are found in temperate AEZ. Conversely, the 
minimum Tmin changes in the near future, mid-century and 
late-future periods at the three climate scenarios is from the 
alpine AEZ. Likewise, the projected lowest Tmax changes 
in the late-future is also observed in the alpine AEZ, but in 
near future and mid-century periods of the studied three cli-
mate scenarios, the projected lowest Tmax changes is either 
in the alpine or tropical AEZs (Table 10). Similar to the 
results obtained for the areal average of the BER, the change 
in Tmin is likely higher than Tmax in all the four AEZs in all 
the three scenarios. In addition, the highest increase in Tmin 
for the three future climate periods is projected to attained 
in SSP5-8.5 scenario followed by SSP3.7.0. Likewise, the 
highest Tmax changes in the mid-century and late-century 
periods are at SSP5-8.5 scenario that is followed by the 
SSP3.7.0 climate change scenario, but in the near future, the 
highest change in Tmax is projected in SSP3.7.0. The time 
series annual (1995–2100) Tmax and Tmin (Figs. 7 and 8) 
graphs also confirm the increase of Tmax and Tmin at the 
four AEZs as well as at the areal average of the BER level at 
the SSP2-4.5 SSP3-7.0 and SSP5-8.5 scenarios.
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period. On the other hand, rainfall has projected to increase 
in the tropical AEZ in both the near future (3–11%) and 
late-century (25–45%) periods. In the mid-century period, 
rainfall is expected to increase in the tropical AEZ in all the 
three scenarios, but it exhibits different directions of changes 
in the remaining AEZs and BER scale at different scenar-
ios. The likely increase of rainfall in the near future in the 
tropical AEZ may be signs of diminishing of the frequently 
occurring droughts in the lowland parts of the BER. On the 
other hand, the expected reductions of rainfall in the near 
future at alpine, temperate and sub-tropical AEZs may intro-
duce challenges for agriculture, water resources, agro/pas-
toralists and endemic wild animals. The result denotes that 
both Tmax and Tmin has likely increase in the near future, 
mid-century and late-century periods in all the three studied 
scenarios, where the larger increase is expected in the tem-
perate AEZ. Therefore, this study suggests implementations 
of best climate adaptation strategies to reduce the impacts of 
climate change on livelihood. Besides, implementations of 
climate mitigations measures in the BER in particular and 

Accordingly, the ensemble mean of BCC-CSM2-MR, 
CNRM-CM6-1 and MRI-ESM2-0 were used for rainfall 
change analysis at different scenarios. The study used EC-
Earth3 for simulating future Tmax since the ensemble mean 
of best performing three climate models and the remaining 
two individual models attained negative correlation coeffi-
cient. For Tmin, the ensemble mean of CNRM-CM6-1 and 
Ec-Earth3-Veg were used, which is due to the superior per-
formance of this ensemble mean compared to the ensemble 
mean of the best performing three models as well as the 
individual climate models. Climate change analysis for the 
near future, mid-century and late- century periods at SSP2-
4.5, SSP3-7.0 and SSP5-8.5 scenarios were undertaken after 
bias correction of the selected ensemble mean climate mod-
els for rainfall, Tmax and Tmin.

The findings revealed an expected reduction of annual 
rainfall in the near future in the alpine (2–5%), temperate 
(11–14%) and sub-tropical (7–9%) AEZs as well as the BER 
(2–5%) spatial scales at SSP2-4.5, SSP3-7.0 and SSP5-8.5 
scenarios, but rainfall is likely increase in the late-century 

Fig. 7 The projected annual Tmax 
(2015–2100) under different 
climate scenarios together with 
its observed value (1995–2014) 
at alpine, temperate, sub-tropical 
and tropical AEZs as well as the 
BER scale
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