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Abstract
Crop yield has been analyzed under different hydrological conditions by many researchers. However, little information is 
available about the behavior of rice yield for different conditions during its growth. This study investigated the behavior of 
rice yield under varying hydrological conditions in two regions of India, one rainfed and the other irrigated, for the period 
2000–2018. Additionally, it examined how individual, coincidental, and sequential compound extremes, such as rainfall, 
temperature, and soil moisture, affected rice yield. Four individual, two coincidental, and two sequential compound extremes 
regression models were developed. These models were designed with yield as a function of individual and compound 
extremes. Individual extreme models focused on heat and water metrics independently, while compound extremes occurred 
when heat and water stress coincided or followed each other closely. Linear panel models were used to assess the dependency 
of rice yield on hydrological parameters. Results indicate that excessive heat negatively affects rice yield, particularly when 
coupled with low soil moisture. However, excess soil moisture mitigates heat-related damage, highlighting the significance 
of controlling soil moisture levels. Additionally, coincidental compound extremes pose greater threats to rice yield than 
sequential ones. The study underscores the importance of considering geographical variations and hydrological variables in 
understanding crop yield behaviour. Overall, the findings suggest the potential for optimizing soil moisture management to 
enhance rice yield amidst changing climatic conditions.

1 Introduction

Climate change is anticipated to introduce new trends in 
the future, with extreme events becoming more frequent 
and severe (Das et al. 2022; Dash et al. 2007; Praveen et al. 
2020). These extremes, such as heat waves and floods, are 

expected to escalate, particularly in regions like India, which 
is highly susceptible to such occurrences (Gershunov et al. 
2013; Hasan et al. 2023; Meehl et al. 2000; Sienz et al. 2012; 
Sillmann et al. 2013; Yaduvanshi et al. 2021).The country has 
been one of the high-risk zones for these occurrences. For 
the recent 30-year period (1986–2015), temperatures of the 
warmest day and the coldest night of the year have rised by 
about 0.63 °C and 0.4 °C, respectively (Krishnan et al. 2020). 
India has already witnessed notable increases in temperatures 
and the frequency of heat waves (Raji et al. 2021; Rohini 
et al. 2016), exacerbating the impact of concurrent hydrologi-
cal extremes, leading to compound events with significant 
repercussions on agriculture (Aihaiti et al. 2021; Dash and 
Maity 2021; Kalyan et al. 2021). These compound extremes 
are projected to rise under all emission scenarios, underscor-
ing the urgent need to assess their combined impact on crop 
yield (Das et al. 2022; Lesk et al. 2022).

Understanding the effects of climate extremes on crop 
yield is crucial for global food security, especially considering 
India's significant role as the world's second-largest producer 
and largest exporter of rice (IFPRS-2023). Temperature is a 
critical factor influencing rice yield, with changes in climate 
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patterns posing significant challenges to crop production 
(Peng et al. 2004; Pushpalatha et al. 2022; Quang et al. 1995; 
Saud et al. 2022). Traditional approaches relying on season-
ally averaged metrics may overlook the detrimental effects of 
extreme events occurring on specific days, highlighting the 
importance of within-season variability analysis (Denmead 
and Shaw 1960; Kaur et al. 2018; Schmidt et al. 2011). When 
solely considering individual climate extremes, the analysis 
overlooks the intricate interplay of various climatic factors 
impacting crop yield. Focusing solely on singular extremes 
may result in an incomplete understanding of the true mag-
nitude of climate-induced risks to agricultural productivity. 
However, by examining coincidental and sequential compound 
extremes, a more detailed comprehension of climate effects 
on crop yield emerges. This approach unveils the synergistic 
relationships among different climatic variables, offering a 
more accurate assessment of agricultural vulnerabilities and 
facilitating the formulation of targeted adaptation strategies. 
Thus, considering compound extremes enhances our ability to 
safeguard crop yield and ensure food security amidst changing 
climatic conditions. Additionally, incorporating both rainfall 
and soil moisture as water metrics is essential for a comprehen-
sive evaluation of their impact on crop yield, further enhanc-
ing our ability to develop targeted adaptation strategies and 
ensure food security in the face of changing climatic condi-
tions (Holzman et al. 2014).

While various statistical and process-based models have 
been employed to study crop yield behavior, most have focused 
solely on individual hydrological metrics, leaving a gap in 
understanding the combined effects of compound extremes 
(Hamed et al. 2021; Haqiqi et al. 2021; Lal et al. 1999; Ortiz-
Bobea et al. 2019; Roberts et al. 2013). This study aims to 
address this gap by integrating coincidental and sequential 
compound extremes into the statistical modelling of rice yield, 
utilizing advanced regression techniques to capture their com-
bined impact. By incorporating data from multiple sources 
and considering both individual and sequential compound 
extremes, this research is poised to enhance our understanding 
of climate change's implications for rice production and inform 
the development of effective adaptation strategies. Ultimately, 
the findings from this study can provide valuable insights for 
policymakers, farmers, and stakeholders involved in agricul-
ture and food security, aiding in the formulation of robust 
strategies to mitigate the adverse effects of climate change on 
crop yield and maintain food security in the face of evolving 
climatic conditions.

2  Materials and methods

2.1  Study area

The research work encompasses six rice-growing states of 
India, namely West Bengal, Uttar Pradesh, Punjab, Tamil 
Nadu, Bihar, and Karnataka, as shown in Fig. 1. These states 
are often referred to as the Rice Bowl of India, and West 
Bengal is the largest producer of rice in the country (Kara-
mchedu 2023). Rice is cultivated in three different seasons 
in these states. However, the majority of rice production 
occurs during the kharif season, where rainfall serves as a 
primary source of water availability. In West Bengal, Uttar 
Pradesh, and Bihar, rice is predominantly grown under rain-
fed conditions. On the other hand, in Punjab, Tamil Nadu, 
and Karnataka, rice cultivation primarily takes place under 
irrigated conditions.

2.2  Data used

This study used rainfall, soil moisture, temperature and crop 
yield data (Table 1). Rainfall and temperature data were 
obtained from the India Meteorological Department (IMD), 
Pune, for the period between 2000 and 2018. Rainfall data 
was available at a resolution of 0.25° × 0.25°, while tempera-
ture data was available at a resolution of 1° × 1°. The soil 
moisture data was collected at a resolution of 0.25° × 0.25° 
from the Global Land Data Assimilation System (GLDAS). 
Additionally, the district-wise crop yield data was collected 
from the Directorate of Economics and Statistics, Govt. of 
India for 19 years starting from 2000 to 2018. This study 
period is selected due to the limited availability of consistent 
crop yield data during past years. To facilitate district-wise 
analysis, the data was spatially averaged for each district.

2.3  Methodology

This study aimed to analyze the impact of hydrological 
extremes on crop yield using statistical models. These mod-
els build upon the regression models previously developed 
by Haqiqi et al. (2021). The methodology of this study is 
illustrated in Fig. 2. Three different types of regression mod-
els depicting the response of rice yield to individual and 
compound extremes were formulated using datasets on tem-
perature, rainfall, and soil moisture. The daily temperature 
data was used to develop the metric for heat. The metrics of 
soil moisture were constructed by measuring their devia-
tions from the mean volumetric content. These metrics were 
then used to formulate regression models to study the impact 
of climate extremes on rice yield. Additionally, the models 
were estimated using the panel fixed effect approach, which 
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is a statistical tool for analyzing two-dimensional panel data 
(in this case time and location). Finally, we conducted a 
Hausman test (Hausman 1978) to determine the most appro-
priate model, choosing between random and fixed effects 
models.

The models are formulated with yield as a function of 
individual and compound extremes. Individual extreme 
models are formulated with heat and water metrics with-
out considering their interaction. Compound Extreme are 
said to occur when heat stress and water stress occur in 

combination, either on the same day or follow each other 
within a short period. The compound extremes are cat-
egorised into compound coincidental extremes (CCE) and 
compound sequential extremes (CSE). The compound coin-
cidental extremes occur when two or more hydrological 
variables reach their respective extreme values on the same 
day. The compound sequential extremes occur when two or 
more hydrological variables reach their respective extreme 
values one after the other within a certain duration. For this 
study, sequential heat stress with a period of 3 days followed 

Fig. 1  Study area indicating 
rainfed and irrigated regions 
under analysis in India

Table 1  Details of data used in 
this study from 2000–2018

Data Resolution Source

Rainfall 0.25° × 0.25° India Meteorological Department (IMD) Pune
Temperature 1° × 1° IMD Pune
Soil moisture 0.25° × 0.25° Global Land Data Assimilation System (GLDAS)
Crop yield District Wise Directorate of Economics and Statistics, Govt. Of India
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by water stress with a period of 5 consecutive days in the 
upcoming 7 days as a sequential heat and water compound 
extreme event is considered. This approach has also been 
previously followed in many literatures. (Das et al. 2022; 
Weber et al. 2020).

A preliminary analysis was conducted utilizing rice yield 
as the dependent variable and temperature as independent 
variable, as depicted in Fig. 3. Various temperature values 
were explored to assess the influence of temperature on rice. 
Ultimately, a threshold temperature of 35 °C was pinpointed, 

indicating that temperatures exceeding this level will have 
a detrimental effect on rice growth. The root zone of rice 
extends up to 100 cm depth from the top of the soil layer, 
thus the soil moisture stress in this zone can also have a 
direct impact on crop yield (Sure and Dikshit 2019). There-
fore, the soil moisture of the top 100 cm soil layer is consid-
ered in this analysis. The threshold for soil moisture range 
is taken the same as taken by Haqiqi et al. (2021) as the soil 
moisture values can be controlled in these limits. The met-
rics for soil moisture for compound extremes are constructed 
by taking the deviations from the normal level. The normal 
level is defined by taking the mean soil moisture content for 
the growing season of the entire study period for the given 
location. Five different ranges for soil moisture are consid-
ered for the compound coincidental and sequential extreme 
models. The study categorised soil moisture conditions into 
five classes, which included normal soil moisture condition 
(soil moisture is within 25 mm above or below the normal 
levels), surplus soil moisture condition (soil moisture is in 
between 25 to75 mm above normal levels), extreme sur-
plus soil moisture condition (Soil moisture is 75 mm above 
normal level), deficit soil moisture condition (Soil moisture 
is in the range of 25 mm-75 mm below normal level) and 
extreme deficit soil moisture condition (Soil moisture is 
75 mm below normal levels).

2.3.1  Individual Extreme Model (IEM)

The IEM model (Schlenker and Roberts 2009) assumes that 
the effects of heat and water are cumulative over the growing 

Fig. 2  Diagram showing meth-
odological framework of the 
present study
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season and their impacts do not interact with each other. 
Table 2 presents the major variables considered for studying 
the impact of individual extremes.

The heat stress for each IEM model is taken by consid-
ering the number of instances when the daily maximum 
temperature  (Tmax) exceeds 35 °C in a growing season. For 
IEM(a), cumulative rainfall (P) for the entire growing season 
is taken as water metric. For IEM(b), seasonal mean soil 
moisture content (M) is used as water metric. Again, for 
IEM(c) the number of days where soil moisture is above 
normal, i.e., in the surplus range (NDS) and below normal 
levels, i.e., in the deficit range (NDD) is considered. For 
IEM(d), cumulative soil moisture above normal (CSMN) 
and below normal levels (CSMD) is considered. Equa-
tion 1–4, represents the models for IEM(a-d), respectively.

where, Yit is the crop yield in district i at time t .� , � are 
regression parameters, t is the time trend variable,  ci is the 
time-invariant district fixed effect, ∈  is the error term.

(1)Yit = �aT
35

it1
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�
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P2

it
+ �at + �

�

a
t2 + cia + ∈ita
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35
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+ �bMit + �

�

b
M2

it
+ �bt + �

�

b
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2.3.2  Compound Coincidental Extreme Model (CCM)

The CCM is formed following the approach as developed 
by Haqiqi et al. 2021. The CCM is formulated to focus on 
the compound metrics with the daily interaction of avail-
able water and heat stress. CCM evaluates the conditional 
marginal impact of compound metrics on rice yield. Table 3 
summarizes the major variables for studying the effect of 
coincidental compound extremes (CCM) on rice yield. 
CCM(a) studies the marginal impact of heat excess com-
bined with rainfall deficit. The model is defined with metrics 
of heat excess, i.e., when the maximum daily temperature 
exceeds 35 °C combined with dry days (daily rainfall is less 
than 1 mm). Equation (5) represents the model for CCM(a). 
CCM(b) forces the interaction of heat excess to different 
combinations of soil moisture defined at 25 mm intervals as 
deviations from normal. Equation (6) represents the model 
for CCM(b). It includes heat stress above 35 °C combined 
with soil moisture in the different zones: normal, surplus, 
extreme surplus, deficit and extreme deficit.
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Table 2  List of major variables 
used for the formulation of 
individual extremes model

Model type Heat metric Water metric

IEM(a) Tmax above 35 °C Cumulative growing season Rainfall (P)
Square of cumulative growing season Rainfall  (P2)

IEM(b) Tmax above 35 °C Seasonal mean soil moisture content (M)
Square of season mean soil moisture content (M2)

IEM(c) Tmax above 35 °C Number of days when soil moisture is below normal levels (NDD)
Number of days when soil moisture is above normal levels (NDS)

IEM(d) Tmax above 35 °C Cumulative soil moisture above normal levels (CSMN)
Cumulative soil moisture below normal levels (CSMD)

Table 3  List of major variables used to formulate the coincidental compound extremes model

Model type Compound metric Water metric

CCM(a) No of instances when  Tmax > 35 and Rainfall < 1 mm Cumulative growing season Rainfall
Square of Cumulative growing season Rainfall

CCM(b) Days when  Tmax > 35 and Soil Moisture < normal -75 Seasonal mean soil moisture content
Days when  Tmax > 35 and average-75 < Soil Moisture < normal -25
Days when  Tmax > 35 and Soil Moisture 25 mm around normal Square of seasonal mean soil moisture content
Days when  Tmax > 35 and average + 25 < Soil Moisture < normal + 75
Days when  Tmax > 35 and Soil Moisture > normal + 75
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2.3.3  Compound Sequential Extreme Model (CSM)

The compound sequential extreme model (CSM) studies the 
impact of sequential extremes on rice yield. Table 4 pro-
vides the major variables used in the study of sequential 
compound extremes. The extreme heat condition has been 
taken when the temperature is above the threshold tempera-
ture (35°C) for a span of three consecutive days followed by 
respective water metric conditions.

The CSM models are formulated to understand rice 
yield’s response to the sequential occurrence of heat and 
water stress. It will also help to understand how the dam-
age due to one variable is affected by the stress of another 
variable. Equations 7 and 8 represent CSM(a) and CSM(b), 
respectively.

2.4  Yield response in alternate conditions

The growing season of rice has been defined in three differ-
ent stages. The first one is the vegetative growth that extends 
for the first seven weeks. It is followed by the reproductive 
stage for the next five weeks. The third stage called the rip-
ening stage extends for the last five weeks. The CCM and 
CSM models are estimated for these three stages to check 
whether rice yield behaves differently due to the occurrence 
of compound extremes in the different stages. The study 
evaluated models for two distinct regions: the rainfed region, 
where rice cultivation relies on rainfall, and the irrigated 
regions, where rice is grown under irrigated conditions.
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2.5  Model evaluation

To evaluate the models, four performance-based indices 
namely  R2 (Coefficient of determination), adjusted  R2, 
Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) have been used. Equations (9 - 12) 
represents the formulation of these indices.

R2 (Coefficient of determination):

where, yi is the observed data, fi is the fitted data, ŷ is the 
mean of observed data.

Adjusted R square: -

where, df e is the degrees of freedom (m – p – 1) of the 
estimates of the underlying population error variance, and 
df t is the degrees of freedom (m – 1) of the estimates of the 
population variance of the dependent variable. Here, m is the 
total sample size and p is the number of predictors.

Akaike information criterion (AIC): -

Bayesian information criterion (BIC): -

where, N is the number of rows in the dataset, LL is the log-
likelihood of the model, and k is the number of parameters 
in the model.

(9)R2 =

∑

i (yi − fi)
2

∑

i (yi − ŷ)
2

(10)adj.R2 =

∑

i (yi − fi)
2
∕df e

∑

i (yi − ŷ)
2
∕df t

(11)aic = −2∕N ∗ LL + 2 ∗ k∕N

(12)bic = −2 ∗ LL + log(N) ∗ k

Table 4  List of major variables used to formulate the sequential compound extremes model

Model type Compound metric Water metric

CSM(a) No of sequential extreme events when  Tmax > 35 and daily rainfall < 1 mm within 
7 days

Cumulative Growing Season Rainfall
Square of cumulative Growing Season Rainfall

CSM(b) No of Sequential extreme events when  Tmax > 35 and Soil Moisture > normal + 25 
and < normal + 75

Seasonal mean soil moisture content

No of Sequential extreme events when  Tmax > 35 and Soil Moisture > normal + 75
No of Sequential extreme events when  Tmax > 35 and Soil Moisture < normal-25 

and SM > normal-75
Square of seasonal mean soil Moisture content

No of Sequential extreme events when  Tmax > 35 and Soil Moisture < normal-75
No of Sequential extreme events when  Tmax > 35 and Soil Moisture 25 mm around 

normal
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3  Results

The study focused on assessing the impact of individual 
and compound extremes on rice yield for rainfed and irri-
gated regions of India using temperature, rainfall, and soil 
moisture data.

From Fig. 3, it can be seen that the when the tempera-
ture occurrence above 35 °C has negative impact on rice 
yield. Figures 4 and 5 shows the variation in temperature, 
rainfall and soil moisture data. Figure 4 shows the com-
parison of the change in year-wise rainfall and soil mois-
ture in the rainfed and irrigated regions. The variation in 
average rainfall is higher than the variation in average soil 
moisture. The variation in soil moisture is higher in the 
rainfed region than in the irrigated region.

In the rainfed region rainfall is moderately correlated to 
soil moisture. Here the coefficient of correlation is found 
to be 0.54. In contrast, the coefficient of correlation is 
found to be 0.15 in the irrigated region. The significance 
of relating soil moisture with rainfall in the present study 
lies in understanding how soil moisture levels interact 
with rainfall patterns to influence crop yield in rainfed 
and irrigated conditions. It shows that soil moisture in 
these regions is mostly driven by irrigation. It is important 
to note that factors like irrigation, floods, waterlogging 
contributes to the soil moisture, thus in certain years soil 
moisture can have opposite trend as that of rainfall. The 
rainfall and soil moisture observe the same variations in 
the rainfed region. However, in some years like 2006, 2007 
and 2008, a contradiction is observed as in these years the 
trend of soil moisture is found to be opposite of the trend 
of rainfall. Factors like irrigation, floods, waterlogging 

contributes to the soil moisture, thus in certain years soil 
moisture can have opposite trend as that of rainfall. The 
rainfed region experience on an average 861 mm of rainfall 
in the growing season whereas the irrigated region experi-
ences an average of only 437 mm of rainfall. The average 
soil moisture (top 100 cm soil layer) in the rainfed region 
during this period is 227 mm and in the irrigated region 
is 258 mm. The rainfed region have high rainfall however, 
the soil moisture in the irrigated regions is fairly high due 
to the contribution of irrigation to the soil moisture.

Figure 5 illustrates the bivariate dynamics of daily soil 
moisture and heat in rainfed regions during the growing sea-
son from 2000 to 2018. In June, the distribution indicates 
lower soil moisture, skewed towards the lower right, sug-
gesting a higher likelihood of compound extremes with high 
temperature and low soil moisture. It's noticeable that June 
and July are more susceptible to these compound extremes. 
Conversely, in August and September, the distributions shift 
towards the upper left, indicating abundant moisture condi-
tions with fewer hot days. These months exhibit relatively 
higher soil moisture levels as they are less warm compared 
to June and July. For the estimation approach of models, the 
Hausman test revealed that the fixed effect model would per-
form better for analysing the data in this study. Hence fixed 
effect model was used for the estimation of models. The 
regression results of various models for rainfed and irrigated 
regions are discussed below.

3.1  Individual Extremes Model (IEM)

The regression results for IEM has been presented in 
Table S1. For rainfed regions, the results show that rice yield 
is largely dependent on cumulative rainfall throughout the 
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growing season. Rice grows under waterlogged conditions 
and requires nearly 10 cm of waterlogging during the grow-
ing season. The model results indicate that the coefficients 
for heat stress, i.e., days on which the maximum temperature 
exceeds 35 °C, are negative and significant for all models. 
The coefficient for cumulative rainfall was found to be posi-
tive, suggesting that rice yield increases with an increase in 
cumulative rainfall during the growing season. Rice requires 
high soil moisture conditions throughout the growing sea-
son, unlike other crops. Thus, abundant rainfall is always 
beneficial for rice growth. Similarly, the mean soil moisture 
coefficient had a positive and significant correlation, and the 
coefficients for NDS and CSMN conditions were also sig-
nificant. This result confirms that rice yield requires higher 
soil moisture throughout its growing season. However, the 
results for NDD and CSMD were not significant. The sig-
nificance of the results was checked using the P-Value test. 

In irrigated region, the effect of heat excess on rice yield 
was negative but not statistically significant. Soil moisture 
parameters above normal had a positive impact on rice yield, 
indicating the benefit of surplus soil moisture. Conversely, 
the coefficient for soil moisture in the deficit range was nega-
tive and insignificant.

3.2  Compound Coincidental Extremes Model (CCM)

Table S2 presents the regression results from CCM (a & b) 
models for both rainfed and irrigated regions. In the rainfed 
region, the regression results of CCM(a) indicate that hot 
and dry days negatively affect rice yield, with coefficients 
similar to those of events with only heat stress. The regres-
sion results of CCM(b) show that the compound heat and 
soil moisture metrics also impact rice yield. Negative and 
significant coefficients were found for the compound metric 

Fig. 5  The Bivariate density of heat and soil moisture for 2000–2015 of the growing seasons
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with heat stress and soil moisture conditions around normal 
or below. However, the coefficients were positive but insig-
nificant for soil moisture in the surplus and extreme surplus 
zone on hot days, suggesting that surplus water can offset 
the damage caused by heat. The coefficient of soil moisture 
in the extreme surplus range was about ten times more effi-
cient in counteracting the damage caused by excess heat than 
when it was in the surplus range, as evidenced by its coef-
ficient of 0.0165, compared to 0.0015 for the surplus range.

No hot days with extreme soil moisture deficit were 
observed in irrigated region. Hot days with soil moisture 
within normal conditions had negative but insignificant 
coefficients. The coefficient for soil moisture in the surplus 
range was positive, but in the extreme surplus range, it was 
negative.

3.3  Compound Sequential Extremes Model (CSM)

Table S3 shows the results of CSM models for both rainfed 
and irrigated regions. The results indicate that the impact of 
sequential extremes with soil moisture was less significant 
than coincidental extremes when the temperature exceeded 
the heat stress threshold. There was no significant evidence 
of the direct impact of sequentially compounding extremes 
on rice yield. Additionally, the damage caused by heat was 
not counteracted by excess soil moisture on the following 
days. The regression coefficient for sequentially compound-
ing heat stress and rainfall scarcity was negative and signifi-
cant (−0.01787400) with a confidence level of 95 percent, 
indicating that sequential hot and dry days are more damag-
ing to rice yield than simple hot days. In irrigated regions, 
sequential hot events followed by consecutive extreme sur-
plus or extreme deficit soil moisture days were not observed. 
Additionally, the coefficient of hot days with different soil 
moisture conditions in irrigated regions was insignificant.

3.4  CCM in different growing stages

Table S4 shows the regression results of compound coinci-
dental model parameters in different stages of the growing 
season for rainfed region. Compound hot and dry days have 
a negative coefficient in all three stages, indicating that rain-
fall is the dominant factor in determining yield in all three 
stages. However, this dominance is more pronounced in the 
third stage. No instances of compound hot days with extreme 
soil moisture deficit were observed in the second and third 
stages of rice growth. However, the coefficient of this 
instance in the first stage was negative and significant. The 
coefficient of soil moisture deficit in the third stage was also 
negative and significant, highlighting the damage caused by 
water scarcity in the final stages of rice cultivation.

3.5  CSM in different growing stages

Table S5 shows the results of CSM models in different 
stages for the rainfed regions. The influence of sequential 
extremes in different stages was found to be the same as 
evident from sequential extreme parameters for the entire 
season. The coefficients of sequential extremes with heat 
stress followed by soil moisture in the surplus range in the 
second and third stages were negative and significant, indi-
cating that the damage due to heat was not counteracted by 
the following excess water.

Figure 6 illustrates the separate effects of heat and water 
metrics on rice yields in rainfed areas. The results indicate 
that rice yield was negatively impacted by an increase in 
heat stress and a decrease in soil moisture. In most years, 
an increase in heat stress and a decrease in soil moisture 
had a negative impact on rice yield. Conversely, in years 
where soil moisture increased and heat stress decreased, 
there was a positive effect on rice yield. Notably, in 2012, 

Fig. 6  Contribution of rainfall, 
heat and rainfall, soil moisture 
on rice yields in rainfed regions
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it was observed that the damage caused by heat was offset 
by increased soil moisture, resulting in an increase in crop 
yield.

Figure 7 shows the decomposed effect of heat and water 
metrics on rice yields in irrigated regions. In these areas, the 
trend in crop yield was mainly driven by the trend in heat 
stress, like in the year 2003 when even though the soil mois-
ture decreased crop yield still increased due to the decrease 
in heat stress.

3.6  Model comparison

The performance indices of models formulated in this study 
have been shown in Table 5. The performance of models in 
the rainfed regions was found significantly better than in the 
irrigated regions. The models are better capable of capturing 
the variance in rainfed regions. There is not much difference 
in the predictive capacity of models in the same region.

Among the individual extremes model in the rainfed 
regions, IEM(d) which uses cumulative soil excess above 
and below normal levels has the best performance, whereas 
in the irrigated regions IEM(b) which uses mean soil mois-
ture of the growing season has better performance. The per-
formance of models increases when parameters for different 
seasons were taken separately. From all the models in rainfed 
regions, CCM(b) has the best Adjusted  R2 and is found to 
be the best performing. In the Irrigated regions CSM(b) was 
found to be the best performing model.

4  Discussion

The work aims to study the impact of individual and com-
pound extremes on rice yield in two different regions of 
India. Previously, researchers have used statistical models 
to study the impact of individual hydrological extremes on 

Fig. 7  Contribution of rainfall and heat and rainfall, soil moisture on rice yields in irrigated regions

Table 5  Model performance 
measures

DS Different stages of growing season

Models Rainfed Irrigated

R2 R2
adj AIC BIC R2 R2

adj AIC BIC

IEM(a) 0.373 0.337 972.598 1005.330 0.151 0.100 1672.478 1701.852
IEM(b) 0.371 0.335 977.809 1010.542 0.163 0.112 1658.705 1688.079
IEM(c) 0.370 0.334 980.903 1013.635 0.155 0.104 1667.742 1697.116
IEM(d) 0.376 0.340 966.075 998.807 0.153 0.102 1670.175 1699.549
CCM(a) 0.371 0.335 978.137 1010.869 0.150 0.100 1673.203 1702.577
CCM(b) 0.375 0.338 975.122 1029.675 0.166 0.113 1661.225 1705.286
CSM(a) 0.370 0.333 981.954 1014.687 0.152 0.100 1672.222 1701.596
CSM(b) 0.375 0.338 975.091 1029.644 0.166 0.115 1658.500 1697.666
CCMDS(a) 0.386 0.348 950.971 1016.435 0.168 0.111 1666.382 1725.130
CCMDS(b) 0.397 0.356 937.520 1057.53 0.199 0.137 1645.149 1747.959
CSMDS(a) 0.385 0.346 953.929 1019.393 0.170 0.114 1662.876 1721.624
CSMDS(b) 0.388 0.346 965.264 1085.281 0.201 0.142 1636.207 1724.330
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crop yield (Ortiz-Bobea et al. 2019; Roberts et al. 2013) 
and the impact of compound extremes on crop yield (Haqiqi 
et al. 2021), but most of these works have been carried out 
for countries like USA. In India, no such study has been car-
ried out yet. Statistical models have also been used to predict 
the changes in crop yield due to projected climate change 
(Lobell and Burke 2010). From the climate change studies, 
it was evident that the hydrological extremes are expected 
to multiply both in frequency and intensity in the upcoming 
future (Bevacqua et al. 2019; Manning et al. 2019; Myhre 
et al. 2019; Poschlod et al. 2020). Thus, extensive studies are 
required to study the behaviour of crop yield to the occur-
rence of these extremes.

The formulation of the yield response function of crops 
through statistical models provides sufficient evidence of 
the crop yield response to extremes. The response of crop 
yield to extreme events such as drought, heat stress, and 
excess rainfall varies with the type of crop. Therefore, it is 
important to study the impact of these extremes on differ-
ent crops to develop appropriate management practices for 
ensuring food security. Rice is a staple crop in many parts 
of the world and is particularly important in India, where it 
is widely grown and consumed. Understanding the response 
of rice yield to different water and heat metrics is crucial for 
developing strategies to mitigate the impact of extremes on 
rice production.

The analysis of the regression coefficients of different 
water metrics and extreme events on rice yield provides 
valuable insights into the impact of these factors on crop 
productivity. The negative and significant coefficient of days 
with maximum temperature exceeding 35 °C in the rainfed 
regions indicates that extreme heat has an adverse effect on 
rice yield. Moreover, past studies suggest that the average 
rice yield would have been higher if the pre-1960 climatic 
conditions prevailed during 1960–2007 in India (Auffham-
mer et al. 2012; Pattanayak and Kumar 2014), highlighting 
the potential impact of climate change on crop yield. On the 
other hand, the positive and significant coefficient of IEM 
(C&D), NDS & CSMN indicates that soil moisture plays a 
crucial role in determining rice yield, with higher moisture 
levels leading to higher yields.

In the rainfed region, the coefficient of only hot days 
obtained from IEM’s are same as that of hot and dry days 
as obtained from CCM(a). It may be due to the fact that 
most extremely hot days are mostly accompanied by scanty 
rainfall (rainfall < 1 mm). The regression results of CCM(b) 
shows that hot days accompanied by soil moisture in deficit 
and extreme deficit range adversely affects the rice yield, but 
lacks sufficient evidence of this conclusion. The coefficients 
of hot and dry days, as well as surplus and extreme surplus 
soil moisture, show a positive effect on rice yield. The coef-
ficients of CSM(a) show that sequentially occurring hot and 
dry days are more dangerous to rice yield than simply dry 

days as dry days result in lower moisture availability to the 
crop. However, no evidence of sequentially occurring heat 
and soil moisture extremes impacting rice yield was found 
from the CSM(b) models. The coefficient of parameters 
of CCM(b) in different stages shows that extreme surplus 
soil moisture on hot days is harmful in the first and second 
stage but beneficial in the last stage. Thus, highlighting the 
need for within season analysis of crop yield. These results 
suggest that extreme heat can be compensated by maintain-
ing soil moisture within the desired range, highlighting the 
importance of managing soil moisture levels for optimiz-
ing crop yield. However, the lack of significant evidence 
for the impact of sequentially occurring heat and soil mois-
ture extremes on rice yield suggests that further research is 
needed in this area.

In irrigated regions, the coefficients of hot days are found 
to be insignificant, likely due to consistent irrigation offset-
ting the damage caused by hot days. However, the study 
found that in irrigated regions, extreme surplus soil moisture 
on hot days has a negative coefficient, which may be due to 
the already high levels of normal soil moisture in these areas 
due to more prominent irrigation.

Overall, the study suggests that rainfall and soil moisture 
are critical factors for rice yield in rainfed regions, while in 
irrigated regions, the impact of extreme weather events may 
be offset by consistent irrigation. The results also highlight 
the importance of considering different combinations of 
extreme weather events and within-season analysis of crop 
yield in understanding the impact of climate change on crop 
production.

To evaluate the performance of models, this study 
used adjusted  R2. Adjusted  R2 is a statistical measure that 
adjusts the  R2 value for the number of independent vari-
ables included in the model. It takes into account the fact 
that including more variables in the model can lead to an 
increase in  R2 even if the additional variables are not sig-
nificant predictors of the dependent variable. Therefore, 
adjusted  R2 is a better measure of model performance than 
 R2 alone, especially in cases where there are many independ-
ent variables. AIC (Akaike Information Criterion) and BIC 
(Bayesian Information Criterion) are also commonly used 
measures of model performance. They take into account the 
number of parameters in the model and penalize models 
with too many parameters. However, they are more suitable 
for comparing models with the same number of parameters, 
which is not the case in the present study. In the present 
study, CCM(b) while modelled for different stages of the 
growing season is found to be the best performing model 
for both the rainfed and irrigated regions. However, the 
predictive capability of the models in the irrigated region 
is considerably lower compared to the rainfed region. The 
lower predictive capability of models in the irrigated region 
compared to the rainfed region may be due to the consistent 
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irrigation in these regions, which may offset the impact of 
climate variability on rice yield.

The statistical models do have certain limitations like 
being unable to capture artificial processes such as irriga-
tion, use of fertilizers, and other farm management practices. 
These limitations reduce the predictive capability of statisti-
cal models. The use of a single metric can lead to over or 
underestimation of the climate change impacts. The results 
in this study can be further improved by improving the sam-
ple size taken in the study which can be done by extending 
the period of study, if consistent crop yield data is available 
for the study period. It can also be done by extending the 
regions under analysis if the crop growth is under similar 
conditions in the extended region.

The past studies and the future model projections have 
shown that the shift in rainfall with more intense and fre-
quent spells in some parts of the season will lead complete 
dryness in other parts. This in turn will result in abrupt tran-
sition in soil moisture (Guhathakurta et al. 2015; Menon 
et al. 2013; Sahana et al. 2015; Sarkar et al. 2015). The 
increase in temperature will lead to a greater number of hot 
days. These scenarios will have damaging impact on crop 
yield as identified by the study. The southern and western 
parts of India which currently have relatively lower tempera-
tures compared to northern and eastern regions, are likely to 
show greater sensitivity in rice yields under climate change 
(Aggarwal and Mall 2002). Hence constant irrigation would 
be required to avoid the damage due to soil moisture in defi-
cit zone in both the rainfed and irrigated regions.

5  Conclusions

This study analysed the impact of heat and water stress on 
crop yield using rainfall, temperature and soil moisture data. 
The available data is used to extract heat and water metrics 
for the formulation of statistical models. In this study dis-
trict-wise analysis is done with rice yield being a dependent 
variable over climatic conditions like rainfall, temperature 
and soil moisture. The results obtained from the regression 
analysis indicate the damage to rice yield due to unfavour-
able climatic conditions. One of the major causes of concern 
is excess heat that adversely affects rice yield. In this study, 
it has been found that hot days with soil moisture scarcity 
have negative impact on the rice yield where the coefficient 
of hot days is between −0.0020 to −0.0032 but hot days with 
soil moisture excess have controlled these damages as sug-
gested by positive coefficient of 0.0165. The primary find-
ing of this study is that by controlling soil moisture within 
the desired limits it is possible to reduce the damage due to 
excess heat as hot days with soil moisture in extreme surplus 
range have coefficient of 0.0165 and are able to effectively 
counter the heat days by more than 10 times than hot days 

with soil moisture in surplus range which have coefficient 
of 0.0015. Soil moisture is the only controllable water met-
ric that can be altered through the application of additional 
water by irrigation, thus further studies on optimal soil mois-
ture can be carried out to efficiently support the rice yield. 
Further, the study also found that coincidental compound 
extremes are found to be more damaging to the rice yield 
than sequential compound extremes. The behaviour of these 
models changes with the study area due to the different in 
geographical conditions and the distribution of hydrological 
variables.

This study demonstrates the effectiveness of statistical 
models in assessing the impact of coincidental and sequen-
tial compound extremes on crop yield within consistent 
hydrological conditions. The framework offers potential for 
analyzing future crop yield trends with dependable projec-
tions of rainfall, temperature, and soil moisture. Moreover, 
the methodology outlined here is transferable and can be 
applied to investigate the yield-response patterns of different 
crops. Future research endeavours could focus on enhanc-
ing the predictive capacity of these models by integrating 
data-driven approaches such as machine learning and deep 
learning techniques, along with incorporating additional 
farm management practices supported by comprehensive 
data sets. Such advancements hold promise for refining 
agricultural resilience and adaptation strategies in the face 
of changing environmental conditions.
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extremes model; M: Seasonal mean soil moisture content; M2: Square 
of season mean soil moisture content; NDD: Number of days when 
soil moisture is below normal levels; NDS: Number of days when 
soil moisture is above normal levels; R: Cumulative growing season 
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