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Abstract
Agricultural drought refers to soil moisture deficit, which causes adverse effects on the crop production and economy of a 
nation. This work compared the capability of artificial neural network (ANN) and support vector machine (SVM) algorithm 
in predicting agricultural drought in the Palakkad district of Kerala, India. Also, the influence of various global climatic 
indices on soil moisture stress in the study area is assessed. Two models were developed to investigate the impact of global 
climatic indices. Model 1 considered only local meteorological variables as predictors, and model 2 included global climatic 
indices along with meteorological variables. The results showed that ENSO has commendable influence on the early pre-
diction of agricultural drought in Palakkad and are more evident at higher lead times (2 to 4 months). For the first model of 
ANN and SVM, the R2 values at a 4-month lead range from 0.56 to 0.76 and 0.62 to 0.77, respectively. Similarly, for model 
2, the R2 varies from 0.61 to 0.77 and 0.75 to 0.82 for ANN and SVM models, respectively. Further, the results indicated that 
the SVM model shows clear advancement in prediction over ANN especially at higher lead times, even though both show 
a comparable performance at 1-month lead time. The study provided useful information regarding the potential predictors 
of agricultural drought in the study area and suggest suitable models for the early prediction. This will support the decision 
makers in drought prevention and water resource management.

1  Introduction

Drought is a destructive natural disaster, which propagates 
very slowly with its impacts remaining, even after the 
drought event (Pendergrass et al. 2020). Among the other 
natural hazards, drought causes great damage and a massive 
loss to the agricultural sector and hence economic stability 
of a nation (Zargar et al. 2011; Li et al. 2020). Drought is 
mainly of four types: meteorological drought, agricultural 
drought, hydrological drought, and socio-economic drought 
(Mishra & Singh 2010). Among these, agricultural drought 
has higher importance as it directly affects food security in 
India (Mishra et al. 2014). The water demand has increased 
due to the increasing rate of population and development 
(Sang et al. 2023). The water stress developed as a result of a 
drought event retards the crop root growth, which decreases 

agricultural productivity. Extensive studies were reported 
around the world, related to the assessment and monitoring 
of agricultural drought. But only a limited number of studies 
were reported on agricultural drought prediction.

Early prediction of agricultural drought is most important 
to develop suitable mitigation measures and to reduce the 
damage caused by the disaster. In the beginning years of 
agricultural drought prediction, researchers considered only 
the meteorological variables or drought indices as predictors 
(Dutta et al. 2013; Maity et al. 2016). Fung et al. (2020) 
attempted to predict the Standardized Precipitation Evapo-
transpiration Index (SPEI) at various timescales using the 
SVR model and fuzzy-support vector regression (F-SVR) 
and boosted-support vector regression (BS-SVR) models. 
They observed that the accuracy of prediction increases 
with increasing timescale of the SPEIs. Prediction of agri-
cultural drought by integrating machine learning methods 
and remotely sensed data was done by Feng et al. (2019). 
SPEI-3 was calculated using various climate and vegetation 
indices obtained from remote sensing data. They suggested 
that the proposed approach will be suitable for vegetated 
regions with limited in situ data availability.
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The adoption of global climatic indices as predictors in 
drought prediction is a significant milestone in this area. 
These indices highly influence the precipitation and temper-
ature pattern of a region at different seasons (Wu et al. 2022). 
Chiew et al. (1998) studied the teleconnections between the 
El Nino Southern Oscillation (ENSO) and the hydroclimate 
of Australia using empirical methods. They found that there 
is a significant correlation between rainfall and streamflow 
with the Southern Oscillation Index (SOI) in most parts of 
Australia. Schepen et al. (2011) found that lagged ENSO 
events can be used as a potential predictor of seasonal rain-
fall in Australia. These findings encouraged the researchers 
to include large-scale climatic indices for predicting drought 
with a longer lead time (Dikshit et al. 2021). Zhang et al. 
(2021) predicted Standardized Soil Moisture Index (SSI) 
using Standardized Precipitation Index (SPI) and ENSO 
events using the meta-Gaussian model. They found that the 
prediction performance was highly region specific, and the 
model was better performed in the spring season than sum-
mer season of China. Tian et al. (2018) executed a study 
to predict agricultural drought in China using SVM. They 
developed seven different models by including ENSO and 
western Pacific subtropical high (WPSH) to predict SPEI-6. 
It was mentioned that the incorporation of climatic indices 
improved the prediction accuracy up to 3 months of lead 
time.

A machine learning (ML)–based approach is very popu-
lar to exhibit the complex nonlinear relation between inde-
pendent and dependent variables. Singh and Borah (2013) 
suggested that time series analysis and ANN can be used 
to resolve the prediction problems of Indian summer mon-
soon rainfall. ANN was used successfully for the prediction 
of short- and long-lead-time meteorological drought (Erol 
Keskin et al. 2011; Le et al. 2016) and agricultural drought 
(Manatsa et al. 2008; Marj & Meijerink 2011; Shukla et al. 
2011). Similarly, SVM is highly efficient to handle noisy 
data and has been used in many prediction works (Jehanzaib 
et al. 2021). Mokhtarzad et al. (2017) executed a study to 
forecast drought using SPI by ANN, adaptive neuro-fuzzy 
inference system (ANFIS), and SVM. They found that all 
three models hold low error and are suitable for prediction 
studies. They also highlighted the advantage of the SVM 
model over the other two models.

In India, former studies including global climatic indi-
ces are more limited to the prediction of Indian monsoon 
(Mooley & Parthasarathy 1983; Kirtman & Shukla 2000; 
Krishnamurthi 2000). Shukla et al. (2011) attempted to 
forecast Indian Summer Monsoon Rainfall Index (ISMRI) 
considering the ENSO indices. They reported that ISMRI 
shows a good correlation with Nino 3, Nino 3.4, and Nino 
4 indices at various lag periods, and hence, these indices 
can accurately predict ISMRI. Shukla and Paolino (1983) 

demonstrated that the antecedent Southern Oscillation Index 
(SOI) was a useful predictor of Indian monsoon rainfall.

The Kerala state in India is experiencing intermittent 
drought events in the past few decades. One of the reasons 
for this was the decreasing trend of southwest monsoon in 
Kerala. In Kerala, 2016 was identified as one of the driest 
years. According to the report by the India meteorological 
department, Kerala faces a 32% deficit from summer mon-
soon and 62% from post-monsoon during 2016. Abhilash 
et al. (2019) tried to identify the reason for this extreme dry 
period in Kerala. They investigated the relationship between 
Pacific teleconnection and Kerala rainfall. They found that 
stronger El Nino events negatively influence the summer 
monsoon in Kerala, whereas there was a positive relation-
ship with post-monsoon rainfall. They also reported that the 
inter-annual variability and influence of teleconnection on 
Kerala Summer Monsoon Rainfall (KSMR) and ISMR are 
different.

The recurrent water stress adversely affects cultivation in 
Kerala, as more than 70% of agricultural fields depend on 
rainfall alone. The prolonged period of deficiency in rain-
fall and high rate of evaporation lead to the reduction in 
soil moisture content. In the past few years, the agriculture 
sector in the state of Kerala in India is facing challenges 
due to uncertainties caused by climate change. Economic 
Review 2021 by the Kerala state planning board reveals that 
the gross state value added (GSVA) from the agriculture 
sector shows a decline from 12.37% in 2013–2014 to 9.44% 
in 2020–2021. If the agricultural drought is predicted accu-
rately for higher lead time, the disaster can be mitigated 
effectively. But studies on agricultural drought prediction are 
limited in Kerala. Similarly, the evaluation of direct impact 
of local meteorological variable on soil moisture deficiency 
is also limited.

This study aims (a) to identify the most suitable predic-
tors from local meteorological variables and global climatic 
indices for the prediction of agricultural drought in the Pal-
akkad district of Kerala, (b) to study the effect of global 
climatic indices on the soil moisture deficit in the study area, 
and (c) to suggest a suitable model for the early prediction of 
agricultural drought incorporating the advantages of ANN 
and SVM. Palakkad is the largest district in the State of 
Kerala and is known as the Granary of Kerala. According 
to the agricultural statistics (2018–19) of Kerala, Palakkad 
is in the first position for the production of rice. Midland 
and highland regions of Palakkad are under threat of lack of 
moisture content, and such area having low moisture con-
tent had been tremendously increased from 2001 to 2021 in 
Palakkad (Viswambharan, et al. 2022).

The remaining part of the paper includes four sections. 
Section 2 provides the study area, data used, and methodol-
ogy for developing the models; results and discussions were 
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summarized in Sect. 3; and the conclusion of the work is 
given in Sect. 4.

2 � Materials and methods

2.1 � Study area

Palakkad is located within a latitude ranging from 10°20′ 
to 11°14′ North and a longitude from 76°02′ to 76°54′ East 
(Viswambharan, et al. 2022). It is situated at the foot of the 
Western Ghats and stands as a northern gateway to Kerala 
(Fig. 1). Palakkad is called as the Rice Bowl of Kerala.

The total district area is 4480 km2 and the net cultivated 
area is 2840 km2, 64% of the entire district area. Based 
on the physical features of the area, the Palakkad district 
is divided into Midland and Highland (District Census 
handbook-2011).

Palakkad has a tropical and dry climate. The major 
portion of rainfall (71%) is received during the southwest 
monsoon season, and the remaining is contributed from the 
northeast monsoon. The annual rainfall varies from 1883 
to 3267 mm. The maximum temperature and minimum 
temperature ranges from 28.1 to 37.4 °C and from 22.2 to 
25.3 °C, respectively. Humidity is high during morning 
hours throughout the year, and it is higher during the mon-
soon period. The direction of wind is predominantly from 
the west and the wind speed is high during August (13.6 
kmph) (Central Ground Water Board Kerala Region, 2013).

2.2 � Data

This study included daily rainfall data with 0.25° resolution, 
daily maximum temperature, and daily minimum tempera-
ture data with 1° resolution from six grid points on various 
parts of the study area. Data were obtained for a period of 
1971 to 2020 from the India Meteorological Department. 

Fig. 1   Location of study area
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The details of grid points along with location map of the 
study area are presented in Fig. 1.

The temperature data was interpolated using bilinear 
interpolation to match with rainfall data. Monthly time 
series values of root zone soil moisture, specific humidity, 
and wind speed were acquired from NASA Global Land 
Data Assimilation System (GLDAS) for the same period.

Climate index (CI) is a numerical value used to describe 
the state and change in the climate system. This study con-
sidered various types of climatic indices to evaluate their 
influence on the soil moisture variability in the study area. 
The indices include (1) indices based on sea surface tem-
perature anomalies like the Atlantic Multi-decadal Oscilla-
tion (AMO), Indian Ocean Dipole (IOD), Pacific Decadal 
Oscillation (PDO), ENSO indices (Nino 1 + 2, Nino 3, 

Nino 3.4, and Nino 4) and (2) indices based on sea pressure 
anomalies such as Arctic Oscillation (AO), North Atlantic 
Oscillation (NAO), Southern Oscillation Index (SOI), and 
Pacific–North American teleconnection pattern (PNA). The 
monthly time series values of these climatic indices were 
downloaded from http://​psl.​noaa.​gov and http://​www.​bom.​
gov.​au for the duration of 1971 to 2020.

2.3 � Methodology

The overall procedure of the study is depicted in Fig. 2. The 
suitable predictors for soil moisture on the study area were 
identified based on correlation analysis (Pearson correla-
tion and Spearman’s correlation) performed between mete-
orological variables and global climatic indices with soil 

Meteorological 

Variables 
Soil Moisture 

Global Climatic 

Indices 

Selection of 

suitable predictors 

A
u
to

co
rr

el
at

io
n
 A

n
al

y
si

s 

Development of 

ANN/ SVM model 

Prediction of          

Soil Moisture 

Correlation 

Analysis 

Correlation 

Analysis 

Performance 

evaluation and 

comparison of models 

R2

RMSE 

NSE 

Fig. 2   Methodological flow-chart of the study
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moisture value. The selected predictors were used as the 
inputs in various models by ANN and SVM. By comparing 
the observed data and predicted data from different models, 
the best model for accurate prediction of future soil moisture 
was identified.

2.3.1 � Selection of suitable predictors

The selection of relevant predictors having high influence 
on the predictand is the most important step in a prediction 
study. Those variables which show strong correlation with 
soil moisture (as an indicator of agricultural drought) are 
selected as potential predictors. Autocorrelation analysis of 
soil moisture data was performed to identify the degree of 
correlation existing between soil moisture at two successive 
time intervals. Autocorrelation function (ACF) values range 
from − 1 to 1. The temporal lag at which maximum correla-
tion obtained is considered in the prediction. Correlation 
analysis of meteorological variables and climatic indices at 
different lag periods with soil moisture was also made to 
identify the optimum lag at which these variables have a 
significant correlation with soil moisture.

2.3.2 � Artificial neural network (ANN) modelling

ANN is a soft computation technique; its structure and 
operation resemble the functioning of the human brain. The 
method was developed by McCulloch and Pitts in 1943. ANN 
is capable of developing a relationship between independent 
and dependent variables which are respectively given as the 
input and output of a network (Morid et al. 2007).

ANN consists of many artificial neurons which are linked 
together in various layers according to a specific network 
architecture. The main three layers of an ANN architecture 
are (1) input layer: the input data is given into the network 
through the input neurons present in this layer. (2) Hidden 
layer: the processing of input data (weight assign, activa-
tion function) is taken place in this intermediate layer. A 
neural network may have zero or more hidden layers. As 
the number of hidden layers increases, the complexity of 
the network increases. (3) Output layer: outputs from the 
network are produced in this layer. Each neuron in one layer 
will be linked to all the neurons in the succeeding layer. 
More details on ANN can be found in Fausett (2006).

2.3.3 � Support vector machine (SVM)

Support vector machines (SVM) are a supervised learning 
algorithm used for both classification and regression (Zhu et al. 
2021) and were introduced by Vapnik in 1995. The basic con-
cept of SVM is statistical learning theory and the structural risk 
minimization principle (Jehanzaib et al. 2021). The main aim 
of an SVM is to allow good generalization by reducing the risk.

SVM establishes a relationship between independent and 
dependent variables by combining these through kernel func-
tions. This allows to predict the value of a dependent variable 
corresponding to new independent variables (Zhang et al. 
2020). The equation for the same can be represented as:

where x is the independent variable, y is the dependent vari-
able, w is the weight vector, b is a constant, and ∅(x) is the 
non-linear mapping function.

Kernel functions are used to transform the training data into 
the required form to achieve better regression. Linear, polyno-
mial, Gaussian, exponential, sigmoid, and radial basis function 
are some of the commonly used kernel functions.

2.3.4 � Model evaluation measures

The performance of the model was valued by R2, RMSE, NSE, 
and MAPE. The R2 value ranges from 0 to 1. As R2 approaches 
1, the prediction accuracy increases. A lower RMSE value 
indicates a better prediction (Luo et al. 2022). The range of 
NSE varies from − ∞ to 1. As the value increases, accuracy of 
the prediction also increases. A model having the NSE value 
1 implies a perfect prediction. A negative NSE value repre-
sents unreliable prediction (Zhang et al. 2021). MAPE is the 
percentage equivalent of mean absolute error (MAE), and it 
measures the average magnitude of error produced by a model. 
The equations to calculate R2, RMSE, NSE, and MAPE are 
given below:

where O is observed soil moisture, O  is the average of 
observed soil moisture, P is the predicted soil moisture, P 
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is the average of predicted soil moisture, and n is the total 
number of observations.

3 � Results and discussion

3.1 � Autocorrelation of soil moisture

Autocorrelation analysis determines the linear dependence 
existing within a series. Figure 3 depicts the results of auto-
correlation analysis of soil moisture data for temporal lags 
of 1–3 months at the six grid points. At all grid points, the 
ACF values give the highest positive value at 1-month lag, 
and the value decreases as the lag increases. At a lag of 
3 months, the value of ACF changes its direction. Hence, 
antecedent soil moisture at 1-month lag was considered as 
one of the predictors.

3.2 � Correlation between soil moisture 
and meteorological variables

The correlation between various local meteorological variables 
and soil moisture at lag periods of 1 to 6 months is computed 
by Pearson correlation coefficient and Spearman correlation 
coefficient. The correlation coefficient values show slight 
changes among the two methods, but the lag time at which 
each local meteorological variables shows strong correla-
tion with soil moisture is similar in case of both analysis. The 
results of Pearson correlation analysis at various grid points 
are presented in Fig. 4. As rainfall and soil moisture are vary-
ing in the side direction, the temporal lag at which both show 
the highest positive correlation was considered in the predic-
tion. At all grid points, rainfall shows a significant correlation 
at 1 month (Pearson correlation coefficient varies from 0.59 to 
0.77 among six grid points) and 2 months (0.44 to 0.69) lag, 

and hence, rainfall values at these 2 lag times were consid-
ered as predictors. In case of analysis between rainfall and soil 
moisture, the study by Zhang et al. (2021) also reported similar 
results. They found that soil moisture and antecedent precipita-
tion has high correlation at 1-month lag, and it decreases as the 
lag time increases. Lag times were selected for other variables 
also, based on the values of correlation coefficient (r). At all 
grid points, specific humidity shows a strong correlation at a 
lag of 2 months with r value ranging from 0.77 to 0.81. The 
lag period selected for various local meteorological variables 
and corresponding correlation coefficients at G1 is tabulated 
in Table 1.

3.3 � Correlation between soil moisture and global 
climatic indices

To choose the relevant predictors, among global climatic indi-
ces which have a greater influence on agricultural drought in 
the study area, correlation analysis was performed between 
soil moisture and various global climatic indices like AMO, 
AO, IOD, NAO, Nino 1 + 2, Nino 3, Nino 3.4, Nino 4, PDO, 
PNA, and SOI at time lags of 1–12 months. Those indices 
which show a higher r value were selected as predictors, and 
the time lag at which these higher correlations were obtained 
was also noted.

Figure 5 depicts the result of correlation analysis at first 
grid point. Among the 11 indices considered, only the ENSO 
events, Nino 1 + 2, Nino 3, and Nino 3.4, give a significant 
correlation with soil moisture, and hence, other indices 
were excluded from the predictor’s list. Similar results were 
obtained at other grid points also. Among the three indices 
selected, Nino 1 + 2 shows the strongest relationships with 
soil moisture at 6-month lag with an r value of 0.81 at all 
grid points. The selected time lag for each index and the cor-
responding correlation coefficient values at first grid point are 
presented in Table 2.

3.4 � Development of prediction models

This study developed two ANN models and two SVM models 
to predict soil moisture. The first model considered only local 
meteorological variables as predictors and the second model 
included selected global climatic indices along with meteoro-
logical variables. The details of the two models developed are:

Model 1:

Model 2:

SM(t+n) = f
(
SMt−n ,Rt−n ,Rt−n−1, Tmaxt−n , Tmint−n−1, Tmint−n−2,Ht−n−1,Wt−n−1

)

SM(t+n) = f (SMt−n,Rt−n,Rt−n−1, Tmaxt−n, Tmint−n−1,

Tmint−n−2,Ht−n−1,Wt−n−1,Nino1 + 2t−n−5,Nino1 + 2t−n−6,

Nino3t−n−4,Nino3.4t−n−3)
Fig. 3   Autocorrelation results at G1, G2, G3, G4, G5, and G6
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where SM is soil moisture, R is rainfall, Tmax is maximum 
temperature, Tmin is minimum temperature, H is specific 
humidity, W is wind speed and n is the lead time of pre-
diction. For example, to predict the SM for a month t with 
1-month lead using model 1, the SM data of the previous 
month was the first predictor. Rainfall values of the previous 

2 months were the other two predictors. Similarly Tmax, 
Tmin, H, and W data with corresponding lag period can be 
selected accordingly.

1.	 ANN modelling: Levenberg–Marquardt back-propaga-
tion algorithm was used in this study, for training and 

Fig. 4   Correlation coefficient between soil moisture and meteorological variables at the grid points a G1, b G2, c G3, d G4, e G5, and f G6
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testing the data. This algorithm was based on Newton’s 
method and is specially designed for reducing the resid-
ual sum of squares (Lv et al. 2018). The data from 1971 
to 2010 was used for training, and data from 2011 to 
2020 was used for testing the network. The number of 
inputs for the first model was eight, and for the second 
model, it was 12. The network includes one hidden layer, 
and the number of neurons was fixed by testing differ-
ent architectures with varying numbers of neurons. By 

comparing the performance of these trials, the number 
of neurons was selected as four.

2.	 SVM modelling: Out of the total data, 80% was used for 
training and 20% was used for testing the models. Thus 
the first 40 years of data (1971–2010) were used for 
training, and the remaining data (2011–2020) was used 
for testing the model. Training of data was done with 
different types of kernel functions: linear, quadratic, 
fine Gaussian, medium Gaussian, and coarse Gaussian. 
Among the trained models, one with the least RMSE 
value (medium Gaussian) was selected for the predic-
tion of testing events. Fivefold cross-validation was used 
to avoid the problem of overfitting. Hence, during the 
cross-validation, input data will be divided into 5 equal 
subsets. The validation process will be repeated 5 times, 
with each of the 5 subsets used as the validation data, 
and the other 4 as training data, alternatively. The final 
performance will be the average of validation perfor-
mances in 5 subsets.

All the models were trained and tested for different lead 
periods from 1 to 4 months. The R2, RMSE, and NSE values 
of ANN prediction are presented in Table 3. For a 1-month 
lead time, the R2 for the first and second models at vari-
ous grid points varies from 0.87 to 0.93 and 0.91 to 0.95, 
respectively. This indicates that both models are capable of 
achieving good results at this lead time. Even though the 
global climate indices are not able to perform well at this 
short lead time, they produce a significant improvement in 
the prediction accuracy at longer lead times. As the lead 
time increases, the RMSE values of model 1 show a drastic 
increase compared to model 2, and the first model fails to 
acquire agreeable results. But the second model performs 
better than the first model by reducing RMSE up to 15% at 
4-month lead time.

Table 4 describes the prediction performance of SVM 
models at different lead times. Similar to the ANN models, 
both the SVM models show very close values of R2 and 
NSE at 1-month lead time. At longer lead times, the second 
model performs better than the first model. The second 
SVM model was able to achieve NSE values greater than 
0.5 at all the grid points at 3- and 4-month lead times. As 
mentioned by Moriasi et al. (2007), models with an NSE 
value greater than 0.5 have a satisfactory performance. 
These results highlighted that meteorological variables 
such as rainfall, temperature, humidity, and wind speed 
are the most effective factors in improving the accuracy 
of prediction at short lead times (Mokhtarzad et al. 2017). 
But at a longer lead time, local meteorological variables 
do not provide adequate predictive information, whereas 
the ENSO events were more efficient to provide accurate 

Table 1   Selected lag time and corresponding correlation coefficients 
of local meteorological variables at G1

Variables Lag time 
selected 
(month)

Correlation coefficients

Pearson Spearman’s

Rainfall 1 0.704 0.822
2 0.672 0.811

Maximum temperature 1  − 0.672  − 0.638
Minimum temperature 2 0.639 0.617

3 0.790 0.790
Specific humidity 2 0.776 0.706
Wind speed 2 0.412 0.313

Fig. 5   Correlation coefficient between soil moisture and climatic 
indices at G1

Table 2   Selected lag time and corresponding correlation coefficient 
of climatic indices at G1

Climatic index Time lag selected 
(month)

Correlation coefficient

Pearson Spearman

Nino 1 + 2 6 0.801 0.803
7 0.753 0.735

Nino 3 5 0.602 0.621
Nino 3.4 4 0.351 0.367
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predictive information of soil moisture. These findings 
illustrate that in the study region, where strong ENSO 
impacts are present, the second model will be the best 
choice for the early prediction of agricultural drought. 
Also, the results show that the performance of SVM mod-
els is better than ANN models.

Figure 6 presents the variation between observed and pre-
dicted values of soil moisture from ANN and SVM models 
at the fourth grid point for different lead times (1 month to 
4 months).

At the 1-month lead time, not much variation is found 
between the graphs. As lead time increases, the second mod-
els from ANN and SVM are showing more agreement with 
the observed values compared to the first model. This clearly 
defines the influence of global climatic indices on soil 
moisture. Major ENSO events were recorded in the years 
1972–1973, 1982–1983, 1997–1998, and 2015–2016 (Mike 
Carlowicz and Stephanie Schollaert Uz 2017). According 
to Kothawale et al. (2010), ENSO events are responsible for 
60% of droughts all over India. Thomas and Prasannakumar 

(2016) found out that ENSO events are the major reason for 
the irregular distribution of annual rainfall in Kerala which 
results in a short-term meteorological drought in various 
parts of the state. This work also achieves a similar result, 
where the ENSO events are found more responsible for the 
drought event in the Palakkad district. The second model, 
developed in this study by incorporating global climatic 
indices as predictors, was able to demonstrate the impact of 
these large-scale drivers on soil moisture deficiency in the 
study area and to achieve good prediction results.

While comparing the prediction abilities of ANN and 
SVM, the two models yielded good results in a short lead 
period. Additionally, SVM models outperformed ANN 
models, especially at longer lead periods. This may be 
because SVM models are functioning under the structural 
risk minimization principle, and hence, these models are 
not sensitive to local minima or maxima (Zhang et al. 
2020). The outcome of this work goes in line with earlier 
studies (Borji et al. 2016).

Table 3   Prediction performance 
of ANN models at different lead 
time

Grid point Model 1 Model 2

Lead 1 Lead 2 Lead 3 Lead 4 Lead 1 Lead 2 Lead 3 Lead 4

G1 R2 0.93 0.84 0.77 0.76 0.95 0.85 0.80 0.78
RMSE 39.22 74.43 82.77 86.51 36.40 68.38 77.84 81.64
NSE 0.92 0.73 0.66 0.63 0.93 0.77 0.70 0.67
MAPE 8.39 17.10 18.41 19.97 7.65 15.16 17.45 18.07

G2 R2 0.87 0.62 0.60 0.57 0.91 0.72 0.70 0.70
RMSE 44.20 86.08 89.31 93.55 38.47 72.86 75.82 76.40
NSE 0.81 0.28 0.23 0.15 0.86 0.49 0.44 0.43
MAPE 16.99 36.76 39.89 42.18 12.94 30.06 32.72 33.10

G3 R2 0.91 0.75 0.68 0.67 0.92 0.79 0.76 0.77
RMSE 36.21 75.64 84.05 86.63 32.86 63.83 71.54 72.45
NSE 0.88 0.46 0.33 0.29 0.90 0.62 0.52 0.50
MAPE 6.00 13.56 15.20 16.00 5.43 10.46 12.12 13.21

G4 R2 0.91 0.71 0.66 0.63 0.93 0.73 0.73 0.74
RMSE 41.49 89.10 92.71 94.22 38.62 73.40 84.56 86.91
NSE 0.86 0.36 0.31 0.28 0.88 0.56 0.42 0.39
MAPE 8.20 18.89 19.36 20.57 8.08 14.97 17.73 18.52

G5 R2 0.90 0.70 0.63 0.62 0.92 0.79 0.68 0.65
RMSE 50.03 86.96 94.91 108.69 46.79 80.22 90.11 94.07
NSE 0.82 0.47 0.36 0.17 0.85 0.55 0.43 0.38
MAPE 10.97 19.88 22.45 26.92 11.19 18.76 20.55 20.63

G6 R2 0.89 0.68 0.61 0.56 0.92 0.74 0.64 0.59
RMSE 43.91 76.97 82.77 90.08 36.42 62.19 76.21 81.79
NSE 0.85 0.55 0.48 0.38 0.90 0.70 0.56 0.45
MAPE 10.12 17.49 18.95 22.47 8.37 14.42 16.16 19.27
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A seasonal analysis was conducted to evaluate the per-
formance of models in different seasons. Four seasons were 
considered for this evaluation: dry season (Jan, Feb, Mar), 
pre-monsoon season (Apr, May), south-west monsoon sea-
son (Jun, Jul, Aug, Sept), and post-monsoon season (Oct, 
Nov, Dec). The results indicated that, the performance of 
the models varies among the seasons. The ANN and SVM 
models give better performance during the south-west 
monsoon season (with an average R2 value of 0.7) than 
the other seasons. The main reason for the good prediction 
performance during south-west monsoon may be due to 
the high correlation of rainfall with soil moisture in the 
study area.

The findings of this study will be beneficial for early 
agricultural drought prediction and warning, and formu-
lating proactive agricultural drought mitigation strategies. 
The performance of the models especially at higher lead 
times can be improved by incorporating deep learning tech-
niques and thereby the predictions can be further refined.

4 � Conclusions

This study identifies relevant meteorological and global 
climatic indices that influence the agricultural drought in 
the Palakkad district and develops models using ANN and 
SVM for the prediction of root zone soil moisture as an 
indicator of agricultural drought, up to 4 months of lead 
time. Various global climatic indices like AMO, AO, IOD, 
NAO, Nino 1 + 2, Nino 3, Nino 3.4, Nino 4, PDO, PNA, 
and SOI were considered in this study, to assess their influ-
ence on agricultural drought in Palakkad. The correlation 
analysis was performed to select the best predictors from 
the climatic indices, and based on the correlation coef-
ficient values, the optimum lag at which each of the pre-
dictors strongly correlated with soil moisture was chosen. 
A similar analysis was done between soil moisture and 
local meteorological variables: rainfall, maximum tem-
perature, minimum temperature, specific humidity, and 
wind speed. Two ANN models and two SVM models were 

Table 4   Prediction performance 
of SVM models at different lead 
time

Grid point Model 1 Model 2

Lead 1 Lead 2 Lead 3 Lead 4 Lead 1 Lead 2 Lead 3 Lead 4

G1 R2 0.95 0.86 0.80 0.77 0.94 0.84 0.82 0.82
RMSE 36.28 61.39 76.35 81.34 40.39 65.10 74.16 75.11
NSE 0.94 0.81 0.71 0.67 0.92 0.79 0.73 0.72
MAPE 7.94 13.59 17.38 19.16 8.62 14.11 17.04 17.63

G2 R2 0.86 0.74 0.61 0.61 0.88 0.80 0.77 0.78
RMSE 47.28 73.21 86.66 87.16 43.30 65.39 70.97 65.01
NSE 0.78 0.48 0.27 0.26 0.82 0.59 0.51 0.59
MAPE 19.33 30.96 38.15 41.09 17.57 27.92 31.31 29.9

G3 R2 0.94 0.85 0.78 0.77 0.92 0.83 0.81 0.81
RMSE 33.81 51.93 65.64 72.17 34.54 52.49 62.20 65.87
NSE 0.89 0.75 0.59 0.51 0.89 0.74 0.63 0.59
MAPE 5.95 9.17 12.16 13.61 5.83 8.84 11.30 12.41

G4 R2 0.91 0.82 0.74 0.75 0.91 0.83 0.80 0.80
RMSE 38.61 63.09 81.49 87.18 39.38 63.15 71.86 80.96
NSE 0.88 0.68 0.46 0.39 0.87 0.68 0.58 0.47
MAPE 8.03 13.06 17.67 19.62 7.93 13.01 15.31 18.03

G5 R2 0.91 0.79 0.71 0.68 0.92 0.82 0.78 0.78
RMSE 40.55 70.93 84.31 92.83 41.55 65.69 73.42 77.35
NSE 0.88 0.64 0.50 0.39 0.88 0.70 0.62 0.58
MAPE 9.06 16.59 19.76 23.27 9.21 15.03 17.21 19.21

G6 R2 0.91 0.76 0.65 0.62 0.91 0.79 0.75 0.75
RMSE 37.94 62.05 73.51 76.21 37.79 57.58 63.53 63.16
NSE 0.89 0.71 0.59 0.56 0.89 0.75 0.69 0.69
MAPE 8.15 14.06 17.04 18.01 8.2 12.78 14.69 15.14
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trained between selected predictors and soil moisture. For 
model 1, meteorological variables were the only predic-
tors, whereas model 2 used both meteorological variables 
as well as global climatic indices as predictors. The pre-
diction results of the models were compared employing 
R2, RMSE, NSE, and MAPE values. The major findings 
of the study are given below:

•	 The autocorrelation analysis of soil moisture shows a 
strong positive correlation at a lag of 1 month. Ante-
cedent rainfall shows better correlation results at tem-
poral lags of 1 and 2 months. The specific humidity and 
wind speed also have considerable influence on the soil 
moisture at 2-month lag period.

•	 ENSO events, Nino 1 + 2, Nino 3, and Nino 3.4, show a 
good correlation with soil moisture at a longer lag time 
(6 to 7 months).

•	 ANN models and SVM models were found to be effec-
tive for the short-term (1 month) prediction of agricul-
tural drought.

•	 In the case of second model, SVM was able to achieve 
almost the same accuracy in 3-month and 4-month lead 
times. But the accuracy of the ANN model declines at 
higher lead time.

•	 The performance of the models was improved by the 
addition of global climatic indices as predictors in 
both ANN and SVM models from 2-month lead time 
onwards.

The findings of this study will aid the early warning of 
agricultural drought and devise drought mitigation plans.

Fig. 6   Variation of observed and predicted soil moisture values at G4 for a 1-month, b 2-month, c 3-month, and d 4-month lead time
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